aboutsummaryrefslogtreecommitdiffhomepage
path: root/tactics/elim.ml
blob: b92e949d5f938f5443d6ef7f3f5a12551826345f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

(* $Id$ *)

open Pp
open Util
open Names
open Term
open Reduction
open Inductive
open Proof_type
open Clenv
open Hipattern
open Tacmach
open Tacticals
open Tactics
open Hiddentac

let introElimAssumsThen tac ba =
  let nassums = 
    List.fold_left 
      (fun acc b -> if b then acc+2 else acc+1) 
      0 ba.branchsign 
  in 
  let introElimAssums = tclDO nassums intro in 
  (tclTHEN introElimAssums (elim_on_ba tac ba))

let introCaseAssumsThen tac ba =
  let case_thin_sign =
    List.flatten 
      (List.map 
	 (function b -> if b then [false;true] else [false]) 
	 ba.branchsign) 
  in 
  let introCaseAssums = intros_clearing case_thin_sign in
  (tclTHEN introCaseAssums (case_on_ba tac ba))

(* The following tactic Decompose repeatedly applies the
   elimination(s) rule(s) of the types satisfying the predicate
   ``recognizer'' onto a certain hypothesis. For example :

Require Elim.
Require Le.
   Goal (y:nat){x:nat | (le O x)/\(le x y)}->(le O y).
   Intros y H.
   Decompose [sig and] H;EAuto.  [HUM HUM !! Y a peu de chance qu'ça marche !]
   Qed.

Another example :

   Goal (A,B,C:Prop)(A/\B/\C \/ B/\C \/ C/\A) -> C.
   Intros A B C H; Decompose [and or] H; Assumption.
   Qed.
*)

let elimClauseThen tac idopt gl =
  elimination_then tac ([],[]) (mkVar (out_some idopt)) gl

let rec general_decompose_clause recognizer =
  ifOnClause recognizer
    (fun cls ->
       elimClauseThen
	 (introElimAssumsThen
            (fun bas ->
               (tclTHEN (clear_clause cls)
		  (tclMAP (general_decompose_clause recognizer) 
		     (List.map in_some bas.assums)))))
	 cls)
    (fun _ -> tclIDTAC)

(* Faudrait ajouter un COMPLETE pour que l'hypothèse créée ne reste
   pas si aucune élimination n'est possible *)

(* Meilleures stratégies mais perte de compatibilité *)
let up_to_delta = ref false (* true *)
let tmphyp_name = id_of_string "TmpHyp" (* "H" *)

let general_decompose recognizer c gl = 
  let typc = pf_type_of gl c in  
  (tclTHENS (cut typc) 
     [(tclTHEN (intro_using tmphyp_name)
         (onLastHyp (general_decompose_clause recognizer)));
      (exact_no_check c)]) gl

let head_in gls indl t =
  try
    let ity,_ =
      if !up_to_delta
      then find_mrectype (pf_env gls) (project gls) t
      else extract_mrectype t
    in List.mem ity indl
  with Induc -> false
       
let inductive_of_ident gls id =
  match kind_of_term (pf_global gls id) with
    | IsMutInd ity -> ity
    | _ ->
	errorlabstrm "Decompose"
	  [< print_id id; 'sTR " is not an inductive type" >]

let decompose_these c l gls =
  let indl = List.map (inductive_of_ident gls) l in 
  general_decompose (fun (_,t) -> head_in gls indl t) c gls

let decompose_nonrec c gls =
  general_decompose 
    (fun (_,t) -> is_non_recursive_type t)
    c gls

let decompose_and c gls = 
  general_decompose 
    (fun (_,t) -> is_conjunction t)
    c gls

let decompose_or c gls = 
  general_decompose 
    (fun (_,t) -> is_disjunction t)
    c gls

let dyn_decompose args gl = 
  match args with 
    | [Clause ids; Command c] -> 
        decompose_these (pf_interp_constr gl c) ids gl
    | [Clause ids; Constr c]  -> 
        decompose_these c ids  gl
    | l -> bad_tactic_args "DecomposeThese" l gl
	  
let h_decompose =
  let v_decompose = hide_tactic "DecomposeThese" dyn_decompose in 
  fun ids c -> v_decompose [Clause ids; Constr c] 

let vernac_decompose_and = 
  hide_constr_tactic "DecomposeAnd" decompose_and
let vernac_decompose_or  = 
  hide_constr_tactic  "DecomposeOr"  decompose_or

(* The tactic Double performs a double induction *)

let simple_elimination c gls =
  simple_elimination_then (fun _ -> tclIDTAC) c gls

let induction_trailer abs_i abs_j bargs =
  tclTHEN 
    (tclDO (abs_j - abs_i) intro)
    (onLastHyp
       (fun idopt gls ->
	  let id = out_some idopt in
	  let idty = pf_type_of gls (mkVar id) in
	  let fvty = global_vars idty in
	  let possible_bring_ids =
	    (List.tl (List.map out_some (nLastHyps (abs_j - abs_i) gls)))
            @bargs.assums in
	  let (ids,_) = List.fold_left 
			  (fun (bring_ids,leave_ids) cid ->
                             let cidty = pf_type_of gls (mkVar cid) in
                             if not (List.mem cid leave_ids)
                             then (cid::bring_ids,leave_ids)
                             else (bring_ids,cid::leave_ids))
			  ([],fvty) possible_bring_ids 
	  in 
	  (tclTHEN (tclTHEN (bring_hyps (List.map in_some ids))
		      (clear_clauses (List.rev (List.map in_some ids))))
             (simple_elimination (mkVar id))) gls))

let double_ind abs_i abs_j gls =
  let cl = pf_concl gls in 
  (tclTHEN (tclDO abs_i intro)
     (onLastHyp
       	(fun idopt ->
           elimination_then
             (introElimAssumsThen (induction_trailer abs_i abs_j))
             ([],[]) (mkVar (out_some idopt))))) gls

let dyn_double_ind = function
  | [Integer i; Integer j] -> double_ind i j
  | _ -> assert false

let _ = add_tactic "DoubleInd" dyn_double_ind


(*****************************)
(* Decomposing introductions *)
(*****************************)

let rec intro_pattern p = 
  let clear_last = (tclLAST_HYP (fun c -> (clear_one (destVar c))))
  and case_last  = (tclLAST_HYP h_simplest_case) in  
  match p with
    | IdPat  id  -> intro_using_warning id
    | DisjPat l  -> (tclTHEN introf
                       (tclTHENS 
			  (tclTHEN case_last clear_last)
			  (List.map intro_pattern l)))
    | ConjPat l  -> (tclTHEN introf
                       (tclTHEN (tclTHEN  case_last clear_last)
                          (intros_pattern l)))
    | ListPat l  ->  intros_pattern l

and intros_pattern l = tclMAP intro_pattern l

let dyn_intro_pattern = function 
  | []               -> intros
  | [Intropattern p] -> intro_pattern p
  | l                -> bad_tactic_args "Elim.dyn_intro_pattern" l

let v_intro_pattern = hide_tactic "Intros" dyn_intro_pattern

let h_intro_pattern p = v_intro_pattern [Intropattern p]