1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i camlp4deps: "parsing/grammar.cma" i*)
open Pp
open Util
open Names
open Nameops
open Term
open Termops
open Sign
open Reduction
open Proof_type
open Declarations
open Tacticals
open Tacmach
open Evar_refiner
open Tactics
open Pattern
open Clenv
open Auto
open Glob_term
open Hiddentac
open Typeclasses
open Typeclasses_errors
open Classes
open Topconstr
open Pfedit
open Command
open Libnames
open Evd
open Compat
let typeclasses_db = "typeclass_instances"
let typeclasses_debug = ref false
let typeclasses_depth = ref None
let _ =
Auto.add_auto_init
(fun () -> Auto.create_hint_db false typeclasses_db full_transparent_state true)
exception Found of evar_map
(** We transform the evars that are concerned by this resolution
(according to predicate p) into goals.
Invariant: function p only manipulates undefined evars *)
let evars_to_goals p evm =
let goals, evm' =
Evd.fold_undefined
(fun ev evi (gls, evm') ->
let evi', goal = p evm ev evi in
let gls' = if goal then (ev,Goal.V82.build ev) :: gls else gls in
(gls', Evd.add evm' ev evi'))
evm ([], Evd.defined_evars evm)
in
if goals = [] then None else Some (List.rev goals, evm')
(** Typeclasses instance search tactic / eauto *)
open Auto
let e_give_exact flags c gl =
let t1 = (pf_type_of gl c) in
tclTHEN (Clenvtac.unify ~flags t1) (exact_no_check c) gl
open Unification
let auto_unif_flags = {
modulo_conv_on_closed_terms = Some full_transparent_state;
use_metas_eagerly_in_conv_on_closed_terms = true;
modulo_delta = var_full_transparent_state;
modulo_delta_types = full_transparent_state;
resolve_evars = false;
use_pattern_unification = true;
use_meta_bound_pattern_unification = true;
frozen_evars = ExistentialSet.empty;
restrict_conv_on_strict_subterms = false; (* ? *)
modulo_betaiota = true;
modulo_eta = true;
allow_K_in_toplevel_higher_order_unification = false
}
let rec eq_constr_mod_evars x y =
match kind_of_term x, kind_of_term y with
| Evar (e1, l1), Evar (e2, l2) when e1 <> e2 -> true
| _, _ -> compare_constr eq_constr_mod_evars x y
let progress_evars t gl =
let concl = pf_concl gl in
let check gl' =
let newconcl = pf_concl gl' in
if eq_constr_mod_evars concl newconcl
then tclFAIL 0 (str"No progress made (modulo evars)") gl'
else tclIDTAC gl'
in tclTHEN t check gl
TACTIC EXTEND progress_evars
[ "progress_evars" tactic(t) ] -> [ progress_evars (Tacinterp.eval_tactic t) ]
END
let unify_e_resolve flags (c,clenv) gls =
let clenv' = connect_clenv gls clenv in
let clenv' = clenv_unique_resolver ~flags clenv' gls in
Clenvtac.clenv_refine true ~with_classes:false clenv' gls
let unify_resolve flags (c,clenv) gls =
let clenv' = connect_clenv gls clenv in
let clenv' = clenv_unique_resolver ~flags clenv' gls in
Clenvtac.clenv_refine false ~with_classes:false clenv' gls
let clenv_of_prods nprods (c, clenv) gls =
if nprods = 0 then Some clenv
else
let ty = pf_type_of gls c in
let diff = nb_prod ty - nprods in
if diff >= 0 then
Some (mk_clenv_from_n gls (Some diff) (c,ty))
else None
let with_prods nprods (c, clenv) f gls =
match clenv_of_prods nprods (c, clenv) gls with
| None -> tclFAIL 0 (str"Not enough premisses") gls
| Some clenv' -> f (c, clenv') gls
(** Hack to properly solve dependent evars that are typeclasses *)
let flags_of_state st =
{auto_unif_flags with
modulo_conv_on_closed_terms = Some st; modulo_delta = st;
modulo_delta_types = st;
modulo_eta = false}
let rec e_trivial_fail_db db_list local_db goal =
let tacl =
Eauto.registered_e_assumption ::
(tclTHEN Tactics.intro
(function g'->
let d = pf_last_hyp g' in
let hintl = make_resolve_hyp (pf_env g') (project g') d in
(e_trivial_fail_db db_list
(Hint_db.add_list hintl local_db) g'))) ::
(List.map (fun (x,_,_,_) -> x) (e_trivial_resolve db_list local_db (pf_concl goal)))
in
tclFIRST (List.map tclCOMPLETE tacl) goal
and e_my_find_search db_list local_db hdc complete concl =
let hdc = head_of_constr_reference hdc in
let prods, concl = decompose_prod_assum concl in
let nprods = List.length prods in
let hintl =
list_map_append
(fun db ->
if Hint_db.use_dn db then
let flags = flags_of_state (Hint_db.transparent_state db) in
List.map (fun x -> (flags, x)) (Hint_db.map_auto (hdc,concl) db)
else
let flags = flags_of_state (Hint_db.transparent_state db) in
List.map (fun x -> (flags, x)) (Hint_db.map_all hdc db))
(local_db::db_list)
in
let tac_of_hint =
fun (flags, {pri=b; pat = p; code=t}) ->
let tac =
match t with
| Res_pf (term,cl) -> with_prods nprods (term,cl) (unify_resolve flags)
| ERes_pf (term,cl) -> with_prods nprods (term,cl) (unify_e_resolve flags)
| Give_exact (c) -> e_give_exact flags c
| Res_pf_THEN_trivial_fail (term,cl) ->
tclTHEN (with_prods nprods (term,cl) (unify_e_resolve flags))
(if complete then tclIDTAC else e_trivial_fail_db db_list local_db)
| Unfold_nth c -> tclWEAK_PROGRESS (unfold_in_concl [all_occurrences,c])
| Extern tacast ->
tclTHEN
(fun gl -> Refiner.tclEVARS (mark_unresolvables (project gl)) gl)
(conclPattern concl p tacast)
in
let tac = if complete then tclCOMPLETE tac else tac in
match t with
| Extern _ -> (tac,b,true,lazy (pr_autotactic t))
| _ -> (tac,b,false,lazy (pr_autotactic t))
in List.map tac_of_hint hintl
and e_trivial_resolve db_list local_db gl =
try
e_my_find_search db_list local_db
(fst (head_constr_bound gl)) true gl
with Bound | Not_found -> []
let e_possible_resolve db_list local_db gl =
try
e_my_find_search db_list local_db
(fst (head_constr_bound gl)) false gl
with Bound | Not_found -> []
let rec catchable = function
| Refiner.FailError _ -> true
| Loc.Exc_located (_, e) -> catchable e
| e -> Logic.catchable_exception e
let nb_empty_evars s =
Evd.fold_undefined (fun ev evi acc -> succ acc) s 0
let pr_ev evs ev = Printer.pr_constr_env (Goal.V82.env evs ev) (Evarutil.nf_evar evs (Goal.V82.concl evs ev))
let pr_depth l = prlist_with_sep (fun () -> str ".") pr_int (List.rev l)
type autoinfo = { hints : Auto.hint_db; is_evar: existential_key option;
only_classes: bool; auto_depth: int list; auto_last_tac: std_ppcmds Lazy.t}
type autogoal = goal * autoinfo
type 'ans fk = unit -> 'ans
type ('a,'ans) sk = 'a -> 'ans fk -> 'ans
type 'a tac = { skft : 'ans. ('a,'ans) sk -> 'ans fk -> autogoal sigma -> 'ans }
type auto_result = autogoal list sigma
type atac = auto_result tac
let make_resolve_hyp env sigma st flags only_classes pri (id, _, cty) =
let cty = Evarutil.nf_evar sigma cty in
let rec iscl env ty =
let ctx, ar = decompose_prod_assum ty in
match kind_of_term (fst (decompose_app ar)) with
| Const c -> is_class (ConstRef c)
| Ind i -> is_class (IndRef i)
| _ ->
let env' = Environ.push_rel_context ctx env in
let ty' = whd_betadeltaiota env' ar in
if not (eq_constr ty' ar) then iscl env' ty'
else false
in
let is_class = iscl env cty in
let keep = not only_classes || is_class in
if keep then
let c = mkVar id in
let hints =
if is_class then
let hints = build_subclasses env sigma (mkVar id) in
list_map_append
(make_resolves env sigma (true,false,Flags.is_verbose()) None) hints
else []
in
hints @ map_succeed
(fun f -> try f (c,cty) with UserError _ -> failwith "")
[make_exact_entry sigma pri; make_apply_entry env sigma flags pri]
else []
let pf_filtered_hyps gls =
Goal.V82.hyps gls.Evd.sigma (sig_it gls)
let make_hints g st only_classes sign =
let hintlist = list_map_append
(pf_apply make_resolve_hyp g st (true,false,false) only_classes None) sign
in Hint_db.add_list hintlist (Hint_db.empty st true)
let make_autogoal_hints =
let res = ref None in
fun only_classes ?(st=full_transparent_state) g ->
let sign = pf_filtered_hyps g in
match !res with
| Some (sign', hints) when Environ.eq_named_context_val sign sign' -> hints
| _ -> let hints = make_hints g st only_classes (Environ.named_context_of_val sign) in
res := Some (sign, hints); hints
let lift_tactic tac (f : goal list sigma -> autoinfo -> autogoal list sigma) : 'a tac =
{ skft = fun sk fk {it = gl,hints; sigma=s} ->
let res = try Some (tac {it=gl; sigma=s}) with e when catchable e -> None in
match res with
| Some gls -> sk (f gls hints) fk
| None -> fk () }
let intro_tac : atac =
lift_tactic Tactics.intro
(fun {it = gls; sigma = s} info ->
let gls' =
List.map (fun g' ->
let env = Goal.V82.env s g' in
let context = Environ.named_context_of_val (Goal.V82.hyps s g') in
let hint = make_resolve_hyp env s (Hint_db.transparent_state info.hints)
(true,false,false) info.only_classes None (List.hd context) in
let ldb = Hint_db.add_list hint info.hints in
(g', { info with is_evar = None; hints = ldb; auto_last_tac = lazy (str"intro") })) gls
in {it = gls'; sigma = s})
let normevars_tac : atac =
{ skft = fun sk fk {it = gl; sigma = s} ->
let gl', sigma' = Goal.V82.nf_evar s (fst gl) in
sk {it = [gl', snd gl]; sigma = sigma'} fk }
(* lift_tactic tclNORMEVAR *)
(* (fun {it = gls; sigma = s} info -> *)
(* let gls' = *)
(* List.map (fun g' -> *)
(* (g', { info with auto_last_tac = str"NORMEVAR" })) gls *)
(* in {it = gls'; sigma = s}) *)
(* Ordering of states is lexicographic on the number of remaining goals. *)
let compare (pri, _, _, res) (pri', _, _, res') =
let nbgoals s =
List.length (sig_it s) + nb_empty_evars (sig_sig s)
in
let pri = pri - pri' in
if pri <> 0 then pri
else nbgoals res - nbgoals res'
let or_tac (x : 'a tac) (y : 'a tac) : 'a tac =
{ skft = fun sk fk gls -> x.skft sk (fun () -> y.skft sk fk gls) gls }
let hints_tac hints =
{ skft = fun sk fk {it = gl,info; sigma = s} ->
let concl = Goal.V82.concl s gl in
let tacgl = {it = gl; sigma = s} in
let poss = e_possible_resolve hints info.hints concl in
let rec aux i foundone = function
| (tac, _, b, pp) :: tl ->
let res =
try Some (tac tacgl)
with e when catchable e -> None
in
(match res with
| None ->
aux i foundone tl
| Some {it = gls; sigma = s'} ->
if !typeclasses_debug then
msgnl (pr_depth (i :: info.auto_depth) ++ str": " ++ Lazy.force pp
++ str" on" ++ spc () ++ pr_ev s gl);
let fk =
(fun () -> (* if !typeclasses_debug then msgnl (str"backtracked after " ++ pp); *)
aux (succ i) true tl)
in
let sgls =
evars_to_goals
(fun evm ev evi ->
if Typeclasses.is_resolvable evi &&
(not info.only_classes || Typeclasses.is_class_evar evm evi)
then Typeclasses.mark_unresolvable evi, true
else evi, false) s'
in
let newgls, s' =
let gls' = List.map (fun g -> (None, g)) gls in
match sgls with
| None -> gls', s'
| Some (evgls, s') ->
(* Reorder with dependent subgoals. *)
(List.map (fun (ev, x) -> Some ev, x) evgls @ gls', s')
in
let gls' = list_map_i
(fun j (evar, g) ->
let info =
{ info with auto_depth = j :: i :: info.auto_depth; auto_last_tac = pp;
is_evar = evar;
hints =
if b && not (Environ.eq_named_context_val (Goal.V82.hyps s' g) (Goal.V82.hyps s' gl))
then make_autogoal_hints info.only_classes
~st:(Hint_db.transparent_state info.hints) {it = g; sigma = s'}
else info.hints }
in g, info) 1 newgls in
let glsv = {it = gls'; sigma = s'} in
sk glsv fk)
| [] ->
if not foundone && !typeclasses_debug then
msgnl (pr_depth info.auto_depth ++ str": no match for " ++
Printer.pr_constr_env (Goal.V82.env s gl) concl ++
spc () ++ int (List.length poss) ++ str" possibilities");
fk ()
in aux 1 false poss }
let dependent only_classes evd oev concl =
if oev <> None then true
else not (Intset.is_empty (Evarutil.evars_of_term concl))
let then_list (second : atac) (sk : (auto_result, 'a) sk) : (auto_result, 'a) sk =
let rec aux s (acc : autogoal list list) fk = function
| (gl,info) :: gls ->
(match info.is_evar with
| Some ev when Evd.is_defined s ev -> aux s acc fk gls
| _ ->
second.skft
(fun {it=gls';sigma=s'} fk' ->
let needs_backtrack =
if gls' = [] then
dependent info.only_classes s' info.is_evar (Goal.V82.concl s gl)
else true
in
let fk'' = if not needs_backtrack then
(if !typeclasses_debug then msgnl (str"no backtrack on " ++ pr_ev s gl); fk) else fk'
in aux s' (gls'::acc) fk'' gls)
fk {it = (gl,info); sigma = s})
| [] -> Some (List.rev acc, s, fk)
in fun {it = gls; sigma = s} fk ->
let rec aux' = function
| None -> fk ()
| Some (res, s', fk') ->
let goals' = List.concat res in
sk {it = goals'; sigma = s'} (fun () -> aux' (fk' ()))
in aux' (aux s [] (fun () -> None) gls)
let then_tac (first : atac) (second : atac) : atac =
{ skft = fun sk fk -> first.skft (then_list second sk) fk }
let run_tac (t : 'a tac) (gl : autogoal sigma) : auto_result option =
t.skft (fun x _ -> Some x) (fun _ -> None) gl
type run_list_res = (auto_result * run_list_res fk) option
let run_list_tac (t : 'a tac) p goals (gl : autogoal list sigma) : run_list_res =
(then_list t (fun x fk -> Some (x, fk)))
gl
(fun _ -> None)
let fail_tac : atac =
{ skft = fun sk fk _ -> fk () }
let rec fix (t : 'a tac) : 'a tac =
then_tac t { skft = fun sk fk -> (fix t).skft sk fk }
let rec fix_limit limit (t : 'a tac) : 'a tac =
if limit = 0 then fail_tac
else then_tac t { skft = fun sk fk -> (fix_limit (pred limit) t).skft sk fk }
let make_autogoal ?(only_classes=true) ?(st=full_transparent_state) ev g =
let hints = make_autogoal_hints only_classes ~st g in
(g.it, { hints = hints ; is_evar = ev;
only_classes = only_classes; auto_depth = []; auto_last_tac = lazy (mt()) })
let make_autogoals ?(only_classes=true) ?(st=full_transparent_state) gs evm' =
{ it = list_map_i (fun i g ->
let (gl, auto) = make_autogoal ~only_classes ~st (Some (fst g)) {it = snd g; sigma = evm'} in
(gl, { auto with auto_depth = [i]})) 1 gs; sigma = evm' }
let get_result r =
match r with
| None -> None
| Some (gls, fk) -> Some (gls.sigma,fk)
let run_on_evars ?(only_classes=true) ?(st=full_transparent_state) p evm tac =
match evars_to_goals p evm with
| None -> None (* This happens only because there's no evar having p *)
| Some (goals, evm') ->
let res = run_list_tac tac p goals (make_autogoals ~only_classes ~st goals evm') in
match get_result res with
| None -> raise Not_found
| Some (evm', fk) -> Some (evars_reset_evd ~with_conv_pbs:true evm' evm, fk)
let eauto_tac hints =
then_tac normevars_tac (or_tac (hints_tac hints) intro_tac)
let eauto_tac ?limit hints =
match limit with
| None -> fix (eauto_tac hints)
| Some limit -> fix_limit limit (eauto_tac hints)
let eauto ?(only_classes=true) ?st ?limit hints g =
let gl = { it = make_autogoal ~only_classes ?st None g; sigma = project g } in
match run_tac (eauto_tac ?limit hints) gl with
| None -> raise Not_found
| Some {it = goals; sigma = s} ->
{it = List.map fst goals; sigma = s}
let real_eauto st ?limit hints p evd =
let rec aux evd fails =
let res, fails =
try run_on_evars ~st p evd (eauto_tac ?limit hints), fails
with Not_found ->
List.fold_right (fun fk (res, fails) ->
match res with
| Some r -> res, fk :: fails
| None -> get_result (fk ()), fails)
fails (None, [])
in
match res with
| None -> evd
| Some (evd', fk) -> aux evd' (fk :: fails)
in aux evd []
let resolve_all_evars_once debug limit p evd =
let db = searchtable_map typeclasses_db in
real_eauto ?limit (Hint_db.transparent_state db) [db] p evd
(** We compute dependencies via a union-find algorithm.
Beware of the imperative effects on the partition structure,
it should not be shared, but only used locally. *)
module Intpart = Unionfind.Make(Intset)(Intmap)
let deps_of_constraints cstrs evm p =
List.iter (fun (_, _, x, y) ->
let evx = Evarutil.undefined_evars_of_term evm x in
let evy = Evarutil.undefined_evars_of_term evm y in
Intpart.union_set (Intset.union evx evy) p)
cstrs
let evar_dependencies evm p =
Evd.fold_undefined
(fun ev evi _ ->
let evars = Intset.add ev (Evarutil.undefined_evars_of_evar_info evm evi)
in Intpart.union_set evars p)
evm ()
let resolve_one_typeclass env ?(sigma=Evd.empty) gl =
let nc, gl, subst = Evarutil.push_rel_context_to_named_context env gl in
let (gl,t,sigma) =
Goal.V82.mk_goal sigma nc gl Store.empty in
let gls = { it = gl ; sigma = sigma } in
let hints = searchtable_map typeclasses_db in
let gls' = eauto ?limit:!typeclasses_depth ~st:(Hint_db.transparent_state hints) [hints] gls in
let evd = sig_sig gls' in
let t' = let (ev, inst) = destEvar t in
mkEvar (ev, Array.of_list subst)
in
let term = Evarutil.nf_evar evd t' in
evd, term
let _ =
Typeclasses.solve_instanciation_problem := (fun x y z -> resolve_one_typeclass x ~sigma:y z)
(** [split_evars] returns groups of undefined evars according to dependencies *)
let split_evars evm =
let p = Intpart.create () in
evar_dependencies evm p;
deps_of_constraints (snd (extract_all_conv_pbs evm)) evm p;
Intpart.partition p
(** [evars_in_comp] filters an [evar_map], keeping only evars
that belongs to a certain component *)
let evars_in_comp comp evm =
try
evars_reset_evd
(Intset.fold (fun ev acc -> Evd.add acc ev (Evd.find_undefined evm ev))
comp Evd.empty) evm
with Not_found -> assert false
let is_inference_forced p evd ev =
try
let evi = Evd.find_undefined evd ev in
if Typeclasses.is_resolvable evi && snd (p ev evi)
then
let (loc, k) = evar_source ev evd in
match k with
| ImplicitArg (_, _, b) -> b
| QuestionMark _ -> false
| _ -> true
else true
with Not_found -> assert false
let is_mandatory p comp evd =
Intset.exists (is_inference_forced p evd) comp
(** In case of unsatisfiable constraints, build a nice error message *)
let error_unresolvable env comp do_split evd =
let evd = Evarutil.nf_evar_map_undefined evd in
let evm = if do_split then evars_in_comp comp evd else evd in
let _, ev = Evd.fold_undefined
(fun ev evi (b,acc) ->
(* focus on one instance if only one was searched for *)
if class_of_constr evi.evar_concl <> None then
if not b (* || do_split *) then
true, Some ev
else b, None
else b, acc) evm (false, None)
in
Typeclasses_errors.unsatisfiable_constraints
(Evarutil.nf_env_evar evm env) evm ev
(** Check if an evar is concerned by the current resolution attempt,
(and in particular is in the current component), and also update
its evar_info.
Invariant : this should only be applied to undefined evars,
and return undefined evar_info *)
let select_and_update_evars p oevd in_comp evd ev evi =
assert (evi.evar_body = Evar_empty);
try
let oevi = Evd.find_undefined oevd ev in
if Typeclasses.is_resolvable oevi then
Typeclasses.mark_unresolvable evi,
(in_comp ev && p evd ev evi)
else evi, false
with Not_found ->
Typeclasses.mark_unresolvable evi, p evd ev evi
(** Do we still have unresolved evars that should be resolved ? *)
let has_undefined p oevd evd =
Evd.fold_undefined (fun ev evi has -> has ||
snd (p oevd ev evi))
evd false
(** If [do_split] is [true], we try to separate the problem in
several components and then solve them separately *)
exception Unresolved
let resolve_all_evars debug m env p oevd do_split fail =
let split = if do_split then split_evars oevd else [Intset.empty] in
let in_comp comp ev = if do_split then Intset.mem ev comp else true
in
let rec docomp evd = function
| [] -> evd
| comp :: comps ->
let p = select_and_update_evars p oevd (in_comp comp) in
try
let evd' = resolve_all_evars_once debug m p evd in
if has_undefined p oevd evd' then raise Unresolved;
docomp evd' comps
with Unresolved | Not_found ->
if fail && (not do_split || is_mandatory (p evd) comp evd)
then (* Unable to satisfy the constraints. *)
error_unresolvable env comp do_split evd
else (* Best effort: do nothing on this component *)
docomp evd comps
in docomp oevd split
let initial_select_evars onlyargs =
if onlyargs then
(fun evd ev evi ->
Typeclasses.is_implicit_arg (snd (Evd.evar_source ev evd))
&& Typeclasses.is_class_evar evd evi)
else
(fun evd ev evi -> Typeclasses.is_class_evar evd evi)
let resolve_typeclass_evars debug m env evd onlyargs split fail =
let evd =
try Evarconv.consider_remaining_unif_problems
~ts:(Typeclasses.classes_transparent_state ()) env evd
with _ -> evd
in
resolve_all_evars debug m env (initial_select_evars onlyargs) evd split fail
let solve_inst debug depth env evd onlyargs split fail =
resolve_typeclass_evars debug depth env evd onlyargs split fail
let _ =
Typeclasses.solve_instanciations_problem :=
solve_inst false !typeclasses_depth
(** Options: depth, debug and transparency settings. *)
open Goptions
let set_typeclasses_debug d = (:=) typeclasses_debug d;
Typeclasses.solve_instanciations_problem := solve_inst d !typeclasses_depth
let get_typeclasses_debug () = !typeclasses_debug
let set_typeclasses_debug =
declare_bool_option
{ optsync = true;
optname = "debug output for typeclasses proof search";
optkey = ["Typeclasses";"Debug"];
optread = get_typeclasses_debug;
optwrite = set_typeclasses_debug; }
let set_typeclasses_depth d = (:=) typeclasses_depth d;
Typeclasses.solve_instanciations_problem := solve_inst !typeclasses_debug !typeclasses_depth
let get_typeclasses_depth () = !typeclasses_depth
let set_typeclasses_depth =
declare_int_option
{ optsync = true;
optname = "depth for typeclasses proof search";
optkey = ["Typeclasses";"Depth"];
optread = get_typeclasses_depth;
optwrite = set_typeclasses_depth; }
let set_transparency cl b =
List.iter (fun r ->
let gr = Smartlocate.global_with_alias r in
let ev = Tacred.evaluable_of_global_reference (Global.env ()) gr in
Classes.set_typeclass_transparency ev false b) cl
VERNAC COMMAND EXTEND Typeclasses_Unfold_Settings
| [ "Typeclasses" "Transparent" reference_list(cl) ] -> [
set_transparency cl true ]
END
VERNAC COMMAND EXTEND Typeclasses_Rigid_Settings
| [ "Typeclasses" "Opaque" reference_list(cl) ] -> [
set_transparency cl false ]
END
open Genarg
open Extraargs
let pr_debug _prc _prlc _prt b =
if b then Pp.str "debug" else Pp.mt()
ARGUMENT EXTEND debug TYPED AS bool PRINTED BY pr_debug
| [ "debug" ] -> [ true ]
| [ ] -> [ false ]
END
let pr_depth _prc _prlc _prt = function
Some i -> Util.pr_int i
| None -> Pp.mt()
ARGUMENT EXTEND depth TYPED AS int option PRINTED BY pr_depth
| [ int_or_var_opt(v) ] -> [ match v with Some (ArgArg i) -> Some i | _ -> None ]
END
(* true = All transparent, false = Opaque if possible *)
VERNAC COMMAND EXTEND Typeclasses_Settings
| [ "Typeclasses" "eauto" ":=" debug(d) depth(depth) ] -> [
set_typeclasses_debug d;
set_typeclasses_depth depth
]
END
let typeclasses_eauto ?(only_classes=false) ?(st=full_transparent_state) dbs gl =
try
let dbs = list_map_filter (fun db -> try Some (Auto.searchtable_map db) with _ -> None) dbs in
let st = match dbs with x :: _ -> Hint_db.transparent_state x | _ -> st in
eauto ?limit:!typeclasses_depth ~only_classes ~st dbs gl
with Not_found -> tclFAIL 0 (str" typeclasses eauto failed on: " ++ Printer.pr_goal gl) gl
TACTIC EXTEND typeclasses_eauto
| [ "typeclasses" "eauto" "with" ne_preident_list(l) ] -> [ typeclasses_eauto l ]
| [ "typeclasses" "eauto" ] -> [ typeclasses_eauto ~only_classes:true [typeclasses_db] ]
END
let _ = Classes.refine_ref := Refine.refine
(** Take the head of the arity of a constr.
Used in the partial application tactic. *)
let rec head_of_constr t =
let t = strip_outer_cast(collapse_appl t) in
match kind_of_term t with
| Prod (_,_,c2) -> head_of_constr c2
| LetIn (_,_,_,c2) -> head_of_constr c2
| App (f,args) -> head_of_constr f
| _ -> t
TACTIC EXTEND head_of_constr
[ "head_of_constr" ident(h) constr(c) ] -> [
let c = head_of_constr c in
letin_tac None (Name h) c None allHyps
]
END
TACTIC EXTEND not_evar
[ "not_evar" constr(ty) ] -> [
match kind_of_term ty with
| Evar _ -> tclFAIL 0 (str"Evar")
| _ -> tclIDTAC ]
END
TACTIC EXTEND is_ground
[ "is_ground" constr(ty) ] -> [ fun gl ->
if Evarutil.is_ground_term (project gl) ty then tclIDTAC gl
else tclFAIL 0 (str"Not ground") gl ]
END
TACTIC EXTEND autoapply
[ "autoapply" constr(c) "using" preident(i) ] -> [ fun gl ->
let flags = flags_of_state (Auto.Hint_db.transparent_state (Auto.searchtable_map i)) in
let cty = pf_type_of gl c in
let ce = mk_clenv_from gl (c,cty) in
unify_e_resolve flags (c,ce) gl ]
END
|