blob: a6ffe9e21b593a597b62ad101fceeb0e051eb41d (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id$ i*)
(* This file builds schemes relative to equality inductive types *)
open Names
open Term
open Environ
open Ind_tables
(* Builds a left-to-right rewriting scheme for an equality type *)
val rew_l2r_dep_scheme_kind : individual scheme_kind
val rew_l2r_scheme_kind : individual scheme_kind
val rew_l2r_forward_dep_scheme_kind : individual scheme_kind
val rew_r2l_forward_dep_scheme_kind : individual scheme_kind
val rew_r2l_dep_scheme_kind : individual scheme_kind
val rew_r2l_scheme_kind : individual scheme_kind
val rew_asym_scheme_kind : individual scheme_kind
val build_r2l_rew_scheme : bool -> env -> inductive -> sorts_family -> constr
val build_l2r_rew_scheme : bool -> env -> inductive -> sorts_family -> constr
val build_l2r_forward_rew_scheme :
bool -> env -> inductive -> sorts_family -> constr
val build_r2l_forward_rew_scheme :
bool -> env -> inductive -> sorts_family -> constr
(* Builds a symmetry scheme for a symmetrical equality type *)
val build_sym_scheme : env -> inductive -> constr
val sym_scheme_kind : individual scheme_kind
val build_sym_involutive_scheme : env -> inductive -> constr
val sym_involutive_scheme_kind : individual scheme_kind
(* Builds a congruence scheme for an equality type *)
val congr_scheme_kind : individual scheme_kind
val build_congr : env -> constr * constr -> inductive -> constr
|