aboutsummaryrefslogtreecommitdiffhomepage
path: root/tactics/equality.ml
blob: ae5bed674118070f64c6c7c55b03a305e14dfbbb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989

(* $Id$ *)

open Pp
open Util
open Names
open Univ
open Generic
open Term
open Inductive
open Environ
open Reduction
open Instantiate
open Typeops
open Typing
open Retyping
open Tacmach
open Proof_type
open Logic
open Wcclausenv
open Pattern
open Hipattern
open Tacticals
open Tactics
open Tacinterp
open Tacred
open Vernacinterp

(* Rewriting tactics *)

(* Warning : rewriting from left to right only works
   if there exists in the context a theorem named <eqname>_<suffsort>_r
   with type (A:<sort>)(x:A)(P:A->Prop)(P x)->(y:A)(eqname A y x)->(P y).
   If another equality myeq is introduced, then corresponding theorems
   myeq_ind_r, myeq_rec_r and myeq_rect_r have to be proven. See below.
   -- Eduardo (19/8/97
*)

let general_rewrite_bindings lft2rgt (c,l) gl =
  let ctype = pf_type_of gl c in 
  let env = pf_env gl in
  let sigma = project gl in 
  let sign,t = splay_prod env sigma ctype in
  match match_with_equation t with
    | None -> error "The term provided does not end with an equation" 
    | Some (hdcncl,_) -> 
        let hdcncls = string_head hdcncl in 
        let elim =
	  if lft2rgt then
            pf_global gl
	      (id_of_string 
		 (hdcncls^(Declare.elimination_suffix (sort_of_goal gl))^"_r"))
          else
	    pf_global gl
	      (id_of_string (hdcncls^(Declare.elimination_suffix (sort_of_goal gl))))
        in 
	tclNOTSAMEGOAL (general_elim (c,l) (elim,[])) gl
   (* was tclWEAK_PROGRESS which only fails for tactics generating one subgoal 
      and did not fail for useless conditional rewritings generating an
      extra condition *)

let general_rewrite lft2rgt c = general_rewrite_bindings lft2rgt (c,[])

let rewriteLR_bindings = general_rewrite_bindings true
let rewriteRL_bindings = general_rewrite_bindings false

let rewriteLR = general_rewrite true
let rewriteRL = general_rewrite false

let dyn_rewriteLR = function
  | [Command com; Bindings binds] -> 
      tactic_com_bind_list rewriteLR_bindings (com,binds)
  | [Constr c; Cbindings binds] -> 
      rewriteLR_bindings (c,binds)
  | _ -> assert false

let dyn_rewriteRL = function
  | [Command com; Bindings binds] -> 
      tactic_com_bind_list rewriteRL_bindings (com,binds)
  | [Constr c; Cbindings binds] -> 
      rewriteRL_bindings (c,binds)
  | _ -> assert false

(* Replacing tactics *)

(* eq,symeq : equality on Set and its symmetry theorem
   eqt,sym_eqt : equality on Type and its symmetry theorem
   c2 c1 : c1 is to be replaced by c2
   unsafe : If true, do not check that c1 and c2 are convertible
   gl : goal *)

let abstract_replace (eq,sym_eq) (eqt,sym_eqt) c2 c1 unsafe gl =
  let t1 = pf_type_of gl c1 
  and t2 = pf_type_of gl c2 in
  if unsafe or (pf_conv_x gl t1 t2) then
    let (e,sym) = 
      match hnf_type_of gl t1 with 
        | DOP0(Sort(Prop(Pos))) -> (eq,sym_eq)
        | DOP0(Sort(Type(_)))   -> (eqt,sym_eqt)
        | _                     -> error "replace"
    in 
    (tclTHENL (elim_type (applist (e, [t1;c1;c2])))
       (tclORELSE assumption 
          (tclTRY (tclTHEN (apply sym) assumption)))) gl
  else
    error "terms does not have convertible types"

(* Only for internal use *)
let unsafe_replace c2 c1 gl = 
  let eq        = (pf_parse_const gl "eq")     in
  let eqt       = (pf_parse_const gl "eqT")    in 
  let sym_eq    = (pf_parse_const gl "sym_eq") in
  let sym_eqt   = (pf_parse_const gl "sym_eqT") in
  abstract_replace (eq,sym_eq) (eqt,sym_eqt) c2 c1 true gl

let replace c2 c1 gl = 
  let eq        = (pf_parse_const gl "eq")     in
  let eqt       = (pf_parse_const gl "eqT")    in 
  let sym_eq    = (pf_parse_const gl "sym_eq") in
  let sym_eqt   = (pf_parse_const gl "sym_eqT") in
  abstract_replace (eq,sym_eq) (eqt,sym_eqt) c2 c1 false gl
    
let dyn_replace args gl = 
  match args with 
    | [(Command c1);(Command c2)] -> 
       	replace (pf_interp_constr gl c1) (pf_interp_constr gl c2) gl
    | [(Constr c1);(Constr c2)] -> 
       	replace c1 c2 gl
    | _ -> assert false
                 
let v_rewriteLR = hide_tactic "RewriteLR" dyn_rewriteLR
let h_rewriteLR_bindings (c,bl) = v_rewriteLR [(Constr c);(Cbindings bl)] 
let h_rewriteLR c = h_rewriteLR_bindings (c,[])

let v_rewriteRL = hide_tactic "RewriteRL" dyn_rewriteRL
let h_rewriteRL_bindings (c,bl) = v_rewriteRL [(Constr c);(Cbindings bl)] 
let h_rewriteRL c = h_rewriteRL_bindings (c,[])

let v_replace = hide_tactic "Replace" dyn_replace
let h_replace c1 c2 = v_replace [(Constr c1);(Constr c2)]

(* Conditional rewriting, the success of a rewriting is related 
   to the resolution of the conditions by a given tactic *)

let conditional_rewrite lft2rgt tac (c,bl) = 
  tclTHEN_i (general_rewrite_bindings lft2rgt (c,bl))
    (fun i -> if i=1 then tclIDTAC else tclCOMPLETE tac)

let dyn_conditional_rewrite lft2rgt = function
  | [(Tacexp tac); (Command com);(Bindings binds)] -> 
      tactic_com_bind_list 
	(conditional_rewrite lft2rgt (Tacinterp.interp tac)) 
	(com,binds)
  | [(Tacexp tac); (Constr c);(Cbindings binds)] -> 
      conditional_rewrite lft2rgt (Tacinterp.interp tac) (c,binds)
  | _ -> assert false
	
let v_conditional_rewriteLR = 
  hide_tactic "CondRewriteLR" (dyn_conditional_rewrite true)

let v_conditional_rewriteRL = 
  hide_tactic "CondRewriteRL" (dyn_conditional_rewrite false)

(* End of Eduardo's code. The rest of this file could be improved
   using the functions match_with_equation, etc that I defined
   in Pattern.ml.
   -- Eduardo (19/8/97)
*)

(* Tactics for equality reasoning with the "eq"  or "eqT"
   relation This code  will work with any equivalence relation which 
   is substitutive *)

let find_constructor env sigma c =
  match whd_betadeltaiota_stack env sigma c [] with
    | DOPN(MutConstruct _,_) as hd,stack -> (hd,stack)
    | _ -> error "find_constructor"

type leibniz_eq = {
  eq   : marked_term;
  ind  : marked_term;
  rrec : marked_term option;
  rect : marked_term option;
  congr: marked_term;
  sym  : marked_term }

type sigma_type = {
  proj1 : constr;
  proj2 : constr;
  elim  : constr;
  intro : constr;
  ex    : constr }

let mmk = make_module_marker [ "Prelude"; "Logic_Type"; "Specif"; "Logic" ]

(* Patterns *)
let eq_pattern_mark = put_pat mmk "(eq ?1 ?2 ?3)"
let not_pattern_mark = put_pat mmk "(not ?)"
let imp_False_pattern_mark = put_pat mmk "? -> False"

let eq_pattern () = get_pat eq_pattern_mark
let not_pattern () = get_pat not_pattern_mark
let imp_False_pattern () = get_pat imp_False_pattern_mark

let eq = { eq = put_squel mmk "eq";
           ind = put_squel mmk "eq_ind" ;
           rrec = Some (put_squel mmk "eq_rec");
           rect = Some (put_squel mmk "eq_rect");
           congr = put_squel mmk "f_equal"  ;
           sym  = put_squel mmk "sym_eq" }

let build_eq eq = get_squel eq.eq
let build_ind eq = get_squel eq.ind
let build_rect eq = 
  match eq.rect with
    | None -> assert false
    | Some sq -> get_squel sq
	  
let eqT_pattern_mark = put_pat mmk "(eqT ?1 ?2 ?3)"
let eqT_pattern () = get_pat eqT_pattern_mark
 
let eqT = { eq  = put_squel mmk "eqT";
            ind = put_squel mmk "eqT_ind" ;
            rrec = None;
            rect = None;
            congr = put_squel mmk "congr_eqT"  ;
            sym  = put_squel mmk "sym_eqT" }

let idT_pattern_mark = put_pat mmk "(identityT ?1 ?2 ?3)"
let idT_pattern () = get_pat idT_pattern_mark

let idT = { eq  = put_squel mmk "identityT";
            ind = put_squel mmk "identityT_ind" ;
            rrec = Some (put_squel mmk "identityT_rec")  ;
            rect = Some (put_squel mmk "identityT_rect");
            congr = put_squel mmk "congr_idT"  ;
            sym  = put_squel mmk "sym_idT" }

(* List of constructions depending of the initial state *)

(* Initialisation part *)
let squel_EmptyT = put_squel mmk "EmptyT"
let squel_True   = put_squel mmk "True"
let squel_False  = put_squel mmk "False"
let squel_UnitT  = put_squel mmk "UnitT"
let squel_IT     = put_squel mmk "IT"
let squel_I      = put_squel mmk "I"

(* Runtime part *)
let build_EmptyT () = get_squel squel_EmptyT
let build_True ()  = get_squel squel_True
let build_False () = get_squel squel_False
let build_UnitT () = get_squel squel_UnitT
let build_IT ()    = get_squel squel_IT
let build_I ()     = get_squel squel_I

let pat_False_mark  = put_pat mmk "False"
let pat_False () = get_pat pat_False_mark
let pat_EmptyT_mark = put_pat mmk "EmptyT"
let pat_EmptyT () = get_pat pat_EmptyT_mark

let notT_pattern = put_pat mmk "(notT ?)"

(* Destructuring patterns *)
let match_eq eqn eq_pat =
  match matches eqn eq_pat with
    | [(1,t);(2,x);(3,y)] -> (t,x,y)
    | _ -> anomaly "match_eq: an eq pattern should match 3 terms"


let rec hd_of_prod prod =
  match strip_outer_cast prod with
    | (DOP2(Prod,c,DLAM(n,t'))) -> hd_of_prod t'
    |  t -> t

type elimination_types =
  | Set_Type
  | Type_Type
  | Set_SetorProp
  | Type_SetorProp 

let necessary_elimination sort_arity sort =
  let sort_arity = mkSort sort_arity in
  if (isType sort) then
    if is_Set sort_arity then
      Set_Type
    else 
      if is_Type sort_arity then
	Type_Type
      else  
	errorlabstrm "necessary_elimination" 
	  [< 'sTR "no primitive equality on proofs" >]  
  else
    if is_Set sort_arity then
      Set_SetorProp
    else
      if is_Type sort_arity then
	Type_SetorProp
      else  errorlabstrm "necessary_elimination" 
        [< 'sTR "no primitive equality on proofs" >]

let find_eq_pattern aritysort sort = 
  let mt =
    match necessary_elimination aritysort sort with
      | Set_Type       ->  eq.eq
      | Type_Type      ->  idT.eq
      | Set_SetorProp  ->  eq.eq
      | Type_SetorProp ->  eqT.eq
  in 
  get_squel mt

(* [find_positions t1 t2]

   will find the positions in the two terms which are suitable for
   discrimination, or for injection.  Obviously, if there is a
   position which is suitable for discrimination, then we want to
   exploit it, and not bother with injection.  So when we find a
   position which is suitable for discrimination, we will just raise
   an exception with that position.

   So the algorithm goes like this:

   if [t1] and [t2] start with the same constructor, then we can
   continue to try to find positions in the arguments of [t1] and
   [t2].

   if [t1] and [t2] do not start with the same constructor, then we
   have found a discrimination position

   if one [t1] or [t2] do not start with a constructor and the two
   terms are not already convertible, then we have found an injection
   position.

   A discriminating position consists of a constructor-path and a pair
   of operators.  The constructor-path tells us how to get down to the
   place where the two operators, which must differ, can be found.

   An injecting position has two terms instead of the two operators,
   since these terms are different, but not manifestly so.

   A constructor-path is a list of pairs of (operator * int), where
   the int (based at 0) tells us which argument of the operator we
   descended into.

 *)

exception DiscrFound of (sorts oper * int) list * sorts oper * sorts oper

let find_positions env sigma t1 t2 =
  let rec findrec posn t1 t2 =
    match (whd_betadeltaiota_stack env sigma t1 [],
           whd_betadeltaiota_stack env sigma t2 []) with
  	
      | ((DOPN(MutConstruct sp1 as oper1,_) as hd1,args1),
	 (DOPN(MutConstruct sp2 as oper2,_) as hd2,args2)) ->
        (* both sides are constructors, so either we descend, or we can
           discriminate here. *)
	  if sp1 = sp2 then
            List.flatten
	      (list_map2_i
		 (fun i arg1 arg2 -> findrec ((oper1,i)::posn) arg1 arg2)
		 0 args1 args2)
	  else
	    raise (DiscrFound(List.rev posn,oper1,oper2))

      | (t1_0,t2_0) ->
	  let t1_0 = applist t1_0
          and t2_0 = applist t2_0 in
          if is_conv env sigma t1_0 t2_0 then 
	    []
          else
	    let ty1_0 = get_type_of env sigma t1_0 in
	    (match get_sort_of env sigma ty1_0 with
	       | Prop Pos -> [(List.rev posn,t1_0,t2_0)] (* Set *)
	       | Type _ -> [(List.rev posn,t1_0,t2_0)] (* Type *)
	       | _ -> [])
	  in 
	  (try 
	     Inr(findrec [] t1 t2)
	   with DiscrFound (path,c1,c2) -> 
	     Inl (path,c1,c2))

let discriminable env sigma t1 t2 =
  match find_positions env sigma t1 t2 with
    | Inl _ -> true
    | _ -> false

(* Once we have found a position, we need to project down to it.  If
   we are discriminating, then we need to produce False on one of the
   branches of the discriminator, and True on the other one.  So the
   result type of the case-expressions is always Prop.

   If we are injecting, then we need to discover the result-type.
   This can be difficult, since the type of the two terms at the
   injection-position can be different, and we need to find a
   dependent sigma-type which generalizes them both.

   We can get an approximation to the right type to choose by:

   (0) Before beginning, we reserve a metavariable for the default
   value of the match, to be used in all the bogus branches.

   (1) perform the case-splits, down to the site of the injection.  At
   each step, we have a term which is the "head" of the next
   case-split.  At the point when we actually reach the end of our
   path, the "head" is the term to return.  We compute its type, and
   then, backwards, make a sigma-type with every free debruijn
   reference in that type.  We can be finer, and first do a S(TRONG)NF
   on the type, so that we get the fewest number of references
   possible.

   (2) This gives us a closed type for the head, which we use for the
   types of all the case-splits.

   (3) Now, we can compute the type of one of T1, T2, and then unify
   it with the type of the last component of the result-type, and this
   will give us the bindings for the other arguments of the tuple.

 *)

(* The algorithm, then is to perform successive case-splits.  We have
   the result-type of the case-split, and also the type of that
   result-type.  We have a "direction" we want to follow, i.e. a
   constructor-number, and in all other "directions", we want to juse
   use the default-value.

   After doing the case-split, we call the afterfun, with the updated
   environment, to produce the term for the desired "direction".

   The assumption is made here that the result-type is not manifestly
   functional, so we can just use the length of the branch-type to
   know how many lambda's to stick in.

 *)

(* [descend_then sigma env head dirn]

   returns the number of products introduced, and the environment
   which is active, in the body of the case-branch given by [dirn],
   along with a continuation, which expects to be fed:

    (1) the value of the body of the branch given by [dirn]
    (2) the default-value

    (3) the type of the default-value, which must also be the type of
        the body of the [dirn] branch

   the continuation then constructs the case-split.
 *)
let push_rel_type sigma (na,c,t) env =
  push_rel (na,c,t) env

let push_rels vars env =
  List.fold_right (fun nvar env -> push_rel_type Evd.empty nvar env) vars env

let descend_then sigma env head dirn =
  let IndType (indf,_) as indt =
    try find_rectype env sigma (get_type_of env sigma head)
    with Not_found -> assert false in
  let mispec,_ = dest_ind_family indf in
  let cstr = get_constructors indf in
  let dirn_nlams = cstr.(dirn-1).cs_nargs in
  let dirn_env = push_rels cstr.(dirn-1).cs_args env in
  (dirn_nlams,
   dirn_env,
   (fun dirnval (dfltval,resty) ->
      let aritysign,_ = get_arity indf in
      let p = lam_it (lift (mis_nrealargs mispec) resty) aritysign in
      let build_branch i =
	let result = if i = dirn then dirnval else dfltval in
	it_mkLambda_or_LetIn_name env result cstr.(i-1).cs_args
      in
      mkMutCase (make_default_case_info mispec) p head 
	(List.map build_branch (interval 1 (mis_nconstr mispec)))))
  
(* Now we need to construct the discriminator, given a discriminable
   position.  This boils down to:

   (1) If the position is directly beneath us, then we need to do a
   case-split, with result-type Prop, and stick True and False into
   the branches, as is convenient.

   (2) If the position is not directly beneath us, then we need to
   call descend_then, to descend one step, and then recursively
   construct the discriminator.

 *)

(* [construct_discriminator env dirn headval]
   constructs a case-split on [headval], with the [dirn]-th branch
   giving [True], and all the rest giving False. *)

let construct_discriminator sigma env dirn c sort =
  let (IndType(IndFamily (mispec,_) as indf,_) as indt) =
    try find_rectype env sigma (type_of env sigma c)
    with Not_found ->
       (* one can find Rel(k) in case of dependent constructors 
          like T := c : (A:Set)A->T and a discrimination 
          on (c bool true) = (c bool false)
          CP : changed assert false in a more informative error
       *)
      errorlabstrm "Equality.construct_discriminator"
	[< 'sTR "Cannot discriminate on inductive constructors with 
		 dependent types" >] in
  let arsign,arsort = get_arity indf in
  let (true_0,false_0,sort_0) = 
    match necessary_elimination arsort (destSort sort) with
      | Type_Type -> build_UnitT (), build_EmptyT (), (Type dummy_univ)
      | _         -> build_True (),  build_False (),  (Prop Null)
  in
  let p = lam_it (mkSort sort_0) arsign in
  let cstrs = get_constructors indf in
  let build_branch i =
    let endpt = if i = dirn then true_0 else false_0 in
    it_mkLambda_or_LetIn endpt cstrs.(i-1).cs_args 
  in
  let build_match =
    mkMutCase (make_default_case_info mispec) p c 
      (List.map build_branch (interval 1 (mis_nconstr mispec)))
  in
  build_match
    
let rec build_discriminator sigma env dirn c sort = function
  | [] -> construct_discriminator sigma env dirn c sort
  | (MutConstruct(sp,cnum),argnum)::l ->
      let cty = type_of env sigma c in
      let IndType (indf,_) =
	try find_rectype env sigma cty with Not_found -> assert false in
      let _,arsort = get_arity indf in
      let nparams = mis_nparams (fst (dest_ind_family indf)) in
      let (cnum_nlams,cnum_env,kont) = descend_then sigma env c cnum in
      let newc = Rel(cnum_nlams-(argnum-nparams)) in
      let subval = build_discriminator sigma cnum_env dirn newc sort l  in
      (match necessary_elimination arsort (destSort sort) with
         | Type_Type ->
	     kont subval (build_EmptyT (),DOP0(Sort(Type(dummy_univ))))
	 | _ -> kont subval (build_False (),DOP0(Sort(Prop Null))))
  | _ -> assert false

let find_eq_data_decompose eqn =
  if (is_matching (eq_pattern ()) eqn) then
    (eq, match_eq (eq_pattern ()) eqn)
  else if (is_matching (eqT_pattern ()) eqn) then
    (eqT, match_eq (eqT_pattern ()) eqn)
  else if (is_matching (idT_pattern ()) eqn) then
    (idT, match_eq (idT_pattern ()) eqn)
  else
    errorlabstrm  "find_eq_data_decompose" [< >]

let gen_absurdity id gl =
  if   (pf_is_matching gl (pat_False ()) (clause_type (Some id) gl)) 
    or (pf_is_matching gl (pat_EmptyT ()) (clause_type  (Some id) gl))
  then
    simplest_elim (VAR id) gl
  else
    errorlabstrm "Equality.gen_absurdity" 
      [< 'sTR "Not the negation of an equality" >]

(* Precondition: eq is leibniz equality
 
  returns ((eq_elim t t1 P i t2), absurd_term)
  where  P=[e:t][h:(t1=e)]discrimator 
          absurd_term=EmptyT    if the necessary elimination is Type_Tyoe 

   and   P=[e:t][h[e:t]discriminator 
         absurd_term=Fale       if the necessary eliination is Type_ProporSet
                                   or Set_ProporSet
*)

let discrimination_pf e (t,t1,t2) discriminator lbeq gls =
  let env = pf_env gls in
  let (indt,_) = find_mrectype env (project gls) t in 
  let arity = Global.mind_arity indt in
  let sort = pf_type_of gls (pf_concl gls) in 
  match necessary_elimination (destSort(hd_of_prod arity)) (destSort sort) with
    | Type_Type  ->
 	let eq_elim     = build_rect lbeq in
	let eq_term     = build_eq lbeq in
	let i           = build_IT () in
	let absurd_term = build_EmptyT () in
        let h = pf_get_new_id (id_of_string "HH")gls in
        let pred= mkNamedLambda e t 
                    (mkNamedLambda h (applist (eq_term, [t;t1;(Rel 1)])) 
		       discriminator)
        in (applist(eq_elim, [t;t1;pred;i;t2]), absurd_term)
	     
    | _ ->
	let i           = build_I () in
	let absurd_term = build_False ()

 in
	let eq_elim     = build_ind lbeq in
        (applist (eq_elim, [t;t1;mkNamedLambda e t discriminator;i;t2]),
 	 absurd_term)

exception NotDiscriminable

let discr id gls =
  let eqn = (pf_whd_betadeltaiota gls (clause_type (Some id) gls)) in
  let sort = pf_type_of gls (pf_concl gls) in 
  let (lbeq,(t,t1,t2)) =
    try find_eq_data_decompose eqn
    with e when catchable_exception e -> raise NotDiscriminable
  in
  let tj = pf_execute gls t in
  let sigma = project gls in
  let env = pf_env gls in
  (match find_positions env sigma t1 t2 with
     | Inr _ -> raise NotDiscriminable
     | Inl(cpath,MutConstruct(_,dirn),_) ->
	 let e = pf_get_new_id (id_of_string "ee") gls in
	 let e_env =
	   push_var_decl (e,assumption_of_judgment env sigma tj) env
	 in
	 let discriminator =
	   build_discriminator sigma e_env dirn (VAR e) sort cpath in
	 let (indt,_) = find_mrectype env sigma t in 
	 let arity = Global.mind_arity indt in
	 let (pf, absurd_term) =
	   discrimination_pf e (t,t1,t2) discriminator lbeq gls 
	 in
	 tclCOMPLETE((tclTHENS (cut_intro absurd_term)
			([onLastHyp (compose gen_absurdity out_some);
			  refine (mkAppL [| pf; VAR id |])]))) gls
     | _ -> assert false)

let not_found_message id =
  [<'sTR "the variable"; 'sPC ; 'sTR (string_of_id id) ; 'sPC;
    'sTR" was not found in the current environment" >]

let insatisfied_prec_message cls =
  match cls with
    | None -> [< 'sTR"goal does not satify the expected preconditions">] 
    |  Some id -> [< 'sTR(string_of_id id); 'sPC;
		     'sTR"does not satify the expected preconditions" >]

let discrOnLastHyp gls =
  try onLastHyp (compose discr out_some) gls
  with NotDiscriminable ->
    errorlabstrm "DiscrConcl" [< 'sTR" Not a discriminable equality" >]

let discrClause cls gls =
  match cls with
    | None ->
    	if is_matching (not_pattern ()) (pf_concl gls) then
          (tclTHEN (tclTHEN hnf_in_concl intro) discrOnLastHyp) gls
    	else if is_matching (imp_False_pattern ()) (pf_concl gls)  then
	  (tclTHEN intro discrOnLastHyp) gls
	else 
	  errorlabstrm "DiscrClause" (insatisfied_prec_message cls)
    | Some id ->
	try (discr id gls)
      	with
	  | Not_found -> errorlabstrm "DiscrClause" (not_found_message id)
	  | NotDiscriminable ->
	      errorlabstrm "DiscrHyp"
		[< 'sTR(string_of_id id);'sTR" Not a discriminable equality" >]

let discrEverywhere = 
  tclORELSE
    (Tacticals.tryAllClauses discrClause)
    (fun gls -> 
       errorlabstrm "DiscrEverywhere" [< 'sTR" No discriminable equalities" >])

let discrConcl gls  = discrClause None gls
let discrHyp id gls = discrClause (Some id) gls

(**)
let h_discr      = hide_atomic_tactic "Discr"      discrEverywhere
let h_discrConcl = hide_atomic_tactic "DiscrConcl" discrConcl
let h_discrHyp   = hide_ident_tactic  "DiscrHyp"   discrHyp
(**)

let existS_pattern = put_pat mmk "(existS ? ? ? ?)"
let existT_pattern = put_pat mmk "(existT ? ? ? ?)"

let build_sigma_set () =
  { proj1 = get_reference ["Specif"] "projS1";
    proj2 = get_reference ["Specif"] "projS2";
    elim = get_reference ["Specif"] "sigS_rec";
    intro = get_reference ["Specif"] "existS";
    ex = get_reference ["Specif"] "sigS" }

let build_sigma_type () =
  { proj1 = get_reference ["Specif"] "projT1";
    proj2 = get_reference ["Specif"] "projT2";
    elim = get_reference ["Specif"] "sigT_rec";
    intro = get_reference ["Specif"] "existT";
    ex = get_reference ["Specif"] "sigT" }

(* returns the sigma type (sigS, sigT) with the respective
    constructor depending on the sort *)

let find_sigma_data s =
  match s with  
    | Prop Pos  -> build_sigma_set ()                    (* Set *) 
    | Type _    -> build_sigma_type ()                   (* Type *)
    | Prop Null -> error "find_sigma_data"

(* [make_tuple env sigma lind rterm rty]

   If [rty] depends on lind, then we will build the term

     (existS A==[type_of(Rel lind)] P==(Lambda(na:type_of(Rel lind),
                                        [rty{1/lind}]))
              [(Rel lind)] [rterm])

   which should have type (sigS A P) - we can verify it by
   typechecking at the end.
 *)

let make_tuple env sigma (rterm,rty) lind =
  if dependent (Rel lind) rty then
    let {intro = exist_term; ex = sig_term} =
      find_sigma_data (get_sort_of env sigma rty) in
    let a = type_of env sigma (Rel lind) in
    (* We replace (Rel lind) by (Rel 1) in rty then abstract on (na:a) *)
    let rty' = substnl [Rel 1] lind rty in
    let na = fst (lookup_rel_type lind env) in
    let p = mkLambda na a rty' in
    (applist(exist_term,[a;p;(Rel lind);rterm]),
     applist(sig_term,[a;p]))
  else
    (rterm,rty)

(* check that the free-references of the type of [c] are contained in
   the free-references of the normal-form of that type.  If the normal
   form of the type contains fewer references, we want to return that
   instead. *)

let minimal_free_rels env sigma (c,cty) =
  let cty_rels = free_rels cty in
  let nf_cty = nf_betadeltaiota env sigma cty in
  let nf_rels = free_rels nf_cty in
  if Intset.subset cty_rels nf_rels then
    (cty,cty_rels)
  else
    (nf_cty,nf_rels)

(* [sig_clausale_forme siglen ty]
    
   Will explode [siglen] [sigS,sigT ]'s on [ty] (depending on the 
   type of ty), and return:

   (1) a pattern, with meta-variables in it for various arguments,
       which, when the metavariables are replaced with appropriate
       terms, will have type [ty]

   (2) an integer, which is the last argument - the one which we just
       returned.

   (3) a pattern, for the type of that last meta

   (4) a typing for each metavariable

   WARNING: No checking is done to make sure that the 
            sigS(or sigT)'s are actually there.
          - Only homogenious pairs are built i.e. pairs where all the 
   dependencies are of the same sort
 *)

let sig_clausale_forme env sigma sort_of_ty siglen ty (dFLT,dFLTty) =
  let { ex = exist_term } = find_sigma_data sort_of_ty in 
  let rec sigrec_clausale_forme siglen ty =
    if siglen = 0 then
      (* We obtain the components dependent in dFLT by matching *)
      let headpat = nf_betadeltaiota env sigma ty in
      let nf_ty = nf_betadeltaiota env sigma dFLTty in
      let bindings =
	list_try_find
	  (fun ty -> 
             try 
            (* Test inutile car somatch ne prend pas en compte les univers *) 
	       if is_Type headpat & is_Type ty then
		 []
	       else
		 matches (pattern_of_constr headpat) ty 
             with e when catchable_exception e -> failwith "caught")
	  [dFLTty; nf_ty]
      in
      (bindings,dFLT)
    else
      let (a,p) = match whd_beta_stack ty [] with
	| (_,[a;p]) -> (a,p)
 	| _ -> anomaly "sig_clausale_forme: should be a sigma type" in
      let mv = new_meta() in
      let rty = applist(p,[DOP0(Meta mv)]) in
      let (bindings,tuple_tail) = sigrec_clausale_forme (siglen-1) rty in
      let w =
	try List.assoc mv bindings
	with Not_found ->
	  anomaly "Not enough components to build the dependent tuple" in
      (bindings,applist(exist_term,[a;p;w;tuple_tail]))
  in
  snd (sigrec_clausale_forme siglen ty)

(* [make_iterated_tuple sigma env DFLT c]

   Will find the free (DB) references of the S(TRONG)NF of [c]'s type,
   gather them together in left-to-right order (i.e. highest-numbered
   is farthest-left), and construct a big iterated pair out of it.
   This only works when the references are all themselves to members
   of [Set]s, because we use [sigS] to construct the tuple.

   Suppose now that our constructed tuple is of length [tuplen].

   Then, we need to construct the default value for the other
   branches.  The default value is constructed by taking the
   tuple-type, exploding the first [tuplen] [sigS]'s, and replacing at
   each step the binder in the right-hand-type by a fresh
   metavariable.

   In addition, on the way back out, we will construct the pattern for
   the tuple which uses these meta-vars.

   This gives us a pattern, which we use to match against the type of
   DFLT; if that fails, then against the S(TRONG)NF of that type.  If
   both fail, then we just cannot construct our tuple.  If one of
   those succeed, then we can construct our value easily - we just use
   the tuple-pattern.

 *)

let make_iterated_tuple env sigma (dFLT,dFLTty) (c,cty) =
  let (cty,rels) = minimal_free_rels env sigma (c,cty) in
  let sort_of_cty = get_sort_of env sigma cty in
  let sorted_rels = Sort.list (>=) (Intset.elements rels) in
  let (tuple,tuplety) =
    List.fold_left (make_tuple env sigma) (c,cty) sorted_rels 
  in
  assert (closed0 tuplety);
  let dfltval = 
    sig_clausale_forme env sigma sort_of_cty (List.length sorted_rels) 
      tuplety (dFLT,dFLTty)
  in
  (tuple,tuplety,dfltval)

let rec build_injrec sigma env (t1,t2) c = function
  | [] ->
      make_iterated_tuple env sigma (t1,type_of env sigma t1)
        (c,type_of env sigma c)
  | (MutConstruct(sp,cnum),argnum)::l ->
      let cty = type_of env sigma c in
      let (ity,_) = find_mrectype env sigma cty in
      let nparams = Global.mind_nparams ity in
      let (cnum_nlams,cnum_env,kont) = descend_then sigma env c cnum in
      let newc = Rel(cnum_nlams-(argnum-nparams)) in
      let (subval,tuplety,dfltval) =
      	build_injrec sigma cnum_env (t1,t2) newc l
      in
      (kont subval (dfltval,tuplety),
       tuplety,dfltval)
  | _ -> assert false

let build_injector sigma env (t1,t2) c cpath =
  let (injcode,resty,_) = build_injrec sigma env (t1,t2) c cpath in
  (injcode,resty)

let try_delta_expand env sigma t =
  let whdt = whd_betadeltaiota env sigma t  in 
  let rec hd_rec c  =
    match c with
      | DOPN(MutConstruct _,_) -> whdt
      | DOPN(AppL,cl)  -> hd_rec (array_hd cl)
      | DOP2(Cast,c,_) -> hd_rec c
      | _  -> t
  in 
  hd_rec whdt 

(* Given t1=t2 Inj calculates the whd normal forms of t1 and t2 and it 
   expands then only when the whdnf has a constructor of an inductive type
   in hd position, otherwise delta expansion is not done *)

let inj id gls =
  let eqn = (pf_whd_betadeltaiota gls (clause_type (Some id) gls)) in
  let (eq,(t,t1,t2))= 
    try 
      find_eq_data_decompose eqn
    with e when catchable_exception e -> 
      errorlabstrm "Inj"  [<'sTR(string_of_id id); 
			    'sTR" Not a primitive  equality here " >] 
  in
  let tj = pf_execute gls t in
  let sigma = project gls in
  let env = pf_env gls in
  match find_positions env sigma t1 t2 with
    | Inl _ ->
	errorlabstrm "Inj" [<'sTR (string_of_id id);
			     'sTR" is not a projectable equality" >]
    | Inr posns ->
	let e = pf_get_new_id (id_of_string "e") gls in
	let e_env =
	  push_var_decl (e,assumption_of_judgment env sigma tj) env
	in
	let injectors =
	  map_succeed
	    (fun (cpath,t1_0,t2_0) ->
	       let (injbody,resty) =
		 build_injector sigma e_env (t1_0,t2_0) (VAR e) cpath in
	       let injfun = mkNamedLambda e t injbody in
	       try 
		 let _ = type_of env sigma injfun in (injfun,resty)
	       with e when catchable_exception e -> failwith "caught")
            posns 
	in
	if injectors = [] then
	  errorlabstrm "Equality.inj" 
	    [<'sTR "Failed to decompose the equality">];
	tclMAP 
	  (fun (injfun,resty) ->
	     let pf = applist(get_squel eq.congr,
			      [t;resty;injfun;
			       try_delta_expand env sigma t1;
			       try_delta_expand env sigma t2;
			       VAR id]) 
	     in
	     let ty = pf_type_of gls pf in
	     ((tclTHENS  (cut  ty) ([tclIDTAC;refine pf]))))
	  injectors
	  gls
	    
let injClause cls gls =
  match cls with
    | None ->
    	if is_matching (not_pattern ()) (pf_concl gls) then
          (tclTHEN (tclTHEN hnf_in_concl intro)
             (onLastHyp (compose inj out_some))) gls
    	else
	  errorlabstrm "InjClause" (insatisfied_prec_message  cls)
    | Some id ->
	try 
	  inj id gls
        with
	  | Not_found ->
	      errorlabstrm "InjClause" (not_found_message id)
          | UserError("refiner__FAIL",_) -> 
              errorlabstrm "InjClause" 
		[< 'sTR (string_of_id id); 'sTR" Not a projectable equality" >]

let injConcl gls  = injClause None gls
let injHyp id gls = injClause (Some id) gls

(**)
let h_injConcl = hide_atomic_tactic "Inj" injConcl
let h_injHyp   = hide_ident_tactic "InjHyp" injHyp
(**)

let decompEqThen ntac id gls =
  let eqn = (pf_whd_betadeltaiota gls (clause_type (Some id) gls)) in
  let (lbeq,(t,t1,t2))= find_eq_data_decompose  eqn in
  let sort = pf_type_of gls (pf_concl gls) in 
  let tj = pf_execute gls t in
  let sigma = project gls in
  let env = pf_env gls in 
  (match find_positions env sigma t1 t2 with
     | Inl(cpath,MutConstruct(_,dirn),_) ->
	 let e = pf_get_new_id (id_of_string "e") gls in
	 let e_env =
	   push_var_decl (e,assumption_of_judgment env sigma tj) env in
	 let discriminator =
	   build_discriminator sigma e_env dirn (VAR e) sort cpath in
	 let (pf, absurd_term) =
	   discrimination_pf e (t,t1,t2) discriminator lbeq gls in
	 tclCOMPLETE
	   ((tclTHENS (cut_intro absurd_term)
	       ([onLastHyp (compose gen_absurdity out_some);
		 refine (mkAppL [| pf; VAR id |])]))) gls
     | Inr posns ->
	 (let e = pf_get_new_id (id_of_string "e") gls in
	  let e_env =
	    push_var_decl (e,assumption_of_judgment env sigma tj) env in
	  let injectors =
	    map_succeed
	      (fun (cpath,t1_0,t2_0) ->
		 let (injbody,resty) =
		   build_injector sigma e_env (t1_0,t2_0) (VAR e) cpath in
		 let injfun = mkNamedLambda e t injbody in
		 try 
		   let _ = type_of env sigma injfun in (injfun,resty)
		 with e when catchable_exception e -> failwith "caught")
	      posns 
	  in
	  if injectors = [] then
	    errorlabstrm "Equality.decompEqThen" 
              [<'sTR "Discriminate failed to decompose the equality">];
	  ((tclTHEN
	      (tclMAP (fun (injfun,resty) ->
			 let pf = applist(get_squel lbeq.congr,
					  [t;resty;injfun;t1;t2;
					   VAR id]) in
			 let ty = pf_type_of gls pf in
			 ((tclTHENS (cut ty) 
			     ([tclIDTAC;refine pf]))))
		 (List.rev injectors))
	      (ntac (List.length injectors))))
	  gls)
     | _ -> assert false)

let decompEq = decompEqThen (fun x -> tclIDTAC)

let dEqThen ntac cls gls =
  match cls with
    | None ->
    	if is_matching (not_pattern ()) (pf_concl gls) then
	  (tclTHEN hnf_in_concl
	     (tclTHEN intro
         	(onLastHyp (compose (decompEqThen ntac) out_some)))) gls
    	else
	  errorlabstrm "DEqThen" (insatisfied_prec_message  cls)
    | Some id ->
	try 
	  decompEqThen ntac id gls
      	with 
	  | Not_found -> 
	      errorlabstrm "DEqThen" (not_found_message id)
          | e when catchable_exception e ->
	       errorlabstrm "DEqThen" (insatisfied_prec_message cls)

let dEq = dEqThen (fun x -> tclIDTAC)

let dEqConcl gls = dEq None gls
let dEqHyp id gls = dEq (Some id) gls

(**)
let dEqConcl_tac = hide_atomic_tactic "DEqConcl" dEqConcl
let dEqHyp_tac = hide_ident_tactic "DEqHyp" dEqHyp
(**)

let rewrite_msg = function 
  | None ->  
      [<'sTR "passed term is not a primitive equality">] 
  | Some id ->
      [<'sTR (string_of_id id); 'sTR "does not satisfy preconditions ">]

let swap_equands gls eqn =
  let (lbeq,(t,e1,e2)) =
    try 
      find_eq_data_decompose eqn
    with _ -> errorlabstrm "swap_equamds" (rewrite_msg None)
  in 
  applist(get_squel lbeq.eq,[t;e2;e1])

let swapEquandsInConcl gls =
  let (lbeq,(t,e1,e2)) =
    try 
      find_eq_data_decompose (pf_concl gls)
    with _-> errorlabstrm "SwapEquandsInConcl" (rewrite_msg None) 
  in
  let sym_equal = get_squel lbeq.sym in
  refine (applist(sym_equal,[t;e2;e1;DOP0(Meta(new_meta()))])) gls

let swapEquandsInHyp id gls =
  ((tclTHENS (cut_replacing id (swap_equands gls (clause_type (Some id) gls)))
      ([tclIDTAC;
      	(tclTHEN (swapEquandsInConcl) (exact (VAR id)))]))) gls

(* find_elim determines which elimination principle is necessary to
   eliminate lbeq on sort_of_gl. It yields the boolean true wether
   it is a dependent elimination principle (as idT.rect) and false
   otherwise *)

let find_elim  sort_of_gl  lbeq =
  match  sort_of_gl  with
    | DOP0(Sort(Prop Null))  (* Prop *)  ->  (get_squel lbeq.ind, false)  
    | DOP0(Sort(Prop Pos))   (* Set *)   ->  
	(match lbeq.rrec with
           | Some eq_rec -> (get_squel eq_rec, false) 
	   | None -> errorlabstrm "find_elim"
		 [< 'sTR "this type of elimination is not allowed">])
    | _ (* Type *) -> 
        (match lbeq.rect with
           | Some eq_rect -> (get_squel eq_rect, true) 
           | None -> errorlabstrm "find_elim"
		 [< 'sTR "this type of elimination is not allowed">])

(* builds a predicate [e:t][H:(lbeq t e t1)](body e)
   to be used as an argument for equality dependent elimination principle:
   Preconditon: dependent body (Rel 1) *)

let build_dependent_rewrite_predicate (t,t1,t2) body lbeq gls =
  let e = pf_get_new_id  (id_of_string "e") gls in 
  let h = pf_get_new_id  (id_of_string "HH") gls in 
  let eq_term = get_squel lbeq.eq in
  (mkNamedLambda e t 
     (mkNamedLambda h (applist (eq_term, [t;t1;(Rel 1)])) 
        (lift 1 body))) 

(* builds a predicate [e:t](body e) ???
   to be used as an argument for equality non-dependent elimination principle:
   Preconditon: dependent body (Rel 1) *)

let build_non_dependent_rewrite_predicate (t,t1,t2) body gls =
  lambda_create (pf_env gls) (t,body)

let bareRevSubstInConcl lbeq body (t,e1,e2) gls =
  let (eq_elim,dep) =
    try 
      find_elim (pf_type_of gls (pf_concl gls)) lbeq  
    with e when catchable_exception e -> 
      errorlabstrm "RevSubstIncConcl"
        [< 'sTR "this type of substitution is not allowed">]  
  in 
  let p =
    if dep then
      (build_dependent_rewrite_predicate (t,e1,e2)  body lbeq gls)
    else
      (build_non_dependent_rewrite_predicate (t,e1,e2)  body  gls)
  in
  refine (applist(eq_elim,[t;e1;p;DOP0(Meta(new_meta()));
                           e2;DOP0(Meta(new_meta()))])) gls

(* [subst_tuple_term dep_pair B]

   Given that dep_pair looks like:

   (existS e1 (existS e2 ... (existS en en+1) ... ))

   and B might contain instances of the ei, we will return the term:

   ([x1:ty(e1)]...[xn:ty(en)]B
    (projS1 (Rel 1))
    (projS1 (projS2 (Rel 1)))
    ... etc ...)

   That is, we will abstract out the terms e1...en+1 as usual, but
   will then produce a term in which the abstraction is on a single
   term - the debruijn index [Rel 1], which will be of the same type
   as dep_pair.

   ALGORITHM for abstraction:

   We have a list of terms, [e1]...[en+1], which we want to abstract
   out of [B].  For each term [ei], going backwards from [n+1], we
   just do a [subst_term], and then do a lambda-abstraction to the
   type of the [ei].

 *)

(*
let comp_carS_squeleton = put_squel mmk "<<x>>(projS1 ? ? (?)@[x])"
let comp_cdrS_squeleton = put_squel mmk "<<x>>(projS2 ? ? (?)@[x])"

let comp_carT_squeleton = put_squel mmk "<<x>>(projT1 ? ? (?)@[x])"
let comp_cdrT_squeleton = put_squel mmk "<<x>>(projT2 ? ? (?)@[x])"
*)

let match_sigma ex ex_pat =
  match matches (get_pat ex_pat) ex with
    | [(1,a);(2,p);(3,car);(4,cdr)] -> (a,p,car,cdr)
    | _ ->
	anomaly "match_sigma: a successful sigma pattern should match 4 terms"

let find_sigma_data_decompose ex =
  try
    let subst = match_sigma ex existS_pattern in
    (build_sigma_set (),subst)
  with PatternMatchingFailure ->
    (try 
       let subst = match_sigma ex existT_pattern in
       (build_sigma_type (),subst)
     with PatternMatchingFailure -> 
       errorlabstrm "find_sigma_data_decompose" [< >])

let decomp_tuple_term env c t = 
  let rec decomprec inner_code ex exty =
    try
      let {proj1 = p1; proj2 = p2 },(a,p,car,cdr) =
	find_sigma_data_decompose ex in
      let car_code = applist (p1,[a;p;inner_code])
      and cdr_code = applist (p2,[a;p;inner_code]) in
      let cdrtyp = beta_applist (p,[car]) in
      ((car,a),car_code)::(decomprec cdr_code cdr cdrtyp)
    with e when catchable_exception e ->
      [((ex,exty),inner_code)]
  in
  List.split (decomprec (Rel 1) c t)

let subst_tuple_term env sigma dep_pair b =
  let typ = get_type_of env sigma dep_pair in
  let e_list,proj_list = decomp_tuple_term env dep_pair typ in
  let abst_B =
    List.fold_right
      (fun (e,t) body -> lambda_create env (t,subst_term e body)) e_list b in
  let app_B = applist(abst_B,proj_list) in
  (* inutile ?? les projs sont appliquées à (Rel 1) ?? *)
(*
  let { proj1 = proj1_sp; proj2 = proj2_sp; elim = sig_elim_sp } =
    find_sigma_data (get_sort_of env sigma typ) in
  strong (fun _ _ -> 
	    compose (whd_betaiota env sigma)
	      (whd_const [proj1_sp;proj2_sp;sig_elim_sp] env sigma)) 
    env sigma *)
  (* whd_betaiota *) app_B
    
(* |- (P e2)
     BY RevSubstInConcl (eq T e1 e2)
     |- (P e1)
     |- (eq T e1 e2)
 *)
let revSubstInConcl eqn gls =
  let (lbeq,(t,e1,e2)) = find_eq_data_decompose eqn in
  let body = subst_tuple_term (pf_env gls) (project gls) e2 (pf_concl gls) in
  assert (dependent (Rel 1) body);
  bareRevSubstInConcl lbeq body (t,e1,e2) gls

(* |- (P e1)
     BY SubstInConcl (eq T e1 e2)
     |- (P e2)
     |- (eq T e1 e2)
 *)
let substInConcl eqn gls =
  (tclTHENS (revSubstInConcl (swap_equands gls eqn))
     ([tclIDTAC;
       swapEquandsInConcl])) gls

let substInHyp eqn id gls =
  let (lbeq,(t,e1,e2)) = (find_eq_data_decompose eqn) in 
  let body = subst_term e1 (clause_type (Some id) gls) in
  if not (dependent (Rel 1) body) then errorlabstrm  "SubstInHyp" [<>];
  (tclTHENS (cut_replacing id (subst1 e2 body))
     ([tclIDTAC;
       (tclTHENS (bareRevSubstInConcl lbeq body (t,e1,e2))
          ([exact (VAR id);tclIDTAC]))])) gls

let revSubstInHyp eqn id gls =
  (tclTHENS (substInHyp (swap_equands gls eqn) id)
     ([tclIDTAC;
       swapEquandsInConcl])) gls

let try_rewrite tac gls =
  try 
    tac gls
  with 
    | UserError ("find_eq_data_decompose",_) -> errorlabstrm 
	  "try_rewrite" [< 'sTR "Not a primitive equality here">]
    | UserError ("swap_equamds",_) -> errorlabstrm 
          "try_rewrite" [< 'sTR "Not a primitive equality here">]
    | UserError("find_eq_elim",s) -> errorlabstrm "try_rew" 
          [<'sTR "This type of elimination is not allowed ">]  
    | e when catchable_exception e -> 
	errorlabstrm "try_rewrite"
          [< 'sTR "Cannot find a well type generalisation of the goal that";
             'sTR " makes progress the proof.">]

(* list_int n 0 [] gives the list [1;2;...;n] *)
let rec list_int n cmr l =
  if cmr = n then
    l @ [n]
  else
    list_int n (cmr+1) (l @ [cmr])

(* Tells if two constrs are equal modulo unification *)

let bind_eq = function
  | (Anonymous,Anonymous) -> true
  | (Name _,Name _) -> true
  | _ -> false

let rec eq_mod_rel l_meta = function
  | (t,DOP0(Meta n)) ->
      if not (List.mem n (fst (List.split l_meta))) then
	Some ([(n,t)]@l_meta)
      else if (List.assoc n l_meta) = t then
	Some l_meta
     else
       None
  | (DOP1(op0,c0),DOP1(op1,c1)) ->
      if op0 = op1 then
	eq_mod_rel l_meta (c0,c1)
      else
	None
  | (DOP2(op0,t0,c0),DOP2(op1,t1,c1)) ->
      if op0 = op1 then
	match (eq_mod_rel l_meta (t0,t1)) with
          | None -> None
          | Some l -> eq_mod_rel l (c0,c1)	
      else
	None
  | (DOPN(op0,t0),DOPN(op1,t1)) ->
      if (op0 = op1) & (Array.length t0 = Array.length t1) then
	List.fold_left2
          (fun a c1 c2 ->
             match a with
	       | None -> None
               | Some l -> eq_mod_rel l (c1,c2)) (Some l_meta)
          (Array.to_list t0) (Array.to_list t1)
      else
	None
  | (DLAM(n0,t0),DLAM(n1,t1)) ->
      if bind_eq (n0,n1) then
	eq_mod_rel l_meta (t0,t1)
      else
	None
  | (t,u) ->
      if t = u then
	Some l_meta
      else
	None

(* Verifies if the constr has an head constant *)

let is_hd_const = function
  | DOPN(AppL,t) ->
      (match t.(0) with
         | DOPN(Const c,_) -> Some (Const c, array_tl t)
         |_ -> None)
  | _ -> None
	  
(* Gives the occurences number of t in u *)
let rec nb_occ_term t u =
  let one_step t = function
    | DOP1(_,c) -> nb_occ_term t c
    | DOP2(_,c0,c1) -> (nb_occ_term t c0) + (nb_occ_term t c1)
    | DOPN(_,a) -> Array.fold_left (fun a x -> a + (nb_occ_term t x)) 0 a
    | DOPL(_,l) -> List.fold_left (fun a x -> a + (nb_occ_term t x)) 0 l
    | DLAM(_,c) -> nb_occ_term t c
    | DLAMV(_,a) -> Array.fold_left (fun a x -> a + (nb_occ_term t x)) 0 a
    | _ -> 0
  in
  if t = u then
    1
  else
    one_step t u

(* Gives Some(first instance of ceq in cref,occurence number for this
   instance) or None if no instance of ceq can be found in cref *)

let sub_term_with_unif cref ceq =
  let rec find_match l_meta nb_occ op_ceq t_eq = function
    | DOPN(AppL,t) as u ->
	(match (t.(0)) with
           | DOPN(op,t_op) ->
               let t_args=Array.of_list (List.tl (Array.to_list t)) in
               if op = op_ceq then
                 match
                   (List.fold_left2 
                      (fun a c0 c1 ->
                         match a with
                           | None -> None
                           | Some l -> eq_mod_rel l (c0,c1)) (Some l_meta)
                      (Array.to_list t_args) (Array.to_list t_eq))
                 with
                   | None ->
                       List.fold_left
                         (fun (l_meta,nb_occ) x -> find_match l_meta nb_occ
                              op_ceq t_eq x) (l_meta,nb_occ) (Array.to_list
								t_args)
                   | Some l -> (l,nb_occ+1)
               else
                 List.fold_left 
		   (fun (l_meta,nb_occ) x -> find_match l_meta
			nb_occ op_ceq t_eq x) (l_meta,nb_occ) (Array.to_list t)
           | VAR _ ->
	       List.fold_left 
		 (fun (l_meta,nb_occ) x -> find_match l_meta
		      nb_occ op_ceq t_eq x) (l_meta,nb_occ) (Array.to_list t)
           |_ -> (l_meta,nb_occ))
    | DOP2(_,t,DLAM(_,c)) ->
	let (lt,nbt)=find_match l_meta nb_occ op_ceq t_eq t in
        find_match lt nbt op_ceq t_eq c
    | DOPN(_,t) -> 
	List.fold_left 
	  (fun (l_meta,nb_occ) x -> find_match l_meta nb_occ op_ceq
	       t_eq x) (l_meta,nb_occ) (Array.to_list t)
    |_ -> (l_meta,nb_occ)
  in
  match (is_hd_const ceq) with
    | None ->
        if (occur_meta ceq) then
          None
        else
          let nb_occ = nb_occ_term ceq cref in
          if nb_occ = 0 then
            None
          else
            Some (ceq,nb_occ)
    |Some (head,t_args) ->
        let (l,nb)=find_match [] 0 head t_args cref in
        if nb = 0 then
          None
        else
          Some ((plain_instance l ceq),nb)
	    
(*The Rewrite in tactic*)
let general_rewrite_in lft2rgt id (c,lb) gls =
  let typ_id =
    (try
       let (_,ty) = lookup_var id (pf_env gls) in (body_of_type ty)
     with Not_found -> 
       errorlabstrm "general_rewrite_in" 
	 [< 'sTR"No such hypothesis : "; print_id id >])
  in
  let (wc,_) = startWalk gls
  and (_,_,t) = reduce_to_ind (pf_env gls) (project gls) (pf_type_of gls c) in
  let ctype = type_clenv_binding wc (c,t) lb in
  match (match_with_equation ctype) with
    | None -> error "The term provided does not end with an equation" 
    | Some (hdcncl,l) ->
        let mbr_eq =
          if lft2rgt then
            List.hd (List.tl (List.rev l))
          else
            List.hd (List.rev l)
        in
        (match (sub_term_with_unif 
		  (collapse_appl (strip_outer_cast typ_id))
		  (collapse_appl mbr_eq)) with
           | None ->
               errorlabstrm "general_rewrite_in" 
		 [<'sTR "Nothing to rewrite in: "; print_id id>]
           |Some (l2,nb_occ) ->
               (tclTHENSI 
		  (tclTHEN 
		     (tclTHEN (generalize [(pf_global gls id)]) 
			(reduce (Pattern [(list_int nb_occ 1 [],l2,
					   pf_type_of gls l2)]) []))
		     (general_rewrite_bindings lft2rgt (c,lb))) 
		  [(tclTHEN (clear_one id) (introduction id))]) gls)

let dyn_rewrite_in lft2rgt = function
  | [Identifier id;(Command com);(Bindings binds)] -> 
      tactic_com_bind_list (general_rewrite_in lft2rgt id) (com,binds)
  | [Identifier id;(Constr c);(Cbindings binds)] -> 
      general_rewrite_in lft2rgt id (c,binds)
  | _ -> assert false

let rewriteLR_in_tac =  hide_tactic "RewriteLRin" (dyn_rewrite_in true)
let rewriteRL_in_tac = hide_tactic "RewriteRLin" (dyn_rewrite_in false)
			 
let conditional_rewrite_in lft2rgt id tac (c,bl) = 
  tclTHEN_i (general_rewrite_in lft2rgt id (c,bl))
    (fun i -> if i=1 then tclIDTAC else tclCOMPLETE tac)
    
let dyn_conditional_rewrite_in lft2rgt = function
  | [(Tacexp tac); Identifier id; (Command com);(Bindings binds)] -> 
      tactic_com_bind_list 
	(conditional_rewrite_in lft2rgt id (Tacinterp.interp tac)) 
	(com,binds)
  | [(Tacexp tac); Identifier id; (Constr c);(Cbindings binds)] -> 
      conditional_rewrite_in lft2rgt id (Tacinterp.interp tac) (c,binds)
  | _ -> assert false

let v_conditional_rewriteLR_in = 
  hide_tactic "CondRewriteLRin" (dyn_conditional_rewrite_in true) 

let v_conditional_rewriteRL_in = 
  hide_tactic "CondRewriteRLin" (dyn_conditional_rewrite_in false)

(* Rewrite c in id. Rewrite -> c in id. Rewrite <- c in id. 
   Does not work when c is a conditional equation *)

let rewrite_in lR com id gls =
  (try 
     let _ = lookup_var id (pf_env gls) in () 
   with Not_found -> 
     errorlabstrm "rewrite_in" [< 'sTR"No such hypothesis : " ;print_id id >]);
  let c = pf_interp_constr gls com in
  let eqn = pf_type_of gls c in
  try
    let _ = find_eq_data_decompose eqn in
    (try 
       (tclTHENS 
          ((if lR then substInHyp else revSubstInHyp) eqn id) 
          ([tclIDTAC ; exact c])) gls
     with UserError("SubstInHyp",_) -> tclIDTAC gls)
  with UserError ("find_eq_data_decompose",_)->  
    errorlabstrm "rewrite_in" [< 'sTR"No equality here" >] 
      
let subst eqn cls gls =
  match cls with
    | None ->    substInConcl eqn gls
    | Some id -> substInHyp eqn id gls

(* |- (P a)
 * Subst_Concl a=b 
 *  |- (P b)
 *  |- a=b
 *)

let substConcl_LR eqn gls = try_rewrite (subst eqn None) gls
let substConcl_LR_tac = 
  let gentac = 
    hide_tactic "SubstConcl_LR"
      (function 
	 | [Command eqn] -> 
	     (fun gls ->  substConcl_LR (pf_interp_constr gls eqn)  gls)
	 | _ -> assert false)
  in 
  fun eqn  -> gentac [Command eqn] 

(* id:(P a) |- G
 * SubstHyp a=b id
 *  id:(P b) |- G
 *  id:(P a) |-a=b
*)

let hypSubst id cls gls =
  match cls with
    | None -> 
	(tclTHENS (substInConcl (clause_type (Some id) gls))
	   ([tclIDTAC; exact (VAR id)])) gls
    | Some hypid -> 
	(tclTHENS (substInHyp (clause_type (Some id) gls) hypid)
	   ([tclIDTAC;exact (VAR id)])) gls

(* id:a=b |- (P a)
 * HypSubst id.
 *  id:a=b |- (P b)
 *)
let substHypInConcl_LR id gls = try_rewrite (hypSubst id None) gls
let substHypInConcl_LR_tac =
  let gentac = 
    hide_tactic "SubstHypInConcl_LR" 
      (function 
	 | [Identifier id] -> substHypInConcl_LR id
	 | _ -> assert false)
  in 
  fun id -> gentac [Identifier id]

(* id:a=b H:(P a) |- G
   SubstHypInHyp id H.
    id:a=b H:(P b) |- G
*)
let revSubst eqn cls gls =
  match cls with
    | None -> revSubstInConcl eqn gls
    | Some id -> revSubstInHyp eqn id gls

(* |- (P b)
   SubstConcl_RL a=b
     |- (P a)
     |- a=b
*)
let substConcl_RL eqn gls = try_rewrite (revSubst eqn None) gls
let substConcl_RL_tac = 
  let gentac = 
    hide_tactic "SubstConcl_RL"
      (function 
	 | [Command eqn] -> 
	     (fun gls ->  substConcl_RL (pf_interp_constr gls eqn)  gls)
	 | _ -> assert false)
  in 
  fun eqn  -> gentac [Command eqn] 

(* id:(P b) |-G
   SubstHyp_RL a=b id 
      id:(P a) |- G
      |- a=b  
*)
let substHyp_RL  eqn id gls = try_rewrite (revSubst eqn (Some id)) gls

let revHypSubst id cls gls =
  match cls with
    | None -> 
	(tclTHENS (revSubstInConcl (clause_type (Some id) gls))
	   ([tclIDTAC; exact (VAR id)])) gls
    | Some hypid -> 
	(tclTHENS (revSubstInHyp (clause_type (Some id) gls) hypid)
	   ([tclIDTAC;exact (VAR id)])) gls

(* id:a=b |- (P b)
 * HypSubst id.
 * id:a=b |- (P a)
 *)
let substHypInConcl_RL id gls = try_rewrite (revHypSubst id None) gls
let substHypInConcl_RL_tac =
  let gentac = 
    hide_tactic "SubstHypInConcl_RL" 
      (function 
	 | [Identifier id] -> substHypInConcl_RL id
         | _ -> assert false)
  in 
  fun id -> gentac [Identifier id]

(* id:a=b H:(P b) |- G
   SubstHypInHyp id H.
    id:a=b H:(P a) |- G
*)

(**********************************************************************)
(*                    AutoRewrite                                     *)
(**********************************************************************)

(****Dealing with the rewriting rules****)

(* A rewriting is typically an equational constr with an orientation (true=LR
   and false=RL) *)
type rewriting_rule = constr * bool

(* The table of rewriting rules. The key is the name of the rule base.  
   the value is a list of [rewriting_rule] *)
let rew_tab = ref Gmapl.empty

(*Functions necessary to the summary*)
let init () = rew_tab := Gmapl.empty
let freeze () = !rew_tab
let unfreeze ft = rew_tab := ft

(*Declaration of the summary*)
let _ = 
  Summary.declare_summary "autorewrite"
    { Summary.freeze_function = freeze;
      Summary.unfreeze_function = unfreeze;
      Summary.init_function = init }

(*Adds a list of rules to the rule table*)
let add_list_rules rbase lrl = 
  List.iter (fun r -> rew_tab := Gmapl.add rbase r !rew_tab) lrl

(*Gives the list of rules for the base named rbase*)
let rules_of_base rbase = List.rev (Gmapl.find rbase !rew_tab)

(*Functions necessary to the library object declaration*)
let load_autorewrite_rule _ = ()
let open_autorewrite_rule _ = ()
let cache_autorewrite_rule (_,(rbase,lrl)) = add_list_rules rbase lrl
let specification_autorewrite_rule x = x

(*Declaration of the AUTOREWRITE_RULE library object*)
let (in_autorewrite_rule,out_autorewrite_rule)=
  Libobject.declare_object
    ("AUTOREWRITE_RULE",
     { Libobject.load_function = load_autorewrite_rule;
       Libobject.open_function = open_autorewrite_rule;
       Libobject.cache_function = cache_autorewrite_rule;
       Libobject.specification_function = specification_autorewrite_rule })

(* Semantic of the HintRewrite vernacular command *)
let _ = 
  vinterp_add "HintRewrite"
  (let rec lrules_arg lrl = function
     | [] -> lrl
     | (VARG_VARGLIST [VARG_CONSTR rule; VARG_STRING ort])::a 
	 when ort="LR" or ort="RL" ->
           lrules_arg (lrl@[(Astterm.interp_constr Evd.empty
			      (Global.env()) rule,ort="LR")]) a
     | _ -> bad_vernac_args "HintRewrite"
   and lbases_arg lbs = function
     | [] -> lbs
     | (VARG_VARGLIST ((VARG_IDENTIFIER rbase)::b))::a ->
      	 lbases_arg (lbs@[(rbase,lrules_arg [] b)]) a
     | _ -> bad_vernac_args "HintRewrite"
   in
   fun largs () ->
     List.iter (fun c -> Lib.add_anonymous_leaf
		    (in_autorewrite_rule c)) (lbases_arg [] largs))

(****The tactic****)

(*To build the validation function. Length=number of unproven goals, Valid=a
  validation which solves*)
type valid_elem =
  | Length of int
  | Valid of validation

(* Ce truc devrait aller dans Std -- papageno *)
(*Gives the sub_list characterized by the indexes i_s and i_e with respect to
  lref*)
let sub_list lref i_s i_e =
  let rec sub_list_rec l i =
    if i = i_e then
      l @ [List.nth lref i]
    else if (i>=i_s) & (i<i_e) then
      sub_list_rec (l@[List.nth lref i]) (i+1)
    else
      anomalylabstrm "Equality.sub_list" [<'sTR "Out of range">]
  in
  sub_list_rec [] i_s

(*Cuts the list l2becut in lists which lengths are given by llth*)
let cut_list l2becut lval =
  let rec cut4_1goal cmr l1g = function
    | [] -> (cmr,l1g)
    | a::b ->
	(match a with
           | Length lth ->
               if lth = 0 then
		 cut4_1goal cmr l1g b
               else
		 cut4_1goal (cmr+lth) 
		   (l1g@(sub_list l2becut cmr (cmr+lth-1))) b
           | Valid p ->
               cut4_1goal cmr (l1g@[p []]) b)	
  and cut_list_rec cmr l2b=function
    | [] -> l2b
    | a::b ->
	let (cmr,l1g)=cut4_1goal cmr [] a in
        cut_list_rec cmr (l2b@[l1g]) b
  in
  cut_list_rec 0 [] lval

(*Builds the validation function with lvalid and with respect to l*)
let validation_gen lvalid l =
  let (lval,larg_velem) = List.split lvalid in
  let larg=cut_list l larg_velem in
  List.fold_left2 (fun a p l -> p ([a]@l)) (List.hd lval (List.hd larg))
    (List.tl lval) (List.tl larg)

(*Adds the main argument for the last validation function*)
let mod_hdlist l =
  match (List.hd l) with
    | (p,[Length 0]) -> l
    | (p,larg) -> (p,[Length 1]@larg)::(List.tl l)

(*For the Step options*)
type option_step=
  | Solve
  | Use
  | All

(* the user can give a base either by a name of by its full definition
  The definition is an Ast that will find its meaning only in the context
  of a given goal *)
type hint_base = 
  | By_name of identifier
  | Explicit of (Coqast.t * bool) list

let explicit_hint_base gl = function 
  | By_name id -> 
      begin match rules_of_base id with
	| [] -> errorlabstrm "autorewrite" [<'sTR ("Base "^(string_of_id id)^
						   " does not exist")>]
	| lbs -> lbs
      end 
  | Explicit lbs -> 
      List.map (fun (ast,b) -> (pf_interp_constr gl ast, b)) lbs 

(*AutoRewrite cannot be expressed with a combination of tacticals (due to the
  options). So, we make it in a primitive way*)
let autorewrite lbases ltacstp opt_step ltacrest opt_rest depth_step gls =
  let lst = List.flatten (List.map (explicit_hint_base gls) lbases)
  and unproven_goals = ref []
  and fails = ref 0
  and (sigr,g) = unpackage gls in
  let put_rewrite lrw = List.map (fun (x,y) -> general_rewrite y x) lrw
  and nbr_rules = List.length lst in
  let lst_rew = put_rewrite lst in
  let rec try2solve_main_goal mgl = function
    | [] -> None
    | a::b ->
        try
          let (gl_solve,p_solve)=apply_sig_tac sigr a mgl in
          if gl_solve=[] then
            Some (gl_solve,p_solve)
          else
            try2solve_main_goal mgl b
        with e when catchable_exception e -> 
	  try2solve_main_goal mgl b
  and try_tacs4main_goal mgl = function
    | [] -> None
    | a::b ->
        try
          Some (apply_sig_tac sigr a mgl)
        with e when catchable_exception e -> 
	  try_tacs4main_goal mgl b
  and try2solve1gen_goal gl = function
    | [] -> ([gl],Length 1)
    | a::b ->
        try
          let (gl_solve,p_solve)=apply_sig_tac sigr a gl in
          if gl_solve=[] then
            ([],Valid p_solve)
          else
            try2solve1gen_goal gl b
        with e when catchable_exception e -> 
	  try2solve1gen_goal gl b
  and try2solve_gen_goals (lgls,valg) ltac = function
    | [] -> (lgls,valg)
    | a::b ->
        let (g,elem)=try2solve1gen_goal a ltac in
        try2solve_gen_goals (lgls@g,valg@[elem]) ltac b
  and iterative_rew cmr fails (cglob,cmod,warn) unp_goals lvalid =
    let cmd = ref cmod
    and wrn = ref warn in
    if !cmd=depth_step then begin
      wARNING [<'sTR ((string_of_int cglob)^" rewriting(s) carried out") >];
      cmd := 0;
      wrn := true
    end;
    if fails = nbr_rules then
      (unp_goals,lvalid,!wrn)
    else if cmr = nbr_rules then
      iterative_rew 0 0 (cglob,!cmd,!wrn) unp_goals lvalid
    else 
      try
	let (gl,p) = 
	  apply_sig_tac sigr (List.nth lst_rew cmr) (List.hd unp_goals) 
	in
	let (lgl_gen,lval_gen) =
	  match ltacrest with
            | None ->
		if (List.length gl)=1 then
		  ([],[])
		else
		  (List.tl gl,[Length ((List.length gl)-1)])
            | Some ltac ->
		try2solve_gen_goals ([],[]) ltac (List.tl gl)
	in
	if opt_rest & (not(lgl_gen=[])) then
          iterative_rew (cmr+1) (fails+1) (cglob,!cmd,!wrn) unp_goals lvalid
	else
          (match ltacstp with
             | None ->
                 iterative_rew (cmr+1) fails
                   (cglob+1,!cmd+1,!wrn) 
		   ((List.hd gl)::(lgl_gen@(List.tl unp_goals)))
                   ((p,lval_gen)::lvalid)
             | Some ltac ->
                 (match opt_step with
                    | Solve ->
			(match (try2solve_main_goal (List.hd gl) ltac) with
                           | None ->
                               iterative_rew (cmr+1) fails
                                 (cglob+1,!cmd+1,!wrn) 
				 ((List.hd gl)::(lgl_gen@(List.tl unp_goals)))
                                 ((p,lval_gen)::lvalid)
                           | Some (gl_solve,p_solve) ->
                               (lgl_gen@(List.tl unp_goals),
				(p_solve,[Length 0])::(p,lval_gen)
				::lvalid,!wrn))
                    | Use ->	
			(match (try_tacs4main_goal (List.hd gl) ltac) with
                           | None ->
                               iterative_rew (cmr+1) fails
                                 (cglob+1,!cmd+1,!wrn) 
				 ((List.hd gl)::(lgl_gen@(List.tl unp_goals)))
                                 ((p,lval_gen)::lvalid)
                           | Some(gl_trans,p_trans) ->
                               let lth=List.length gl_trans in
                               if lth=0 then
                                 (lgl_gen@(List.tl unp_goals),
				  (p_trans,[Length 0])::(p,lval_gen)::lvalid,
				  !wrn)
                               else if lth=1 then
                                 iterative_rew (cmr+1) fails
                                   (cglob+1,!cmd+1,!wrn)
                                   (gl_trans@(lgl_gen@(List.tl
							 unp_goals)))
                                   ((p_trans,[])::(p,lval_gen)::
                                    lvalid)
                               else
                                 iterative_rew (cmr+1) fails
                                   (cglob+1,!cmd+1,!wrn)
                                   (gl_trans@(lgl_gen@(List.tl unp_goals))) 
				   ((p_trans,
				     [Length ((List.length gl_trans)-1)])::
				    (p,lval_gen):: lvalid))
                    | All ->
			(match (try2solve_main_goal (List.hd gl) ltac) with
                           | None ->
                               (match (try_tacs4main_goal 
					 (List.hd gl) ltac) with
                                  | None ->
                                      iterative_rew (cmr+1) fails
					(cglob+1,!cmd+1,!wrn)
					((List.hd
                                            gl)::(lgl_gen@(List.tl
							     unp_goals)))
					((p,lval_gen)::lvalid)
                                  | Some(gl_trans,p_trans) ->
                                      let lth = List.length gl_trans in
                                      if lth = 0 then
                                        (lgl_gen@(List.tl unp_goals),
					 (p_trans,[Length 0])::
					 (p,lval_gen)::lvalid, !wrn)
                                      else if lth = 1 then
                                        iterative_rew (cmr+1) fails
                                          (cglob+1,!cmd+1,!wrn)
                                          (gl_trans@
					   (lgl_gen@
					    (List.tl unp_goals)))
                                          ((p_trans,[])::
					   (p,lval_gen)::lvalid)
                                      else
                                        iterative_rew (cmr+1) fails
                                          (cglob+1,!cmd+1,!wrn)
                                          (gl_trans@
					   (lgl_gen@
					    (List.tl unp_goals)))
                                          ((p_trans,
					    [Length 
					       ((List.length gl_trans)-1)])::
					   (p, lval_gen)::lvalid))
                           | Some (gl_solve,p_solve) ->
                               (lgl_gen@(List.tl unp_goals),
				(p_solve,[Length 0])::
				(p,lval_gen)::lvalid,!wrn))))
      with e when catchable_exception e ->
	iterative_rew (cmr+1) (fails+1) (cglob,!cmd,!wrn) unp_goals lvalid
    in
    let (gl,lvalid)=
      let (gl_res,lvalid_res,warn)=iterative_rew 0 0 (0,0,false) [g] [] in
      if warn then mSGNL [<>];
      (gl_res,lvalid_res)
    in
    let validation_fun=
      if lvalid = [] then
        (fun l -> List.hd l)
      else
        let nlvalid=mod_hdlist lvalid in
        (fun l -> validation_gen nlvalid l)
    in
    (repackage sigr gl,validation_fun)

(*Collects the arguments of AutoRewrite ast node*)
(*let dyn_autorewrite largs=
  let rec explicit_base largs =
    let tacargs = List.map cvt_arg largs in 
    List.map 
      (function
	 | Redexp ("LR", [Coqast.Node(_,"Command", [ast])]) -> ast, true
	 | Redexp ("RL", [Coqast.Node(_,"Command", [ast])]) -> ast, false
	 | _ -> anomaly "Equality.explicit_base") 
      tacargs
  and list_bases largs =
    let tacargs = List.map cvt_arg largs in 
    List.map 
      (function 
	 | Redexp ("ByName", [Coqast.Nvar(_,s)]) -> 
	     By_name (id_of_string s)
	 | Redexp ("Explicit", l) ->
	     Explicit (explicit_base l)
	 | _ -> anomaly "Equality.list_bases") 
      tacargs
  and int_arg=function
    | [(Integer n)] -> n
    | _ -> anomalylabstrm "dyn_autorewrite" 
	  [<'sTR "Bad call of int_arg (not an INTEGER)">]
  and list_args_rest (lstep,evstep) (ostep,evostep) (lrest,evrest)
    (orest,evorest) (depth,evdepth) = function
      | [] -> (lstep,ostep,lrest,orest,depth)
      | (Redexp (s,l))::tail ->
	  if s="Step" & not evstep then
            list_args_rest ((List.map Tacinterp.interp l),true) (ostep,evostep)
              (lrest,evrest) (orest,evorest) (depth,evdepth) tail
	  else if s="SolveStep" & not evostep then
            list_args_rest (lstep,evstep) (Solve,true) (lrest,evrest)
              (orest,evorest) (depth,evdepth) tail
	  else if s="Use" & not evostep then
            list_args_rest (lstep,evstep) (Use,true) (lrest,evrest) 
	      (orest,evorest) (depth,evdepth) tail
	  else if s="All" & not evostep then
            list_args_rest (lstep,evstep) (All,true) (lrest,evrest) 
	      (orest,evorest) (depth,evdepth) tail
	  else if s="Rest" & not evrest then
            list_args_rest (lstep,evstep) (ostep,evostep) 
	      ((List.map Tacinterp.interp l),true) (orest,evorest) 
	      (depth,evdepth) tail
	  else if s="SolveRest" & not evorest then
            list_args_rest (lstep,evstep) (ostep,evostep) (lrest,evrest)
              (false,true) (depth,evdepth) tail
	  else if s="Cond" & not evorest then
            list_args_rest (lstep,evstep) (ostep,evostep) (lrest,evrest)
              (true,true) (depth,evdepth) tail
	  else if s="Depth" & not evdepth then
            (let dth = int_arg (List.map cvt_arg l) in
             if dth > 0 then
               list_args_rest (lstep,evstep) (ostep,evostep) (lrest,evrest)
		 (orest,evorest) (dth,true) tail
             else
               errorlabstrm "dyn_autorewrite" 
		 [<'sTR "Depth value lower or equal to 0">])
	  else
            anomalylabstrm "dyn_autorewrite" 
	      [<'sTR "Bad call of list_args_rest">]
      | _ -> 
	  anomalylabstrm "dyn_autorewrite" 
	    [<'sTR "Bad call of list_args_rest">]
  and list_args = function
    | (Redexp (s,lbases))::tail ->
	if s = "BaseList" then
          (let (lstep,ostep,lrest,orest,depth) = 
	     list_args_rest ([],false) (Solve,false) ([],false) (false,false) 
	       (100,false) tail
           in
           autorewrite (list_bases lbases) 
	     (if lstep = [] then None else Some lstep) 
	     ostep (if lrest=[] then None else Some lrest) orest depth)
	else
          anomalylabstrm "dyn_autorewrite" 
	    [<'sTR "Bad call of list_args (not a BaseList tagged REDEXP)">]
    | _ ->
	anomalylabstrm "dyn_autorewrite" 
	  [<'sTR "Bad call of list_args (not a REDEXP)">]
  in
  list_args largs*)

(*Adds and hides the AutoRewrite tactic*)
(*let h_autorewrite = hide_tactic "AutoRewrite" dyn_autorewrite*)