aboutsummaryrefslogtreecommitdiffhomepage
path: root/tactics/class_tactics.ml4
blob: f06e9112f04831a9eb56668d1a0cd6f0c613bf82 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i camlp4deps: "parsing/grammar.cma" i*)

(* $Id: eauto.ml4 10346 2007-12-05 21:11:19Z aspiwack $ *)

open Pp
open Util
open Names
open Nameops
open Term
open Termops
open Sign
open Reduction
open Proof_type
open Proof_trees
open Declarations
open Tacticals
open Tacmach
open Evar_refiner
open Tactics
open Pattern
open Clenv
open Auto
open Rawterm
open Hiddentac
open Typeclasses
open Typeclasses_errors
open Classes
open Topconstr
open Pfedit
open Command

open Evd

(** Typeclasses instance search tactic / eauto *)

open Auto

let e_give_exact c gl = 
  let t1 = (pf_type_of gl c) and t2 = pf_concl gl in 
  if occur_existential t1 or occur_existential t2 then 
     tclTHEN (Clenvtac.unify t1) (exact_check c) gl
  else exact_check c gl

let assumption id = e_give_exact (mkVar id)

let gen_constant dir s = Coqlib.gen_constant "Class_tactics" dir s
let coq_relation = lazy (gen_constant ["Relations";"Relation_Definitions"] "relation")

open Unification

let deltaset = lazy
  (Cpred.singleton (destConst (Lazy.force coq_relation)))

let auto_unif_flags = lazy {
  modulo_conv_on_closed_terms = true; 
  use_metas_eagerly = true;
  modulo_delta = Lazy.force deltaset;
}

let unify_e_resolve (c,clenv) gls = 
  let clenv' = connect_clenv gls clenv in
  let clenv' = clenv_unique_resolver false ~flags:(Lazy.force auto_unif_flags) clenv' gls in
    Clenvtac.clenv_refine true clenv' gls

let unify_resolve (c,clenv) gls = 
  let clenv' = connect_clenv gls clenv in
  let clenv' = clenv_unique_resolver false ~flags:(Lazy.force auto_unif_flags) clenv' gls in  
    Clenvtac.clenv_refine false clenv' gls

let rec e_trivial_fail_db db_list local_db goal =
  let tacl = 
    Eauto.registered_e_assumption ::
    (tclTHEN Tactics.intro 
       (function g'->
	  let d = pf_last_hyp g' in
	  let hintl = make_resolve_hyp (pf_env g') (project g') d in
          (e_trivial_fail_db db_list
	     (Hint_db.add_list hintl local_db) g'))) ::
    (List.map fst (e_trivial_resolve db_list local_db (pf_concl goal)) )
  in 
  tclFIRST (List.map tclCOMPLETE tacl) goal 

and e_my_find_search db_list local_db hdc concl = 
  let hdc = head_of_constr_reference hdc in
  let hintl =
    if occur_existential concl then
      list_map_append (Hint_db.map_all hdc) (local_db::db_list)
    else
      list_map_append (Hint_db.map_auto (hdc,concl)) (local_db::db_list)
  in 
  let tac_of_hint = 
    fun {pri=b; pat = p; code=t} -> 
      (b, 
       let tac =
	 match t with
	   | Res_pf (term,cl) -> unify_resolve (term,cl)
	   | ERes_pf (term,cl) -> unify_e_resolve (term,cl)
	   | Give_exact (c) -> e_give_exact c
	   | Res_pf_THEN_trivial_fail (term,cl) ->
               tclTHEN (unify_e_resolve (term,cl)) 
		 (e_trivial_fail_db db_list local_db)
	   | Unfold_nth c -> unfold_in_concl [[],c]
	   | Extern tacast -> conclPattern concl 
	       (Option.get p) tacast
       in 
       (tac,fmt_autotactic t))
  in 
    List.map tac_of_hint hintl

and e_trivial_resolve db_list local_db gl = 
  try 
    Auto.priority 
      (e_my_find_search db_list local_db 
	 (List.hd (head_constr_bound gl [])) gl)
  with Bound | Not_found -> []

let e_possible_resolve db_list local_db gl =
  try 
    List.map snd 
      (List.sort (fun (b, _) (b', _) -> b - b') 
	  (e_my_find_search db_list local_db 
	      (List.hd (head_constr_bound gl [])) gl))
  with Bound | Not_found -> []

let find_first_goal gls = 
  try first_goal gls with UserError _ -> assert false


type search_state = { 
  depth : int; (*r depth of search before failing *)
  tacres : goal list sigma * validation;
  last_tactic : std_ppcmds;
  custom_tactic : tactic;
  dblist : Auto.Hint_db.t list;
  localdb :  Auto.Hint_db.t list }
    
module SearchProblem = struct
    
  type state = search_state

  let debug = ref false

  let success s = (sig_it (fst s.tacres)) = []

  let pr_ev evs ev = Printer.pr_constr_env (Evd.evar_env ev) (Evarutil.nf_evar evs ev.Evd.evar_concl)
    
  let pr_goals gls =
    let evars = Evarutil.nf_evars (Refiner.project gls) in
      prlist (pr_ev evars) (sig_it gls)
	
  let filter_tactics (glls,v) l =
(*     if !debug then  *)
(*       (let _ = Proof_trees.db_pr_goal (List.hd (sig_it glls)) in *)
(*       let evars = Evarutil.nf_evars (Refiner.project glls) in *)
    (* 	msg (str"Goal: " ++ pr_ev evars (List.hd (sig_it glls)) ++ str"\n")); *)
    let rec aux = function
      | [] -> []
      | (tac,pptac) :: tacl -> 
	  try 
	    (* 	    if !debug then msg (str"\nTrying tactic: " ++ pptac ++ str"\n"); *)
	    let (lgls,ptl) = apply_tac_list tac glls in 
	    let v' p = v (ptl p) in
	      (* 	      if !debug then *)
	      (* 		begin *)
	      (* 		  let evars = Evarutil.nf_evars (Refiner.project glls) in *)
	      (* 		    msg (str"\nOn goal: " ++ pr_ev evars (List.hd (sig_it glls)) ++ str"\n"); *)
	      (* 		    msg (hov 1 (pptac ++ str" gives: \n" ++ pr_goals lgls ++ str"\n")) *)
	      (* 		end; *)
	      ((lgls,v'),pptac) :: aux tacl
	  with e when Logic.catchable_exception e ->
	    (* 	    if !debug then msg (str"failed\n"); *)
	    aux tacl
    in aux l
      
  let nb_empty_evars s = 
    Evd.fold (fun ev evi acc -> if evi.evar_body = Evar_empty then succ acc else acc) s 0

  (* Ordering of states is lexicographic on depth (greatest first) then
     number of remaining goals. *)
  let compare s s' =
    let d = s'.depth - s.depth in
    let nbgoals s = 
      List.length (sig_it (fst s.tacres)) + 
	nb_empty_evars (sig_sig (fst s.tacres))
    in
      if d <> 0 then d else nbgoals s - nbgoals s'

  let branching s = 
    if s.depth = 0 then 
      []
    else      
      let lg = fst s.tacres in
      let nbgl = List.length (sig_it lg) in
      assert (nbgl > 0);
      let g = find_first_goal lg in
      let assumption_tacs = 
	let l = 
	  filter_tactics s.tacres
	    (List.map 
	       (fun id -> (Eauto.e_give_exact_constr (mkVar id),
			   (str "exact" ++ spc () ++ pr_id id)))
	       (pf_ids_of_hyps g))
	in
	  List.map (fun (res,pp) -> { s with tacres = res;
	    last_tactic = pp; localdb = List.tl s.localdb }) l
      in
      let intro_tac = 
	List.map 
	  (fun ((lgls,_) as res,pp) -> 
	     let g' = first_goal lgls in 
	     let hintl = 
	       make_resolve_hyp (pf_env g') (project g') (pf_last_hyp g')
	     in	       
             let ldb = Hint_db.add_list hintl (match s.localdb with [] -> assert false | hd :: _ -> hd) in
	       { s with tacres = res; 
		 last_tactic = pp;
		 localdb = ldb :: List.tl s.localdb })
	  (filter_tactics s.tacres [Tactics.intro,(str "intro")])
      in
      let possible_resolve ((lgls,_) as res, pp) =
	let nbgl' = List.length (sig_it lgls) in
	  if nbgl' < nbgl then
	    { s with tacres = res; last_tactic = pp;
	      localdb = List.tl s.localdb }
	  else 
	    { s with 
	      depth = pred s.depth; tacres = res; 
	      last_tactic = pp;
	      localdb = 
		list_addn (nbgl'-nbgl) (List.hd s.localdb) s.localdb }
      in
(*       let custom_tac =  *)
(* 	List.map possible_resolve *)
(* 	  (filter_tactics s.tacres [s.custom_tactic,(str "custom_tactic")]) *)
(*       in *)
      let rec_tacs = 
	let l = 
	  filter_tactics s.tacres (e_possible_resolve s.dblist (List.hd s.localdb) (pf_concl g))
	in
	List.map possible_resolve l
      in
      List.sort compare (assumption_tacs @ intro_tac (* @ custom_tac *) @ rec_tacs)

  let pp s = 
    msg (hov 0 (str " depth=" ++ int s.depth ++ spc () ++ 
		  s.last_tactic ++ str "\n"))

end

module Search = Explore.Make(SearchProblem)

let make_initial_state n gls ~(tac:tactic) dblist localdbs =
  { depth = n;
    tacres = gls;
    last_tactic = (mt ());
    custom_tactic = tac;
    dblist = dblist;
    localdb = localdbs }

let e_depth_search debug s =
  try
    let tac = if debug then
      (SearchProblem.debug := true; Search.debug_depth_first) else Search.depth_first in
    let s = tac s in
    s.tacres
  with Not_found -> error "EAuto: depth first search failed"

let e_breadth_search debug s =
  try
    let tac = 
      if debug then Search.debug_breadth_first else Search.breadth_first 
    in let s = tac s in s.tacres
  with Not_found -> error "EAuto: breadth first search failed"

let e_search_auto ~(tac:tactic) debug (in_depth,p) lems db_list gls = 
  let sigma = Evd.sig_sig (fst gls) and gls' = Evd.sig_it (fst gls) in
  let local_dbs = List.map (fun gl -> make_local_hint_db lems ({it = gl; sigma = sigma})) gls' in
  let state = make_initial_state p gls ~tac db_list local_dbs in
  if in_depth then 
    e_depth_search debug state
  else
    e_breadth_search debug state

let full_eauto ~(tac:tactic) debug n lems gls = 
  let dbnames = current_db_names () in
  let dbnames =  list_subtract dbnames ["v62"] in
  let db_list = List.map searchtable_map dbnames in
    e_search_auto ~tac debug n lems db_list gls

exception Found of evar_defs

let valid evm p res_sigma l = 
  let evd' =
    Evd.fold
      (fun ev evi (gls, sigma) ->
	if not (Evd.is_evar evm ev) then
	  match gls with
	      hd :: tl -> 
		if evi.evar_body = Evar_empty then
		  let cstr, obls = Refiner.extract_open_proof !res_sigma hd in
		    (tl, Evd.evar_define ev cstr sigma)
		else (tl, sigma)
	    | [] -> ([], sigma)
	else if not (Evd.is_defined evm ev) && p ev evi then
	  match gls with
	      hd :: tl -> 
		if evi.evar_body = Evar_empty then
		  let cstr, obls = Refiner.extract_open_proof !res_sigma hd in
		    (tl, Evd.evar_define ev cstr sigma)
		else (tl, sigma)
	    | [] -> assert(false)
	else (gls, sigma))
      !res_sigma (l, Evd.create_evar_defs !res_sigma)
  in raise (Found (snd evd'))

let default_evars_tactic =
  fun x -> raise (UserError ("default_evars_tactic", mt()))
(* tclFAIL 0 (Pp.mt ()) *)

let resolve_all_evars_once ?(tac=default_evars_tactic) debug (mode, depth) env p evd =
  let evm = Evd.evars_of evd in
  let goals, evm = 
    Evd.fold
      (fun ev evi (gls, evm) ->
	(if evi.evar_body = Evar_empty && p ev evi then evi :: gls else gls), 
	Evd.add evm ev evi)
      evm ([], Evd.empty)
  in
  let gls = { it = List.rev goals; sigma = evm } in
  let res_sigma = ref evm in
  let gls', valid' = full_eauto ~tac debug (mode, depth) [] (gls, valid evm p res_sigma) in
    res_sigma := Evarutil.nf_evars (sig_sig gls');
    try ignore(valid' []); assert(false) with Found evd' -> Evarutil.nf_evar_defs evd'

exception FoundTerm of constr

let resolve_one_typeclass env gl =
  let gls = { it = [ Evd.make_evar (Environ.named_context_val env) gl ] ; sigma = Evd.empty } in
  let valid x = raise (FoundTerm (fst (Refiner.extract_open_proof Evd.empty (List.hd x)))) in
  let gls', valid' = full_eauto ~tac:tclIDTAC false (true, 15) [] (gls, valid) in
    try ignore(valid' []); assert false with FoundTerm t -> t

let has_undefined p evd =
  Evd.fold (fun ev evi has -> has ||
    (evi.evar_body = Evar_empty && p ev evi))
    (Evd.evars_of evd) false
    
let rec resolve_all_evars ~(tac:tactic) debug m env p evd =
  let rec aux n evd = 
    if has_undefined p evd && n > 0 then
      let evd' = resolve_all_evars_once ~tac debug m env p evd in
	aux (pred n) evd'
    else evd
  in aux 3 evd

(** Typeclass-based rewriting. *)

let morphism_class = lazy (class_info (id_of_string "Morphism"))

let get_respect cl = 
  Option.get (List.hd (Recordops.lookup_projections cl.cl_impl))

let respect_proj = lazy (get_respect (Lazy.force morphism_class))

let gen_constant dir s = Coqlib.gen_constant "Class_setoid" dir s
let coq_proj1 = lazy(gen_constant ["Init"; "Logic"] "proj1")
let coq_proj2 = lazy(gen_constant ["Init"; "Logic"] "proj2")
let iff = lazy (gen_constant ["Init"; "Logic"] "iff")
let impl = lazy (gen_constant ["Program"; "Basics"] "impl")
let arrow = lazy (gen_constant ["Program"; "Basics"] "arrow")
let coq_id = lazy (gen_constant ["Program"; "Basics"] "id")

let reflexive_type = lazy (gen_constant ["Classes"; "RelationClasses"] "Reflexive")
let reflexive_proof = lazy (gen_constant ["Classes"; "RelationClasses"] "reflexive")

let symmetric_type = lazy (gen_constant ["Classes"; "RelationClasses"] "Symmetric")
let symmetric_proof = lazy (gen_constant ["Classes"; "RelationClasses"] "symmetric")

let transitive_type = lazy (gen_constant ["Classes"; "RelationClasses"] "Transitive")
let transitive_proof = lazy (gen_constant ["Classes"; "RelationClasses"] "transitive")

let inverse = lazy (gen_constant ["Classes"; "RelationClasses"] "inverse")

let respectful_dep = lazy (gen_constant ["Classes"; "Morphisms"] "respectful_dep")
let respectful = lazy (gen_constant ["Classes"; "Morphisms"] "respectful")

let equivalence = lazy (gen_constant ["Classes"; "RelationClasses"] "Equivalence")
let default_relation = lazy (gen_constant ["Classes"; "RelationClasses"] "DefaultRelation")

(* let coq_relation = lazy (gen_constant ["RelationClasses";"Relation_Definitions"] "relation") *)
let mk_relation a = mkApp (Lazy.force coq_relation, [| a |])
let coq_relationT = lazy (gen_constant ["Classes";"Relations"] "relationT")

let setoid_refl_proj = lazy (gen_constant ["Classes"; "SetoidClass"] "equiv_refl")

let setoid_equiv = lazy (gen_constant ["Classes"; "SetoidClass"] "equiv")
let setoid_morphism = lazy (gen_constant ["Classes"; "SetoidClass"] "setoid_morphism")
let setoid_refl_proj = lazy (gen_constant ["Classes"; "SetoidClass"] "equiv_refl")
  
let arrow_morphism a b = 
  if isprop a && isprop b then
    Lazy.force impl
  else
    mkApp(Lazy.force arrow, [|a;b|])
(*     mkLambda (Name (id_of_string "A"), a,  *)
(* 	     mkLambda (Name (id_of_string "B"), b,  *)
(* 		      mkProd (Anonymous, mkRel 2, mkRel 2))) *)
    
let setoid_refl pars x = 
  applistc (Lazy.force setoid_refl_proj) (pars @ [x])
      
let morphism_class_proj = lazy (Lazy.force morphism_class, Lazy.force respect_proj)

exception Found of (constr * constr * (types * types) list * constr * constr array *
		       (constr * (constr * constr * constr * constr)) option array)

let is_equiv env sigma t = 
  isConst t && Reductionops.is_conv env sigma (Lazy.force setoid_equiv) t

let split_head = function
    hd :: tl -> hd, tl
  | [] -> assert(false)

let build_signature isevars env m (cstrs : 'a option list) (finalcstr : 'a option) (f : 'a -> constr) =
  let new_evar isevars env t =
    Evarutil.e_new_evar isevars env
      (* ~src:(dummy_loc, ImplicitArg (ConstRef (Lazy.force respectful), (n, Some na))) *) t
  in
  let mk_relty ty obj =
    match obj with
      | None -> 
	  let relty = mk_relation ty in
	    new_evar isevars env relty
      | Some x -> f x
  in
  let rec aux t l =
    let t = Reductionops.whd_betadelta env (Evd.evars_of !isevars) t in
    match kind_of_term t, l with
      | Prod (na, ty, b), obj :: cstrs -> 
	  let (arg, evars) = aux b cstrs in
	  let relty = mk_relty ty obj in
	  let arg' = mkApp (Lazy.force respectful, [| ty ; b ; relty ; arg |]) in
	    arg', (ty, relty) :: evars
      | _, _ -> 
	  (match finalcstr with
	      None -> 
		let rel = mk_relty t None in 
		  rel, [t, rel]
	    | Some (t, rel) -> rel, [t, rel])
  in aux m cstrs

let reflexivity_proof_evar env evars carrier relation x =
  let goal =
    mkApp (Lazy.force reflexive_type, [| carrier ; relation |])
  in
  let inst = Evarutil.e_new_evar evars env goal in
    (* try resolve_one_typeclass env goal *)
    mkApp (Lazy.force reflexive_proof, [| carrier ; relation ; inst ; x |])
    (*     with Not_found -> *)
(*       let meta = Evarutil.new_meta() in *)
(* 	mkCast (mkMeta meta, DEFAULTcast, mkApp (relation, [| x; x |])) *)

let find_class_proof proof_type proof_method env carrier relation =
  let goal =
    mkApp (Lazy.force proof_type, [| carrier ; relation |])
  in
    try 
      let inst = resolve_one_typeclass env goal in
	mkApp (Lazy.force proof_method, [| carrier ; relation ; inst |])
    with e when Logic.catchable_exception e -> raise Not_found

let reflexive_proof env = find_class_proof reflexive_type reflexive_proof env
let symmetric_proof env = find_class_proof symmetric_type symmetric_proof env
let transitive_proof env = find_class_proof transitive_type transitive_proof env

let resolve_morphism env sigma oldt m ?(fnewt=fun x -> x) args args' cstr evars =
  let (morphism_cl, morphism_proj) = Lazy.force morphism_class_proj in
  let morph_instance, proj, sigargs, m', args, args' = 
(*     if is_equiv env sigma m then  *)
(*       let params, rest = array_chop 3 args in *)
(*       let a, r, s = params.(0), params.(1), params.(2) in *)
(*       let params', rest' = array_chop 3 args' in *)
(*       let inst = mkApp (Lazy.force setoid_morphism, params) in *)
(* 	(* Equiv gives a binary morphism *) *)
(*       let (cl, proj) = Lazy.force class_two in *)
(*       let ctxargs = [ a; r; s; a; r; s; mkProp; Lazy.force iff; Lazy.force iff_setoid; ] in *)
(*       let m' = mkApp (m, [| a; r; s |]) in *)
(* 	inst, proj, ctxargs, m', rest, rest' *)
(*     else *)
    let first = 
      let first = ref (-1) in
	for i = 0 to Array.length args' - 1 do
	  if !first = -1 && args'.(i) <> None then first := i
	done;
	!first
    in
    let morphargs, morphobjs = array_chop first args in
    let morphargs', morphobjs' = array_chop first args' in
    let appm = mkApp(m, morphargs) in
    let appmtype = Typing.type_of env sigma appm in
    let cstrs = List.map (function None -> None | Some (_, (a, r, _, _)) -> Some (a, r)) (Array.to_list morphobjs') in
    let signature, sigargs = build_signature evars env appmtype cstrs cstr (fun (a, r) -> r) in
    let cl_args = [| appmtype ; signature ; appm |] in
    let app = mkApp (mkInd morphism_cl.cl_impl, cl_args) in
    let morph = Evarutil.e_new_evar evars env app in
    let proj = 
      mkApp (mkConst morphism_proj, 
	    Array.append cl_args [|morph|])
    in
      morph, proj, sigargs, appm, morphobjs, morphobjs'
  in 
  let projargs, respars, typeargs = 
    array_fold_left2 
      (fun (acc, sigargs, typeargs') x y -> 
	let (carrier, relation), sigargs = split_head sigargs in
	  match y with
	      None ->
		let refl_proof = reflexivity_proof_evar env evars carrier relation x in
		  [ refl_proof ; x ; x ] @ acc, sigargs, x :: typeargs'
	    | Some (p, (_, _, _, t')) ->
		[ p ; t'; x ] @ acc, sigargs, t' :: typeargs')
      ([], sigargs, []) args args'
  in
  let proof = applistc proj (List.rev projargs) in
  let newt = applistc m' (List.rev typeargs) in
    match respars with
	[ a, r ] -> (proof, (a, r, oldt, fnewt newt))
      | _ -> assert(false)

(* Adapted from setoid_replace. *)

type hypinfo = {
  cl : clausenv;
  prf : constr;
  rel : constr;
  l2r : bool;
  c1 : constr;
  c2 : constr;
  c  : constr option;
  abs : (constr * types) option;
}

let decompose_setoid_eqhyp gl c left2right =
  let ctype = pf_type_of gl c in
  let eqclause  = Clenv.make_clenv_binding gl (c,ctype) Rawterm.NoBindings in
  let (equiv, args) = decompose_app (Clenv.clenv_type eqclause) in
  let rec split_last_two = function
    | [c1;c2] -> [],(c1, c2)
    | x::y::z ->
	let l,res = split_last_two (y::z) in x::l, res
    | _ -> error "The term provided is not an applied relation" in
  let others, (c1,c2) = split_last_two args in
    { cl=eqclause; prf=(Clenv.clenv_value eqclause);
      rel=mkApp (equiv, Array.of_list others);
      l2r=left2right; c1=c1; c2=c2; c=Some c; abs=None }

let rewrite_unif_flags = {
  Unification.modulo_conv_on_closed_terms = false;
  Unification.use_metas_eagerly = true;
  Unification.modulo_delta = Cpred.empty
}

let rewrite2_unif_flags = {
  Unification.modulo_conv_on_closed_terms = true;
  Unification.use_metas_eagerly = true;
  Unification.modulo_delta = Cpred.empty
 }

(* let unification_rewrite c1 c2 cl but gl =  *)
(*   let (env',c1) = *)
(*     try *)
(*       (\* ~flags:(false,true) to allow to mark occurences that must not be *)
(*          rewritten simply by replacing them with let-defined definitions *)
(*          in the context *\) *)
(*       w_unify_to_subterm ~flags:rewrite_unif_flags (pf_env gl) (c1,but) cl.evd *)
(*     with *)
(* 	Pretype_errors.PretypeError _ -> *)
(* 	  (\* ~flags:(true,true) to make Ring work (since it really *)
(*              exploits conversion) *\) *)
(* 	  w_unify_to_subterm ~flags:rewrite2_unif_flags *)
(* 	    (pf_env gl) (c1,but) cl.evd *)
(*   in *)
(*   let cl' = {cl with evd = env' } in *)
(*   let c2 = Clenv.clenv_nf_meta cl' c2 in *)
(*   check_evar_map_of_evars_defs env' ; *)
(*   env',Clenv.clenv_value cl', c1, c2 *)

let allowK = true

let unify_eqn gl hypinfo t = 
  try 
    let {cl=cl; prf=prf; rel=rel; l2r=l2r; c1=c1; c2=c2; c=c; abs=abs} = !hypinfo in
    let env' = 
      try clenv_unify allowK ~flags:rewrite_unif_flags
	CONV (if l2r then c1 else c2) t cl
      with Pretype_errors.PretypeError _ -> (* For Ring essentially *)
	clenv_unify allowK ~flags:rewrite2_unif_flags
	  CONV (if l2r then c1 else c2) t cl
    in
    let c1 = Clenv.clenv_nf_meta env' c1 
    and c2 = Clenv.clenv_nf_meta env' c2
    and rel = Clenv.clenv_nf_meta env' rel in
    let car = pf_type_of gl c1 in
    let prf =
      if abs = None then
(* 	let (rel, args) = destApp typ in *)
(* 	let relargs, args = array_chop (Array.length args - 2) args in *)
(* 	let rel = mkApp (rel, relargs) in *)
	let prf = Clenv.clenv_value env' in
	  begin
	    match c with 
	      | Some c when occur_meta prf ->
		  (* Refresh the clausenv to not get the same meta twice in the goal. *)
		  hypinfo := decompose_setoid_eqhyp gl c l2r;
	      | _ -> ()
	  end;
	  prf
      else prf
    in
    let res =
      if l2r then (prf, (car, rel, c1, c2))
      else
	try (mkApp (symmetric_proof (pf_env gl) car rel, [| c1 ; c2 ; prf |]), (car, rel, c2, c1))
	with Not_found ->
	  (prf, (car, mkApp (Lazy.force inverse, [| car ; rel |]), c2, c1))
    in Some (env', res)
  with _ -> None

let unfold_impl t = 
  match kind_of_term t with
    | App (arrow, [| a; b |])(*  when eq_constr arrow (Lazy.force impl) *) -> 
	mkProd (Anonymous, a, b)
    | _ -> assert false

let unfold_id t = 
  match kind_of_term t with
    | App (id, [| a; b |]) (* when eq_constr id (Lazy.force coq_id) *) -> b
    | _ -> assert false

let build_new gl env sigma occs hypinfo concl cstr evars =
  let is_occ occ = occs = [] || List.mem occ occs in
  let rec aux t occ cstr =
    match unify_eqn gl hypinfo t with
      | Some (env', (prf, hypinfo as x)) ->
	  if is_occ occ then (
	    evars := Evd.evar_merge !evars (Evd.evars_of (Evd.undefined_evars env'.evd));
	    match cstr with
		None -> Some x, succ occ
	      | Some _ ->
		  let (car, r, orig, dest) = hypinfo in
		  let res = 
		    try 
		      Some 
			(resolve_morphism env sigma t ~fnewt:unfold_id
			  (mkApp (Lazy.force coq_id, [| car |]))
			  [| orig |] [| Some x |] cstr evars)
		    with Not_found -> None
		  in res, succ occ)
	  else None, succ occ
      | None -> 
	  match kind_of_term t with
	    | App (m, args) ->
		let args', occ = 
		  Array.fold_left 
		    (fun (acc, occ) arg -> let res, occ = aux arg occ None in (res :: acc, occ))
		    ([], occ) args
		in
		let res =
		  if List.for_all (fun x -> x = None) args' then None
		  else 
		    let args' = Array.of_list (List.rev args') in
		      (try Some (resolve_morphism env sigma t m args args' cstr evars)
			with Not_found -> None)
		in res, occ
		  
	    | Prod (_, x, b) -> 
		let x', occ = aux x occ None in
		let b', occ = aux b occ None in
		let res = 
		  if x' = None && b' = None then None
		  else 
		    (try 
			Some (resolve_morphism env sigma t
				 ~fnewt:unfold_impl
				 (arrow_morphism (pf_type_of gl x) (pf_type_of gl b)) [| x ; b |] [| x' ; b' |]
				 cstr evars)
		      with Not_found -> None)
		in res, occ
		  
	    | _ -> None, occ
  in aux concl 1 cstr
    
let resolve_all_typeclasses env evd = 
  resolve_all_evars false (true, 15) env
    (fun ev evi -> Typeclasses.class_of_constr evi.Evd.evar_concl <> None) evd

let resolve_argument_typeclasses ?(tac=tclIDTAC) d p env evd onlyargs all =
  let pred = 
    if onlyargs then 
      (fun ev evi -> Typeclasses.is_implicit_arg (snd (Evd.evar_source ev evd)) &&
	class_of_constr evi.Evd.evar_concl <> None)
    else
      (fun ev evi -> class_of_constr evi.Evd.evar_concl <> None)
  in
    try 
      resolve_all_evars ~tac d p env pred evd
    with e -> 
      if all then raise e else evd

let cl_rewrite_tactic = lazy (Tacinterp.interp <:tactic<setoid_rewrite_tac>>)

let cl_rewrite_clause_aux hypinfo goal_meta occs clause gl =
  let concl, is_hyp = 
    match clause with
	Some ((_, id), _) -> pf_get_hyp_typ gl id, Some id
      | None -> pf_concl gl, None
  in
  let cstr = 
    match is_hyp with
	None -> (mkProp, mkApp (Lazy.force inverse, [| mkProp; Lazy.force impl |]))
      | Some _ -> (mkProp, Lazy.force impl)
  in
  let evars = ref (Evd.create_evar_defs Evd.empty) in
  let env = pf_env gl in
  let sigma = project gl in
  let eq, _ = build_new gl env sigma occs hypinfo concl (Some cstr) evars in
    match eq with  
	Some (p, (_, _, oldt, newt)) -> 
	  (try 
	      evars := Typeclasses.resolve_typeclasses env (Evd.evars_of !evars) !evars;
	      let p = Evarutil.nf_isevar !evars p in
	      let newt = Evarutil.nf_isevar !evars newt in
	      let undef = Evd.undefined_evars !evars in
	      let rewtac = 
		match is_hyp with
		  | Some id -> 
		      let term = 
			match !hypinfo.abs with
			    None -> p
			  | Some (t, ty) -> 
			      mkApp (mkLambda (Name (id_of_string "lemma"), ty, p), [| t |])
		      in
			cut_replacing id newt 
			  (fun x -> Tactics.refine (mkApp (term, [| mkVar id |])))
		  | None -> 
		      (match !hypinfo.abs with
			  None -> 
			    let name = next_name_away_with_default "H" Anonymous (pf_ids_of_hyps gl) in
			      tclTHENLAST
				(Tacmach.internal_cut_no_check name newt)
				(tclTHEN (Tactics.revert [name]) (Tactics.refine p))
			| Some (t, ty) -> 
			    Tactics.refine
			      (mkApp (mkLambda (Name (id_of_string "newt"), newt,
					       mkLambda (Name (id_of_string "lemma"), ty,
							mkApp (p, [| mkRel 2 |]))),
				     [| mkMeta goal_meta; t |])))
	      in
	      let evartac = 
		let evd = Evd.evars_of undef in
		  if not (evd = Evd.empty) then Refiner.tclEVARS (Evd.merge sigma evd)
		  else tclIDTAC
	      in tclTHENLIST [evartac; rewtac] gl
	    with UserError (env, e) -> 
	      tclFAIL 0 (str" setoid rewrite failed: unable to satisfy the rewriting constraints") gl)
      | None -> 
	  let {l2r=l2r; c1=x; c2=y} = !hypinfo in
	    raise (Pretype_errors.PretypeError (pf_env gl, Pretype_errors.NoOccurrenceFound (if l2r then x else y)))
	      (* tclFAIL 1 (str"setoid rewrite failed") gl *)
	  
let cl_rewrite_clause c left2right occs clause gl =
  let meta = Evarutil.new_meta() in
  let hypinfo = ref (decompose_setoid_eqhyp gl c left2right) in
    cl_rewrite_clause_aux hypinfo meta occs clause gl

open Genarg
open Extraargs

TACTIC EXTEND class_rewrite
| [ "clrewrite" orient(o) constr(c) "in" hyp(id) "at" occurences(occ) ] -> [ cl_rewrite_clause c o occ (Some (([],id), [])) ]
| [ "clrewrite" orient(o) constr(c) "at" occurences(occ) "in" hyp(id) ] -> [ cl_rewrite_clause c o occ (Some (([],id), [])) ]
| [ "clrewrite" orient(o) constr(c) "in" hyp(id) ] -> [ cl_rewrite_clause c o [] (Some (([],id), [])) ]
| [ "clrewrite" orient(o) constr(c) "at" occurences(occ) ] -> [ cl_rewrite_clause c o occ None ]
| [ "clrewrite" orient(o) constr(c) ] -> [ cl_rewrite_clause c o [] None ]
END


let clsubstitute o c =
  let is_tac id = match kind_of_term c with Var id' when id' = id -> true | _ -> false in
    Tacticals.onAllClauses 
      (fun cl -> 
	match cl with
	  | Some ((_,id),_) when is_tac id -> tclIDTAC
	  | _ -> cl_rewrite_clause c o [] cl)

TACTIC EXTEND map_tac
| [ "clsubstitute" orient(o) constr(c) ] -> [ clsubstitute o c ]
END

let pr_debug _prc _prlc _prt b =
  if b then Pp.str "debug" else Pp.mt()

ARGUMENT EXTEND debug TYPED AS bool PRINTED BY pr_debug
| [ "debug" ] -> [ true ]
| [ ] -> [ false ]
END

let pr_mode _prc _prlc _prt m =
  match m with
      Some b ->
	if b then Pp.str "depth-first" else Pp.str "breadth-fist" 
    | None -> Pp.mt()
	
ARGUMENT EXTEND search_mode TYPED AS bool option PRINTED BY pr_mode
| [ "dfs" ] -> [ Some true ]
| [ "bfs" ] -> [ Some false ]
| [] -> [ None ]
END

let pr_depth _prc _prlc _prt = function
    Some i -> Util.pr_int i
  | None -> Pp.mt()
	
ARGUMENT EXTEND depth TYPED AS int option PRINTED BY pr_depth
| [ int_or_var_opt(v) ] -> [ match v with Some (ArgArg i) -> Some i | _ -> None ]
END
	
VERNAC COMMAND EXTEND Typeclasses_Settings
| [ "Typeclasses" "eauto" ":=" debug(d) search_mode(s) depth(depth) ] -> [ 
    let mode = match s with Some t -> t | None -> true in
    let depth = match depth with Some i -> i | None -> 15 in
      Typeclasses.solve_instanciations_problem :=
	resolve_argument_typeclasses d (mode, depth) ]
END

let _ = 
  Typeclasses.solve_instanciations_problem :=
    resolve_argument_typeclasses false (true, 15)

TACTIC EXTEND typeclasses_eauto
| [ "typeclasses" "eauto" debug(d) search_mode(s) depth(depth) ] -> [ fun gl ->
    let env = pf_env gl in
    let sigma = project gl in
      if Evd.dom sigma = [] then Refiner.tclIDTAC gl
      else
	let evd = Evd.create_evar_defs sigma in
	let mode = match s with Some t -> t | None -> true in
	let depth = match depth with Some i -> i | None -> 15 in
	let evd' = resolve_argument_typeclasses d (mode, depth) env evd false false in
	  Refiner.tclEVARS (Evd.evars_of evd') gl ]
END

let _ = 
  Classes.refine_ref := Refine.refine

(* Compatibility with old Setoids *)
  
TACTIC EXTEND setoid_rewrite
   [ "setoid_rewrite" orient(o) constr(c) ]
   -> [ cl_rewrite_clause c o [] None ]
 | [ "setoid_rewrite" orient(o) constr(c) "in" hyp(id) ] ->
      [ cl_rewrite_clause c o [] (Some (([],id), []))]
 | [ "setoid_rewrite" orient(o) constr(c) "at" occurences(occ) ] ->
      [ cl_rewrite_clause c o occ None]
 | [ "setoid_rewrite" orient(o) constr(c) "at" occurences(occ) "in" hyp(id)] ->
      [ cl_rewrite_clause c o occ (Some (([],id), []))]
 | [ "setoid_rewrite" orient(o) constr(c) "in" hyp(id) "at" occurences(occ)] ->
      [ cl_rewrite_clause c o occ (Some (([],id), []))]
END

(* let solve_obligation lemma =  *)
(*   tclTHEN (Tacinterp.interp (Tacexpr.TacAtom (dummy_loc, Tacexpr.TacAnyConstructor None))) *)
(*     (eapply_with_bindings (Constrintern.interp_constr Evd.empty (Global.env()) lemma, NoBindings)) *)
    
let mkappc s l = CAppExpl (dummy_loc,(None,(Libnames.Ident (dummy_loc,id_of_string s))),l)

let declare_instance a aeq n s = ((dummy_loc,Name n),Explicit,
				  CApp (dummy_loc, (None, mkIdentC (id_of_string s)), 
					[(a,None);(aeq,None)]))

let anew_instance instance fields = new_instance [] instance fields None (fun _ -> ())

let require_library dirpath =
  let qualid = (dummy_loc, Libnames.qualid_of_dirpath (Libnames.dirpath_of_string dirpath)) in
    Library.require_library [qualid] (Some false)

let check_required_library d =
  let d' = List.map id_of_string d in
  let dir = make_dirpath (List.rev d') in
  if not (Library.library_is_opened dir) then
    error ("Library "^(list_last d)^" has to be required first")

let init_setoid () =
  check_required_library ["Coq";"Setoids";"Setoid"]

let declare_instance_refl a aeq n lemma = 
  let instance = declare_instance a aeq (add_suffix n "_refl") "Reflexive" 
  in anew_instance instance 
       [((dummy_loc,id_of_string "reflexive"),[],lemma)]

let declare_instance_sym a aeq n lemma = 
  let instance = declare_instance a aeq (add_suffix n "_sym") "Symmetric" 
  in anew_instance instance 
       [((dummy_loc,id_of_string "symmetric"),[],lemma)]

let declare_instance_trans a aeq n lemma = 
  let instance = declare_instance a aeq (add_suffix n "_trans") "Transitive" 
  in anew_instance instance 
       [((dummy_loc,id_of_string "transitive"),[],lemma)]

let constr_tac = Tacinterp.interp (Tacexpr.TacAtom (dummy_loc, Tacexpr.TacAnyConstructor None)) 

let declare_relation a aeq n refl symm trans = 
  init_setoid ();
  match (refl,symm,trans) with 
      (None, None, None) -> 
	let instance = declare_instance a aeq n "DefaultRelation" 
	in ignore(anew_instance instance [])
    | (Some lemma1, None, None) -> 
	ignore (declare_instance_refl a aeq n lemma1)
    | (None, Some lemma2, None) -> 
	ignore (declare_instance_sym a aeq n lemma2)
    | (None, None, Some lemma3) -> 
	ignore (declare_instance_trans a aeq n lemma3)
    | (Some lemma1, Some lemma2, None) -> 
	ignore (declare_instance_refl a aeq n lemma1); 
	ignore (declare_instance_sym a aeq n lemma2)
    | (Some lemma1, None, Some lemma3) -> 
	let lemma_refl = declare_instance_refl a aeq n lemma1 in
	let lemma_trans = declare_instance_trans a aeq n lemma3 in
	let instance = declare_instance a aeq n "PreOrder" 
	in ignore(
	    anew_instance instance 
	      [((dummy_loc,id_of_string "preorder_refl"), [], mkIdentC lemma_refl);
	       ((dummy_loc,id_of_string "preorder_trans"),[], mkIdentC lemma_trans)])
    | (None, Some lemma2, Some lemma3) -> 
	let lemma_sym = declare_instance_sym a aeq n lemma2 in
	let lemma_trans = declare_instance_trans a aeq n lemma3 in
	let instance = declare_instance a aeq n "PER" 
	in ignore(
	    anew_instance instance 
	      [((dummy_loc,id_of_string "per_sym"),  [], mkIdentC lemma_sym);
	       ((dummy_loc,id_of_string "per_trans"),[], mkIdentC lemma_trans)])
     | (Some lemma1, Some lemma2, Some lemma3) -> 
	let lemma_refl = declare_instance_refl a aeq n lemma1 in 
	let lemma_sym = declare_instance_sym a aeq n lemma2 in
	let lemma_trans = declare_instance_trans a aeq n lemma3 in
	let instance = declare_instance a aeq n "Equivalence" 
	in ignore(
	    anew_instance instance 
	      [((dummy_loc,id_of_string "equiv_refl"), [], mkIdentC lemma_refl);
	       ((dummy_loc,id_of_string "equiv_sym"),  [], mkIdentC lemma_sym);
	       ((dummy_loc,id_of_string "equiv_trans"),[], mkIdentC lemma_trans)])

VERNAC COMMAND EXTEND AddRelation
    [ "Add" "Relation" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(lemma1) 
	"symmetry" "proved" "by" constr(lemma2) "as" ident(n) ] ->
      [ declare_relation a aeq n (Some lemma1) (Some lemma2) None ]
  | [ "Add" "Relation" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(lemma1)  
	"as" ident(n) ] ->
      [ declare_relation a aeq n (Some lemma1) None None ]
  | [ "Add" "Relation" constr(a) constr(aeq)  "as" ident(n) ] -> 
      [ declare_relation a aeq n None None None ]
END

VERNAC COMMAND EXTEND AddRelation2
    [ "Add" "Relation" constr(a) constr(aeq) "symmetry" "proved" "by" constr(lemma2) 
      "as" ident(n) ] ->
      [ declare_relation a aeq n None (Some lemma2) None ]
  | [ "Add" "Relation" constr(a) constr(aeq) "symmetry" "proved" "by" constr(lemma2) "transitivity" "proved" "by" constr(lemma3)  "as" ident(n) ] ->
      [ declare_relation a aeq n None (Some lemma2) (Some lemma3) ]
END

VERNAC COMMAND EXTEND AddRelation3
    [ "Add" "Relation" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(lemma1) 
      "transitivity" "proved" "by" constr(lemma3) "as" ident(n) ] ->
      [ declare_relation a aeq n (Some lemma1) None (Some lemma3) ]
  | [ "Add" "Relation" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(lemma1) 
      "symmetry" "proved" "by" constr(lemma2) "transitivity" "proved" "by" constr(lemma3) 
      "as" ident(n) ] ->
      [ declare_relation a aeq n (Some lemma1) (Some lemma2) (Some lemma3) ] 
  | [ "Add" "Relation" constr(a) constr(aeq) "transitivity" "proved" "by" constr(lemma3)
	"as" ident(n) ] ->  
      [ declare_relation a aeq n None None (Some lemma3) ] 
END

let mk_qualid s =
  Libnames.Qualid (dummy_loc, Libnames.qualid_of_string s)

let cHole = CHole (dummy_loc, None)

open Entries
open Libnames

let respect_projection r ty =
  let ctx, inst = Sign.decompose_prod_assum ty in
  let mor, args = destApp inst in
  let instarg = mkApp (r, rel_vect 0 (List.length ctx)) in
  let app = mkApp (mkConst (Lazy.force respect_proj), 
		  Array.append args [| instarg |]) in
    it_mkLambda_or_LetIn app ctx
      
let declare_projection n instance_id r =
  let ty = Global.type_of_global r in
  let c = constr_of_global r in
  let term = respect_projection c ty in
  let typ = Typing.type_of (Global.env ()) Evd.empty term in
  let typ =
    let n = 
      let rec aux t = 
	match kind_of_term t with
	    App (f, [| a ; a' ; rel; rel' |]) when eq_constr f (Lazy.force respectful) -> 
	      succ (aux rel')
	  | _ -> 0
      in
      let init = 
	match kind_of_term typ with
	    App (f, args) when eq_constr f (Lazy.force respectful) -> 
	      mkApp (f, fst (array_chop (Array.length args - 2) args))
	  | _ -> typ
      in aux init
    in
    let ctx,ccl = Reductionops.decomp_n_prod (Global.env()) Evd.empty (3 * n) typ
    in it_mkProd_or_LetIn ccl ctx 
  in
  let cst = 
    { const_entry_body = term;
      const_entry_type = Some typ;
      const_entry_opaque = false;
      const_entry_boxed = false }
  in
    ignore(Declare.declare_constant n (Entries.DefinitionEntry cst, Decl_kinds.IsDefinition Decl_kinds.Definition))
          
let build_morphism_signature m =
  let env = Global.env () in
  let m = Constrintern.interp_constr Evd.empty env m in
  let t = Typing.type_of env Evd.empty m in
  let isevars = ref (Evd.create_evar_defs Evd.empty) in
  let cstrs = 
    let rec aux t = 
      match kind_of_term t with
	| Prod (na, a, b) -> 
	    None :: aux b
	| _ -> []
    in aux t
  in
  let sig_, evars = build_signature isevars env t cstrs None snd in
  let _ = List.iter 
    (fun (ty, rel) -> 
      let default = mkApp (Lazy.force default_relation, [| ty; rel |]) in
	ignore(Evarutil.e_new_evar isevars env default))
    evars
  in
  let morph = 
    mkApp (mkInd (Lazy.force morphism_class).cl_impl, [| t; sig_; m |])
  in
  let evd = resolve_all_evars_once false (true, 15) env
    (fun x evi -> class_of_constr evi.Evd.evar_concl <> None) !isevars in
    Evarutil.nf_isevar evd morph

let default_morphism sign m =
  let env = Global.env () in
  let isevars = ref (Evd.create_evar_defs Evd.empty) in
  let t = Typing.type_of env Evd.empty m in
  let sign, evars =
    build_signature isevars env t (fst sign) (snd sign) (fun (ty, rel) -> rel)
  in
  let morph =
    mkApp (mkInd (Lazy.force morphism_class).cl_impl, [| t; sign; m |])
  in
  let mor = resolve_one_typeclass env morph in
    mor, respect_projection mor morph
    	  
let unfold_respectful = lazy (Tactics.unfold_in_concl [[], EvalConstRef (destConst (Lazy.force respectful))])

VERNAC COMMAND EXTEND AddSetoid1
   [ "Add" "Setoid" constr(a) constr(aeq) constr(t) "as" ident(n) ] ->
     [	init_setoid ();
	let lemma_refl = declare_instance_refl a aeq n (mkappc "Seq_refl" [a;aeq;t]) in 
	let lemma_sym = declare_instance_sym a aeq n (mkappc "Seq_sym" [a;aeq;t]) in
	let lemma_trans = declare_instance_trans a aeq n (mkappc "Seq_trans" [a;aeq;t])  in
	let instance = declare_instance a aeq n "Equivalence"
	in ignore(
	    anew_instance instance
	      [((dummy_loc,id_of_string "equiv_refl"), [], mkIdentC lemma_refl);
	       ((dummy_loc,id_of_string "equiv_sym"),  [], mkIdentC lemma_sym);
	       ((dummy_loc,id_of_string "equiv_trans"),[], mkIdentC lemma_trans)])]
  | [ "Add" "Morphism" constr(m) ":" ident(n) ] ->
      [ init_setoid ();
	let instance_id = add_suffix n "_Morphism" in
	let instance = build_morphism_signature m in
	  if Lib.is_modtype () then 
	    let cst = Declare.declare_internal_constant instance_id
	      (Entries.ParameterEntry (instance,false), Decl_kinds.IsAssumption Decl_kinds.Logical)
	    in
	      add_instance { is_class = Lazy.force morphism_class ; is_pri = None; is_impl = cst };
	      declare_projection n instance_id (ConstRef cst)
	  else
	    let kind = Decl_kinds.Global, Decl_kinds.DefinitionBody Decl_kinds.Instance in
	      Flags.silently 
		(fun () ->
		  Command.start_proof instance_id kind instance 
		    (fun _ -> function
			Libnames.ConstRef cst -> 
			  add_instance { is_class = Lazy.force morphism_class ; is_pri = None; is_impl = cst };
			  declare_projection n instance_id (ConstRef cst)
		      | _ -> assert false);
		  Pfedit.by (Tacinterp.interp <:tactic<add_morphism_tactic>>)) ();
	      Flags.if_verbose (fun x -> msg (Printer.pr_open_subgoals x)) () ]

  | [ "Add" "Morphism" constr(m) "with" "signature" lconstr(s) "as" ident(n) ] ->
      [ init_setoid ();
	let instance_id = add_suffix n "_Morphism" in
	let instance = 
	  ((dummy_loc,Name instance_id), Implicit,
	  CApp (dummy_loc, (None, mkRefC 
	    (Qualid (dummy_loc, Libnames.qualid_of_string "Coq.Classes.Morphisms.Morphism"))), 
	       [(s,None);(m,None)]))
	in
	  if Lib.is_modtype () then (context ~hook:(fun r -> declare_projection n instance_id r) [ instance ])
	  else (
	    Flags.silently 
	      (fun () ->
		ignore(new_instance [] instance [] None (fun cst -> declare_projection n instance_id (ConstRef cst)));
		Pfedit.by (Tacinterp.interp <:tactic<add_morphism_tactic>>)) ();
	    Flags.if_verbose (fun x -> msg (Printer.pr_open_subgoals x)) ())
      ]
END

(** Bind to "rewrite" too *)

(** Taken from original setoid_replace, to emulate the old rewrite semantics where
    lemmas are first instantiated once and then rewrite proceeds. *)

let check_evar_map_of_evars_defs evd =
 let metas = Evd.meta_list evd in
 let check_freemetas_is_empty rebus =
  Evd.Metaset.iter
   (fun m ->
     if Evd.meta_defined evd m then () else
      raise (Logic.RefinerError (Logic.OccurMetaGoal rebus)))
 in
  List.iter
   (fun (_,binding) ->
     match binding with
        Evd.Cltyp (_,{Evd.rebus=rebus; Evd.freemetas=freemetas}) ->
         check_freemetas_is_empty rebus freemetas
      | Evd.Clval (_,({Evd.rebus=rebus1; Evd.freemetas=freemetas1},_),
                 {Evd.rebus=rebus2; Evd.freemetas=freemetas2}) ->
         check_freemetas_is_empty rebus1 freemetas1 ;
         check_freemetas_is_empty rebus2 freemetas2
   ) metas

let unification_rewrite l2r c1 c2 cl rel but gl = 
  let (env',c') =
    try
      (* ~flags:(false,true) to allow to mark occurences that must not be
         rewritten simply by replacing them with let-defined definitions
         in the context *)
      Unification.w_unify_to_subterm ~flags:rewrite_unif_flags (pf_env gl) ((if l2r then c1 else c2),but) cl.evd
    with
	Pretype_errors.PretypeError _ ->
	  (* ~flags:(true,true) to make Ring work (since it really
             exploits conversion) *)
	  Unification.w_unify_to_subterm ~flags:rewrite2_unif_flags
	    (pf_env gl) ((if l2r then c1 else c2),but) cl.evd
  in
  let cl' = {cl with evd = env' } in
  let c1 = Clenv.clenv_nf_meta cl' c1 
  and c2 = Clenv.clenv_nf_meta cl' c2 in
  check_evar_map_of_evars_defs env';
  let prf = Clenv.clenv_value cl' in
  let prfty = Clenv.clenv_type cl' in
    if occur_meta prf then
      {cl=cl'; prf=(mkRel 1); rel=rel; l2r=l2r; c1=c1; c2=c2; c=None; abs=Some (prf, prfty)}
    else
      {cl=cl'; prf=prf; rel=rel; l2r=l2r; c1=c1; c2=c2; c=None; abs=None}

let get_hyp gl c clause l2r = 
  match kind_of_term (pf_type_of gl c) with
      Prod _ -> 
	let hi = decompose_setoid_eqhyp gl c l2r in
	let but = match clause with Some id -> pf_get_hyp_typ gl id | None -> pf_concl gl in
	  unification_rewrite hi.l2r hi.c1 hi.c2 hi.cl hi.rel but gl
    | _ -> decompose_setoid_eqhyp gl c l2r
	
let general_s_rewrite l2r c ~new_goals gl =
  let meta = Evarutil.new_meta() in
  let hypinfo = ref (get_hyp gl c None l2r) in
    cl_rewrite_clause_aux hypinfo meta [] None gl

let general_s_rewrite_in id l2r c ~new_goals gl =
  let meta = Evarutil.new_meta() in
  let hypinfo = ref (get_hyp gl c (Some id) l2r) in
    cl_rewrite_clause_aux hypinfo meta [] (Some (([],id), [])) gl
    
let general_s_rewrite_clause = function
  | None -> general_s_rewrite
  | Some id -> general_s_rewrite_in id

let _ = Equality.register_general_setoid_rewrite_clause general_s_rewrite_clause

(* [setoid_]{reflexivity,symmetry,transitivity} tactics *)

let relation_of_constr c = 
  match kind_of_term c with
    | App (f, args) when Array.length args >= 2 -> 
	let relargs, args = array_chop (Array.length args - 2) args in
	  mkApp (f, relargs), args
    | _ -> error "Not an applied relation"

let setoid_reflexivity gl =
  let env = pf_env gl in
  let rel, args = relation_of_constr (pf_concl gl) in
    try
      apply (reflexive_proof env (pf_type_of gl args.(0)) rel) gl
    with Not_found -> 
      tclFAIL 0 (str" The relation " ++ Printer.pr_constr_env env rel ++ str" is not a declared reflexive relation")
	gl

let setoid_symmetry gl =
  let env = pf_env gl in
  let rel, args = relation_of_constr (pf_concl gl) in
    try
      apply (symmetric_proof env (pf_type_of gl args.(0)) rel) gl
    with Not_found -> 
      tclFAIL 0 (str" The relation " ++ Printer.pr_constr_env env rel ++ str" is not a declared symmetric relation")
	gl
	
let setoid_transitivity c gl =
  let env = pf_env gl in
  let rel, args = relation_of_constr (pf_concl gl) in
    try
      apply_with_bindings
	((transitive_proof env (pf_type_of gl args.(0)) rel),
	Rawterm.ExplicitBindings [ dummy_loc, Rawterm.NamedHyp (id_of_string "y"), c ]) gl
    with Not_found -> 
      tclFAIL 0
	(str" The relation " ++ Printer.pr_constr_env env rel ++ str" is not a declared transitive relation") gl
	
let setoid_symmetry_in id gl =
  let ctype = pf_type_of gl (mkVar id) in
  let binders,concl = Sign.decompose_prod_assum ctype in
  let (equiv, args) = decompose_app concl in
  let rec split_last_two = function
    | [c1;c2] -> [],(c1, c2)
    | x::y::z -> let l,res = split_last_two (y::z) in x::l, res
    | _ -> error "The term provided is not an equivalence" 
  in
  let others,(c1,c2) = split_last_two args in
  let he,c1,c2 =  mkApp (equiv, Array.of_list others),c1,c2 in
  let new_hyp' =  mkApp (he, [| c2 ; c1 |]) in
  let new_hyp = it_mkProd_or_LetIn new_hyp'  binders in
    tclTHENS (cut new_hyp)
      [ intro_replacing id;
	tclTHENLIST [ intros; setoid_symmetry; apply (mkVar id); Tactics.assumption ] ]
      gl

let _ = Tactics.register_setoid_reflexivity setoid_reflexivity
let _ = Tactics.register_setoid_symmetry setoid_symmetry
let _ = Tactics.register_setoid_symmetry_in setoid_symmetry_in
let _ = Tactics.register_setoid_transitivity setoid_transitivity

TACTIC EXTEND setoid_symmetry
   [ "setoid_symmetry" ] -> [ setoid_symmetry ]
 | [ "setoid_symmetry" "in" hyp(n) ] -> [ setoid_symmetry_in n ]
END

TACTIC EXTEND setoid_reflexivity
   [ "setoid_reflexivity" ] -> [ setoid_reflexivity ]
END

TACTIC EXTEND setoid_transitivity
   [ "setoid_transitivity" constr(t) ] -> [ setoid_transitivity t ]
END