1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id:$ *)
open Util
open Names
open Topconstr
open Tacinterp
open Tacmach
open Decl_expr
open Decl_mode
open Pretyping.Default
open Rawterm
open Term
open Pp
let raw_app (loc,hd,args) = if args =[] then hd else RApp(loc,hd,args)
let intern_justification globs = function
Automated l -> Automated (List.map (intern_constr globs) l)
| By_tactic tac -> By_tactic (intern_tactic globs tac)
let intern_statement intern_it globs st =
{st_label=st.st_label;
st_it=intern_it globs st.st_it}
let intern_constr_or_thesis globs = function
Thesis n -> Thesis n
| This c -> This (intern_constr globs c)
let add_var id globs=
let l1,l2=globs.ltacvars in
{globs with ltacvars= (id::l1),(id::l2)}
let add_name nam globs=
match nam with
Anonymous -> globs
| Name id -> add_var id globs
let intern_hyp iconstr globs = function
Hvar (loc,(id,topt)) -> add_var id globs,
Hvar (loc,(id,option_map (intern_constr globs) topt))
| Hprop st -> add_name st.st_label globs,
Hprop (intern_statement iconstr globs st)
let intern_hyps iconstr globs hyps =
snd (list_fold_map (intern_hyp iconstr) globs hyps)
let intern_cut intern_it globs cut=
{cut_stat=intern_statement intern_it globs cut.cut_stat;
cut_by=intern_justification globs cut.cut_by}
let intern_casee globs = function
Real c -> Real (intern_constr globs c)
| Virtual cut -> Virtual (intern_cut intern_constr globs cut)
let intern_hyp_list args globs =
let intern_one globs (loc,(id,opttyp)) =
(add_var id globs),
(loc,(id,option_map (intern_constr globs) opttyp)) in
list_fold_map intern_one globs args
let intern_fundecl args body globs=
let nglobs,nargs = intern_hyp_list args globs in
nargs,intern_constr nglobs body
let rec add_vars_of_simple_pattern globs = function
CPatAlias (loc,p,id) ->
add_vars_of_simple_pattern (add_var id globs) p
(* Stdpp.raise_with_loc loc
(UserError ("simple_pattern",str "\"as\" is not allowed here"))*)
| CPatOr (loc, _)->
Stdpp.raise_with_loc loc
(UserError ("simple_pattern",str "\"(_ | _)\" is not allowed here"))
| CPatDelimiters (_,_,p) ->
add_vars_of_simple_pattern globs p
| CPatCstr (_,_,pl) | CPatNotation(_,_,pl) ->
List.fold_left add_vars_of_simple_pattern globs pl
| CPatAtom (_,Some (Libnames.Ident (_,id))) -> add_var id globs
| _ -> globs
let rec intern_bare_proof_instr globs = function
Pthus i -> Pthus (intern_bare_proof_instr globs i)
| Pthen i -> Pthen (intern_bare_proof_instr globs i)
| Phence i -> Phence (intern_bare_proof_instr globs i)
| Pcut c -> Pcut (intern_cut intern_constr_or_thesis globs c)
| Prew (s,c) -> Prew (s,intern_cut intern_constr globs c)
| Psuppose hyps -> Psuppose (intern_hyps intern_constr globs hyps)
| Pcase (params,pat,hyps) ->
let nglobs,nparams = intern_hyp_list params globs in
let nnglobs= add_vars_of_simple_pattern nglobs pat in
let nhyps = intern_hyps intern_constr_or_thesis nnglobs hyps in
Pcase (nparams,pat,nhyps)
| Ptake witl -> Ptake (List.map (intern_constr globs) witl)
| Pconsider (c,hyps) -> Pconsider (intern_constr globs c,
intern_hyps intern_constr globs hyps)
| Pper (et,c) -> Pper (et,intern_casee globs c)
| Pend bt -> Pend bt
| Pescape -> Pescape
| Passume hyps -> Passume (intern_hyps intern_constr globs hyps)
| Pgiven hyps -> Pgiven (intern_hyps intern_constr globs hyps)
| Plet hyps -> Plet (intern_hyps intern_constr globs hyps)
| Pclaim st -> Pclaim (intern_statement intern_constr globs st)
| Pfocus st -> Pfocus (intern_statement intern_constr globs st)
| Pdefine (id,args,body) ->
let nargs,nbody = intern_fundecl args body globs in
Pdefine (id,nargs,nbody)
| Pcast (id,typ) ->
Pcast (id,intern_constr globs typ)
let rec intern_proof_instr globs instr=
{emph = instr.emph;
instr = intern_bare_proof_instr globs instr.instr}
let interp_justification env sigma = function
Automated l ->
Automated (List.map (fun c ->understand env sigma (fst c)) l)
| By_tactic tac -> By_tactic tac
let interp_constr check_sort env sigma c =
if check_sort then
understand_type env sigma (fst c)
else
understand env sigma (fst c)
let special_whd env =
let infos=Closure.create_clos_infos Closure.betadeltaiota env in
(fun t -> Closure.whd_val infos (Closure.inject t))
let _eq = Libnames.constr_of_reference (Coqlib.glob_eq)
let decompose_eq env id =
let typ = Environ.named_type id env in
let whd = special_whd env typ in
match kind_of_term whd with
App (f,args)->
if eq_constr f _eq && (Array.length args)=3
then args.(0)
else error "previous step is not an equality"
| _ -> error "previous step is not an equality"
let get_eq_typ info env =
let last_id =
match info.pm_last with
Anonymous -> error "no previous equality"
| Name id -> id in
let typ = decompose_eq env last_id in
typ
let interp_constr_in_type typ env sigma c =
understand env sigma (fst c) ~expected_type:typ
let interp_statement interp_it env sigma st =
{st_label=st.st_label;
st_it=interp_it env sigma st.st_it}
let interp_constr_or_thesis check_sort env sigma = function
Thesis n -> Thesis n
| This c -> This (interp_constr check_sort env sigma c)
let type_tester_var body typ =
raw_app(dummy_loc,
RLambda(dummy_loc,Anonymous,typ,
RSort (dummy_loc,RProp Null)),body)
let abstract_one_hyp inject h raw =
match h with
Hvar (loc,(id,None)) ->
RProd (dummy_loc,Name id, RHole (loc,Evd.BinderType (Name id)), raw)
| Hvar (loc,(id,Some typ)) ->
RProd (dummy_loc,Name id,fst typ, raw)
| Hprop st ->
RProd (dummy_loc,st.st_label,inject st.st_it, raw)
let rawconstr_of_hyps inject hyps =
List.fold_right (abstract_one_hyp inject) hyps (RSort (dummy_loc,RProp Null))
let rec match_hyps blend names constr = function
[] -> []
| hyp::q ->
let (name,typ,body)=destProd constr in
let st= {st_label=name;st_it=substl names typ} in
let qnames=
match name with
Anonymous -> mkMeta 0 :: names
| Name id -> mkVar id :: names in
let qhyp = match hyp with
Hprop st' -> Hprop (blend st st')
| Hvar _ -> Hvar st in
qhyp::(match_hyps blend qnames body q)
let interp_hyps_gen inject blend env sigma hyps =
let constr=understand env sigma (rawconstr_of_hyps inject hyps) in
match_hyps blend [] constr hyps
let interp_hyps = interp_hyps_gen fst (fun x _ -> x)
let dummy_prefix= id_of_string "__"
let rec deanonymize ids =
function
PatVar (loc,Anonymous) ->
let (found,known) = !ids in
let new_id=Nameops.next_ident_away dummy_prefix known in
let _= ids:= (loc,new_id) :: found , new_id :: known in
PatVar (loc,Name new_id)
| PatVar (loc,Name id) as pat ->
let (found,known) = !ids in
let _= ids:= (loc,id) :: found , known in
pat
| PatCstr(loc,cstr,lpat,nam) ->
PatCstr(loc,cstr,List.map (deanonymize ids) lpat,nam)
let rec raw_of_pat =
function
PatVar (loc,Anonymous) -> anomaly "Anonymous pattern variable"
| PatVar (loc,Name id) ->
RVar (loc,id)
| PatCstr(loc,((ind,_) as cstr),lpat,_) ->
let mind= fst (Global.lookup_inductive ind) in
let rec add_params n q =
if n<=0 then q else
add_params (pred n) (RHole(dummy_loc,
Evd.TomatchTypeParameter(ind,n))::q) in
let args = List.map raw_of_pat lpat in
raw_app(loc,RRef(dummy_loc,Libnames.ConstructRef cstr),
add_params mind.Declarations.mind_nparams args)
let prod_one_hyp = function
(loc,(id,None)) ->
(fun raw ->
RProd (dummy_loc,Name id,
RHole (loc,Evd.BinderType (Name id)), raw))
| (loc,(id,Some typ)) ->
(fun raw ->
RProd (dummy_loc,Name id,fst typ, raw))
let prod_one_id (loc,id) raw =
RProd (dummy_loc,Name id,
RHole (loc,Evd.BinderType (Name id)), raw)
let let_in_one_alias (id,pat) raw =
RLetIn (dummy_loc,Name id,raw_of_pat pat, raw)
let rec bind_primary_aliases map pat =
match pat with
PatVar (_,_) -> map
| PatCstr(loc,_,lpat,nam) ->
let map1 =
match nam with
Anonymous -> map
| Name id -> (id,pat)::map
in
List.fold_left bind_primary_aliases map1 lpat
let bind_secondary_aliases map subst =
List.fold_left (fun map (ids,idp) -> (ids,List.assoc idp map)::map) map subst
let bind_aliases patvars subst patt =
let map = bind_primary_aliases [] patt in
let map1 = bind_secondary_aliases map subst in
List.rev map1
let interp_pattern env pat_expr =
let patvars,pats = Constrintern.intern_pattern env pat_expr in
match pats with
[] -> anomaly "empty pattern list"
| [subst,patt] ->
(patvars,bind_aliases patvars subst patt,patt)
| _ -> anomaly "undetected disjunctive pattern"
let rec match_args dest names constr = function
[] -> [],names,substl names constr
| _::q ->
let (name,typ,body)=dest constr in
let st={st_label=name;st_it=substl names typ} in
let qnames=
match name with
Anonymous -> assert false
| Name id -> mkVar id :: names in
let args,bnames,body = match_args dest qnames body q in
st::args,bnames,body
let rec match_aliases names constr = function
[] -> [],names,substl names constr
| _::q ->
let (name,c,typ,body)=destLetIn constr in
let st={st_label=name;st_it=(substl names c,substl names typ)} in
let qnames=
match name with
Anonymous -> assert false
| Name id -> mkVar id :: names in
let args,bnames,body = match_aliases qnames body q in
st::args,bnames,body
let detype_ground c = Detyping.detype false [] [] c
let interp_cases info env sigma params (pat:cases_pattern_expr) hyps =
let et,pinfo =
match info.pm_stack with
Per(et,pi,_,_)::_ -> et,pi
| _ -> error "No proof per cases/induction/inversion in progress." in
let mib,oib=Global.lookup_inductive pinfo.per_ind in
let num_params = pinfo.per_nparams in
let _ =
let expected = mib.Declarations.mind_nparams - num_params in
if List.length params <> expected then
errorlabstrm "suppose it is"
(str "Wrong number of extra arguments : " ++
(if expected = 0 then str "none" else int expected) ++
str "expected") in
let app_ind =
let rind = RRef (dummy_loc,Libnames.IndRef pinfo.per_ind) in
let rparams = List.map detype_ground pinfo.per_params in
let rparams_rec =
List.map
(fun (loc,(id,_)) ->
RVar (loc,id)) params in
let dum_args=
list_tabulate (fun _ -> RHole (dummy_loc,Evd.QuestionMark))
oib.Declarations.mind_nrealargs in
raw_app(dummy_loc,rind,rparams@rparams_rec@dum_args) in
let pat_vars,aliases,patt = interp_pattern env pat in
let inject = function
Thesis (Plain) -> Rawterm.RSort(dummy_loc,RProp Null)
| Thesis (Sub n) ->
error "thesis[_] is not allowed here"
| Thesis (For rec_occ) ->
if not (List.mem rec_occ pat_vars) then
errorlabstrm "suppose it is"
(str "Variable " ++ Nameops.pr_id rec_occ ++
str " does not occur in pattern.");
Rawterm.RSort(dummy_loc,RProp Null)
| This (c,_) -> c in
let term1 = rawconstr_of_hyps inject hyps in
let loc_ids,npatt =
let rids=ref ([],pat_vars) in
let npatt= deanonymize rids patt in
List.rev (fst !rids),npatt in
let term2 =
RLetIn(dummy_loc,Anonymous,
RCast(dummy_loc,raw_of_pat npatt,
CastConv DEFAULTcast,app_ind),term1) in
let term3=List.fold_right let_in_one_alias aliases term2 in
let term4=List.fold_right prod_one_id loc_ids term3 in
let term5=List.fold_right prod_one_hyp params term4 in
let constr = understand sigma env term5 in
let tparams,nam4,rest4 = match_args destProd [] constr params in
let tpatvars,nam3,rest3 = match_args destProd nam4 rest4 loc_ids in
let taliases,nam2,rest2 = match_aliases nam3 rest3 aliases in
let (_,pat_pat,pat_typ,rest1) = destLetIn rest2 in
let blend st st' =
match st'.st_it with
Thesis nam -> {st_it=Thesis nam;st_label=st'.st_label}
| This _ -> {st_it = This st.st_it;st_label=st.st_label} in
let thyps = match_hyps blend nam2 (Termops.pop rest1) hyps in
tparams,{pat_vars=tpatvars;
pat_aliases=taliases;
pat_constr=pat_pat;
pat_typ=pat_typ;
pat_pat=patt;
pat_expr=pat},thyps
let interp_cut interp_it env sigma cut=
{cut_stat=interp_statement interp_it env sigma cut.cut_stat;
cut_by=interp_justification env sigma cut.cut_by}
let interp_casee env sigma = function
Real c -> Real (understand env sigma (fst c))
| Virtual cut -> Virtual (interp_cut (interp_constr true) env sigma cut)
let abstract_one_arg = function
(loc,(id,None)) ->
(fun raw ->
RLambda (dummy_loc,Name id,
RHole (loc,Evd.BinderType (Name id)), raw))
| (loc,(id,Some typ)) ->
(fun raw ->
RLambda (dummy_loc,Name id,fst typ, raw))
let rawconstr_of_fun args body =
List.fold_right abstract_one_arg args (fst body)
let interp_fun env sigma args body =
let constr=understand env sigma (rawconstr_of_fun args body) in
match_args destLambda [] constr args
let rec interp_bare_proof_instr info sigma env = function
Pthus i -> Pthus (interp_bare_proof_instr info sigma env i)
| Pthen i -> Pthen (interp_bare_proof_instr info sigma env i)
| Phence i -> Phence (interp_bare_proof_instr info sigma env i)
| Pcut c -> Pcut (interp_cut (interp_constr_or_thesis true) sigma env c)
| Prew (s,c) -> Prew (s,interp_cut
(interp_constr_in_type (get_eq_typ info env))
sigma env c)
| Psuppose hyps -> Psuppose (interp_hyps sigma env hyps)
| Pcase (params,pat,hyps) ->
let tparams,tpat,thyps = interp_cases info env sigma params pat hyps in
Pcase (tparams,tpat,thyps)
| Ptake witl ->
Ptake (List.map (fun c -> understand sigma env (fst c)) witl)
| Pconsider (c,hyps) -> Pconsider (interp_constr false sigma env c,
interp_hyps sigma env hyps)
| Pper (et,c) -> Pper (et,interp_casee sigma env c)
| Pend bt -> Pend bt
| Pescape -> Pescape
| Passume hyps -> Passume (interp_hyps sigma env hyps)
| Pgiven hyps -> Pgiven (interp_hyps sigma env hyps)
| Plet hyps -> Plet (interp_hyps sigma env hyps)
| Pclaim st -> Pclaim (interp_statement (interp_constr true) sigma env st)
| Pfocus st -> Pfocus (interp_statement (interp_constr true) sigma env st)
| Pdefine (id,args,body) ->
let nargs,_,nbody = interp_fun sigma env args body in
Pdefine (id,nargs,nbody)
| Pcast (id,typ) ->
Pcast(id,interp_constr true sigma env typ)
let rec interp_proof_instr info sigma env instr=
{emph = instr.emph;
instr = interp_bare_proof_instr info sigma env instr.instr}
|