1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(************************************************************************)
(* EqDecide *)
(* A tactic for deciding propositional equality on inductive types *)
(* by Eduardo Gimenez *)
(************************************************************************)
(*i camlp4deps: "grammar/grammar.cma" i*)
open Errors
open Util
open Names
open Namegen
open Term
open Declarations
open Tactics
open Tacticals.New
open Auto
open ConstrMatching
open Hipattern
open Tacmach.New
open Coqlib
(* This file containts the implementation of the tactics ``Decide
Equality'' and ``Compare''. They can be used to decide the
propositional equality of two objects that belongs to a small
inductive datatype --i.e., an inductive set such that all the
arguments of its constructors are non-functional sets.
The procedure for proving (x,y:R){x=y}+{~x=y} can be scketched as
follows:
1. Eliminate x and then y.
2. Try discrimination to solve those goals where x and y has
been introduced by different constructors.
3. If x and y have been introduced by the same constructor,
then analyse one by one the corresponding pairs of arguments.
If they are equal, rewrite one into the other. If they are
not, derive a contradiction from the injectiveness of the
constructor.
4. Once all the arguments have been rewritten, solve the remaining half
of the disjunction by reflexivity.
Eduardo Gimenez (30/3/98).
*)
let clear ids = Proofview.V82.tactic (clear ids)
let clear_last = (onLastHyp (fun c -> (clear [destVar c])))
let choose_eq eqonleft =
if eqonleft then
left_with_bindings false Misctypes.NoBindings
else
right_with_bindings false Misctypes.NoBindings
let choose_noteq eqonleft =
if eqonleft then
right_with_bindings false Misctypes.NoBindings
else
left_with_bindings false Misctypes.NoBindings
let mkBranches c1 c2 =
tclTHENLIST
[Proofview.V82.tactic (generalize [c2]);
Simple.elim c1;
intros;
onLastHyp Simple.case;
clear_last;
intros]
let solveNoteqBranch side =
tclTHEN (choose_noteq side)
(tclTHEN introf
(onLastHypId (fun id -> Extratactics.discrHyp id)))
(* Constructs the type {c1=c2}+{~c1=c2} *)
let make_eq () =
(*FIXME*) Universes.constr_of_global (Coqlib.build_coq_eq ())
let mkDecideEqGoal eqonleft op rectype c1 c2 =
let equality = mkApp(make_eq(), [|rectype; c1; c2|]) in
let disequality = mkApp(build_coq_not (), [|equality|]) in
if eqonleft then mkApp(op, [|equality; disequality |])
else mkApp(op, [|disequality; equality |])
(* Constructs the type (x1,x2:R){x1=x2}+{~x1=x2} *)
let idx = Id.of_string "x"
let idy = Id.of_string "y"
let mkGenDecideEqGoal rectype g =
let hypnames = pf_ids_of_hyps g in
let xname = next_ident_away idx hypnames
and yname = next_ident_away idy hypnames in
(mkNamedProd xname rectype
(mkNamedProd yname rectype
(mkDecideEqGoal true (build_coq_sumbool ())
rectype (mkVar xname) (mkVar yname))))
let eqCase tac =
(tclTHEN intro
(tclTHEN (onLastHyp Equality.rewriteLR)
(tclTHEN clear_last
tac)))
let diseqCase eqonleft =
let diseq = Id.of_string "diseq" in
let absurd = Id.of_string "absurd" in
(tclTHEN (intro_using diseq)
(tclTHEN (choose_noteq eqonleft)
(tclTHEN (Proofview.V82.tactic red_in_concl)
(tclTHEN (intro_using absurd)
(tclTHEN (Proofview.V82.tactic (Simple.apply (mkVar diseq)))
(tclTHEN (Extratactics.injHyp absurd)
(full_trivial [])))))))
open Proofview.Notations
(* spiwack: a small wrapper around [Hipattern]. *)
let match_eqdec c =
try Proofview.tclUNIT (match_eqdec c)
with PatternMatchingFailure -> Proofview.tclZERO PatternMatchingFailure
(* /spiwack *)
let solveArg eqonleft op a1 a2 tac =
Proofview.Goal.raw_enter begin fun gl ->
let rectype = pf_type_of gl a1 in
let decide = mkDecideEqGoal eqonleft op rectype a1 a2 in
let subtacs =
if eqonleft then [eqCase tac;diseqCase eqonleft;default_auto]
else [diseqCase eqonleft;eqCase tac;default_auto] in
(tclTHENS (elim_type decide) subtacs)
end
let solveEqBranch rectype =
Proofview.tclORELSE
begin
Proofview.Goal.raw_enter begin fun gl ->
let concl = pf_nf_concl gl in
match_eqdec concl >>= fun (eqonleft,op,lhs,rhs,_) ->
let (mib,mip) = Global.lookup_inductive rectype in
let nparams = mib.mind_nparams in
let getargs l = List.skipn nparams (snd (decompose_app l)) in
let rargs = getargs rhs
and largs = getargs lhs in
List.fold_right2
(solveArg eqonleft op) largs rargs
(tclTHEN (choose_eq eqonleft) intros_reflexivity)
end
end
begin function
| PatternMatchingFailure -> Proofview.tclZERO (UserError ("",Pp.str"Unexpected conclusion!"))
| e -> Proofview.tclZERO e
end
(* The tactic Decide Equality *)
let hd_app c = match kind_of_term c with
| App (h,_) -> h
| _ -> c
let decideGralEquality =
Proofview.tclORELSE
begin
Proofview.Goal.raw_enter begin fun gl ->
let concl = pf_nf_concl gl in
match_eqdec concl >>= fun (eqonleft,_,c1,c2,typ) ->
let headtyp = hd_app (pf_compute gl typ) in
begin match kind_of_term headtyp with
| Ind (mi,_) -> Proofview.tclUNIT mi
| _ -> tclZEROMSG (Pp.str"This decision procedure only works for inductive objects.")
end >>= fun rectype ->
(tclTHEN
(mkBranches c1 c2)
(tclORELSE (solveNoteqBranch eqonleft) (solveEqBranch rectype)))
end
end
begin function
| PatternMatchingFailure ->
Proofview.tclZERO (UserError ("", Pp.str"The goal must be of the form {x<>y}+{x=y} or {x=y}+{x<>y}."))
| e -> Proofview.tclZERO e
end
let decideEqualityGoal = tclTHEN intros decideGralEquality
let decideEquality rectype =
Proofview.Goal.raw_enter begin fun gl ->
let decide = mkGenDecideEqGoal rectype gl in
(tclTHENS (cut decide) [default_auto;decideEqualityGoal])
end
(* The tactic Compare *)
let compare c1 c2 =
Proofview.Goal.raw_enter begin fun gl ->
let rectype = pf_type_of gl c1 in
let decide = mkDecideEqGoal true (build_coq_sumbool ()) rectype c1 c2 in
(tclTHENS (cut decide)
[(tclTHEN intro
(tclTHEN (onLastHyp simplest_case) clear_last));
decideEquality rectype])
end
|