aboutsummaryrefslogtreecommitdiffhomepage
path: root/tactics/eqschemes.mli
blob: 870ca6b69b15ff3647ec573dd4a84b609a0c1aef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(** This file builds schemes relative to equality inductive types *)

open Names
open Term
open Environ
open Ind_tables

(** Builds a left-to-right rewriting scheme for an equality type *)

val rew_l2r_dep_scheme_kind : individual scheme_kind
val rew_l2r_scheme_kind : individual scheme_kind
val rew_r2l_forward_dep_scheme_kind : individual scheme_kind
val rew_l2r_forward_dep_scheme_kind : individual scheme_kind
val rew_r2l_dep_scheme_kind : individual scheme_kind
val rew_r2l_scheme_kind : individual scheme_kind

val build_r2l_rew_scheme : bool -> env -> inductive -> sorts_family -> constr
val build_l2r_rew_scheme : bool -> env -> inductive -> sorts_family -> constr
val build_r2l_forward_rew_scheme :
  bool -> env -> inductive -> sorts_family -> constr
val build_l2r_forward_rew_scheme :
  bool -> env -> inductive -> sorts_family -> constr

(** Builds a symmetry scheme for a symmetrical equality type *)

val build_sym_scheme : env -> inductive -> constr
val sym_scheme_kind : individual scheme_kind

val build_sym_involutive_scheme : env -> inductive -> constr
val sym_involutive_scheme_kind : individual scheme_kind

(** Builds a congruence scheme for an equality type *)

val congr_scheme_kind : individual scheme_kind
val build_congr : env -> constr * constr -> inductive -> constr