1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id$ *)
open Term
open Termdn
open Pattern
(* Discrimination nets with bounded depth.
See the module dn.ml for further explanations.
Eduardo (5/8/97). *)
let dnet_depth = ref 8
let bounded_constr_pat_discr (t,depth) =
if depth = 0 then
None
else
match constr_pat_discr t with
| None -> None
| Some (c,l) -> Some(c,List.map (fun c -> (c,depth-1)) l)
let bounded_constr_val_discr (t,depth) =
if depth = 0 then
None
else
match constr_val_discr t with
| None -> None
| Some (c,l) -> Some(c,List.map (fun c -> (c,depth-1)) l)
type 'a t = (constr_label,constr_pattern * int,'a) Dn.t
let create = Dn.create
let add dn (c,v) = Dn.add dn bounded_constr_pat_discr ((c,!dnet_depth),v)
let rmv dn (c,v) = Dn.rmv dn bounded_constr_pat_discr ((c,!dnet_depth),v)
let lookup dn t =
List.map
(fun ((c,_),v) -> (c,v))
(Dn.lookup dn bounded_constr_val_discr (t,!dnet_depth))
let app f dn = Dn.app (fun ((c,_),v) -> f(c,v)) dn
|