1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(************************************************************************)
(* EqDecide *)
(* A tactic for deciding propositional equality on inductive types *)
(* by Eduardo Gimenez *)
(************************************************************************)
open Util
open Names
open Namegen
open Term
open EConstr
open Declarations
open Tactics
open Tacticals.New
open Auto
open Constr_matching
open Misctypes
open Hipattern
open Proofview.Notations
open Tacmach.New
open Coqlib
(* This file containts the implementation of the tactics ``Decide
Equality'' and ``Compare''. They can be used to decide the
propositional equality of two objects that belongs to a small
inductive datatype --i.e., an inductive set such that all the
arguments of its constructors are non-functional sets.
The procedure for proving (x,y:R){x=y}+{~x=y} can be scketched as
follows:
1. Eliminate x and then y.
2. Try discrimination to solve those goals where x and y has
been introduced by different constructors.
3. If x and y have been introduced by the same constructor,
then analyse one by one the corresponding pairs of arguments.
If they are equal, rewrite one into the other. If they are
not, derive a contradiction from the injectiveness of the
constructor.
4. Once all the arguments have been rewritten, solve the remaining half
of the disjunction by reflexivity.
Eduardo Gimenez (30/3/98).
*)
let clear_last =
Proofview.tclEVARMAP >>= fun sigma ->
(onLastHyp (fun c -> (clear [destVar sigma c])))
let choose_eq eqonleft =
if eqonleft then
left_with_bindings false Misctypes.NoBindings
else
right_with_bindings false Misctypes.NoBindings
let choose_noteq eqonleft =
if eqonleft then
right_with_bindings false Misctypes.NoBindings
else
left_with_bindings false Misctypes.NoBindings
(* A surgical generalize which selects the right occurrences by hand *)
(* This prevents issues where c2 is also a subterm of c1 (see e.g. #5449) *)
let generalize_right mk typ c1 c2 =
Proofview.Goal.enter begin fun gl ->
let env = Proofview.Goal.env gl in
let store = Proofview.Goal.extra gl in
Refine.refine ~typecheck:false begin fun sigma ->
let na = Name (next_name_away_with_default "x" Anonymous (Termops.vars_of_env env)) in
let newconcl = mkProd (na, typ, mk typ c1 (mkRel 1)) in
let (sigma, x) = Evarutil.new_evar env sigma ~principal:true ~store newconcl in
(sigma, mkApp (x, [|c2|]))
end
end
let mkBranches (eqonleft,mk,c1,c2,typ) =
tclTHENLIST
[generalize_right mk typ c1 c2;
Simple.elim c1;
intros;
onLastHyp Simple.case;
clear_last;
intros]
let inj_flags = Some {
Equality.keep_proof_equalities = true; (* necessary *)
Equality.injection_in_context = true; (* does not matter here *)
Equality.injection_pattern_l2r_order = true; (* does not matter here *)
}
let discrHyp id =
let c env sigma = (sigma, (mkVar id, NoBindings)) in
let tac c = Equality.discr_tac false (Some (None, ElimOnConstr c)) in
Tacticals.New.tclDELAYEDWITHHOLES false c tac
let solveNoteqBranch side =
tclTHEN (choose_noteq side)
(tclTHEN introf
(onLastHypId (fun id -> discrHyp id)))
(* Constructs the type {c1=c2}+{~c1=c2} *)
let mkDecideEqGoal eqonleft (op,eq,neg) rectype c1 c2 =
let equality = mkApp(eq, [|rectype; c1; c2|]) in
let disequality = mkApp(neg, [|equality|]) in
if eqonleft then mkApp(op, [|equality; disequality |])
else mkApp(op, [|disequality; equality |])
(* Constructs the type (x1,x2:R){x1=x2}+{~x1=x2} *)
let idx = Id.of_string "x"
let idy = Id.of_string "y"
let mkGenDecideEqGoal rectype ops g =
let hypnames = pf_ids_set_of_hyps g in
let xname = next_ident_away idx hypnames
and yname = next_ident_away idy hypnames in
(mkNamedProd xname rectype
(mkNamedProd yname rectype
(mkDecideEqGoal true ops
rectype (mkVar xname) (mkVar yname))))
let rec rewrite_and_clear hyps = match hyps with
| [] -> Proofview.tclUNIT ()
| id :: hyps ->
tclTHENLIST [
Equality.rewriteLR (mkVar id);
clear [id];
rewrite_and_clear hyps;
]
let eqCase tac =
tclTHEN intro (onLastHypId tac)
let injHyp id =
let c env sigma = (sigma, (mkVar id, NoBindings)) in
let tac c = Equality.injClause inj_flags None false (Some (None, ElimOnConstr c)) in
Tacticals.New.tclDELAYEDWITHHOLES false c tac
let diseqCase hyps eqonleft =
let diseq = Id.of_string "diseq" in
let absurd = Id.of_string "absurd" in
(tclTHEN (intro_using diseq)
(tclTHEN (choose_noteq eqonleft)
(tclTHEN (rewrite_and_clear (List.rev hyps))
(tclTHEN (red_in_concl)
(tclTHEN (intro_using absurd)
(tclTHEN (Simple.apply (mkVar diseq))
(tclTHEN (injHyp absurd)
(full_trivial []))))))))
open Proofview.Notations
(* spiwack: a PatternMatchingFailure wrapper around [Hipattern]. *)
let match_eqdec env sigma c =
try
let (eqonleft,_,c1,c2,ty) = match_eqdec env sigma c in
let (op,eq1,noteq,eq2) =
match EConstr.kind sigma c with
| App (op,[|ty1;ty2|]) ->
let ty1, ty2 = if eqonleft then ty1, ty2 else ty2, ty1 in
(match EConstr.kind sigma ty1, EConstr.kind sigma ty2 with
| App (eq1,_), App (noteq,[|neq|]) ->
(match EConstr.kind sigma neq with
| App (eq2,_) -> op,eq1,noteq,eq2
| _ -> assert false)
| _ -> assert false)
| _ -> assert false in
let mk t x y =
let eq = mkApp (eq1,[|t;x;y|]) in
let neq = mkApp (noteq,[|mkApp (eq2,[|t;x;y|])|]) in
if eqonleft then mkApp (op,[|eq;neq|]) else mkApp (op,[|neq;eq|]) in
Proofview.tclUNIT (eqonleft,mk,c1,c2,ty)
with PatternMatchingFailure -> Proofview.tclZERO PatternMatchingFailure
(* /spiwack *)
let rec solveArg hyps eqonleft mk largs rargs = match largs, rargs with
| [], [] ->
tclTHENLIST [
choose_eq eqonleft;
rewrite_and_clear (List.rev hyps);
intros_reflexivity;
]
| a1 :: largs, a2 :: rargs ->
Proofview.Goal.enter begin fun gl ->
let rectype = pf_unsafe_type_of gl a1 in
let decide = mk rectype a1 a2 in
let tac hyp = solveArg (hyp :: hyps) eqonleft mk largs rargs in
let subtacs =
if eqonleft then [eqCase tac;diseqCase hyps eqonleft;default_auto]
else [diseqCase hyps eqonleft;eqCase tac;default_auto] in
(tclTHENS (elim_type decide) subtacs)
end
| _ -> invalid_arg "List.fold_right2"
let solveEqBranch rectype =
Proofview.tclORELSE
begin
Proofview.Goal.enter begin fun gl ->
let concl = pf_concl gl in
let env = Proofview.Goal.env gl in
let sigma = project gl in
match_eqdec env sigma concl >>= fun (eqonleft,mk,lhs,rhs,_) ->
let (mib,mip) = Global.lookup_inductive rectype in
let nparams = mib.mind_nparams in
let getargs l = List.skipn nparams (snd (decompose_app sigma l)) in
let rargs = getargs rhs
and largs = getargs lhs in
solveArg [] eqonleft mk largs rargs
end
end
begin function (e, info) -> match e with
| PatternMatchingFailure -> Tacticals.New.tclZEROMSG (Pp.str"Unexpected conclusion!")
| e -> Proofview.tclZERO ~info e
end
(* The tactic Decide Equality *)
let hd_app sigma c = match EConstr.kind sigma c with
| App (h,_) -> h
| _ -> c
let decideGralEquality =
Proofview.tclORELSE
begin
Proofview.Goal.enter begin fun gl ->
let concl = pf_concl gl in
let env = Proofview.Goal.env gl in
let sigma = project gl in
match_eqdec env sigma concl >>= fun (eqonleft,mk,c1,c2,typ as data) ->
let headtyp = hd_app sigma (pf_compute gl typ) in
begin match EConstr.kind sigma headtyp with
| Ind (mi,_) -> Proofview.tclUNIT mi
| _ -> tclZEROMSG (Pp.str"This decision procedure only works for inductive objects.")
end >>= fun rectype ->
(tclTHEN
(mkBranches data)
(tclORELSE (solveNoteqBranch eqonleft) (solveEqBranch rectype)))
end
end
begin function (e, info) -> match e with
| PatternMatchingFailure ->
Tacticals.New.tclZEROMSG (Pp.str"The goal must be of the form {x<>y}+{x=y} or {x=y}+{x<>y}.")
| e -> Proofview.tclZERO ~info e
end
let decideEqualityGoal = tclTHEN intros decideGralEquality
let decideEquality rectype ops =
Proofview.Goal.enter begin fun gl ->
let decide = mkGenDecideEqGoal rectype ops gl in
(tclTHENS (cut decide) [default_auto;decideEqualityGoal])
end
(* The tactic Compare *)
let compare c1 c2 =
pf_constr_of_global (build_coq_sumbool ()) >>= fun opc ->
pf_constr_of_global (Coqlib.build_coq_eq ()) >>= fun eqc ->
pf_constr_of_global (build_coq_not ()) >>= fun notc ->
Proofview.Goal.enter begin fun gl ->
let rectype = pf_unsafe_type_of gl c1 in
let ops = (opc,eqc,notc) in
let decide = mkDecideEqGoal true ops rectype c1 c2 in
(tclTHENS (cut decide)
[(tclTHEN intro
(tclTHEN (onLastHyp simplest_case) clear_last));
decideEquality rectype ops])
end
|