1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Pp
open Errors
open Util
open Names
open Nameops
open Namegen
open Term
open Termops
open Inductiveops
open Environ
open Evd
open Typing
open Pattern
open Patternops
open Matching
open Tacmach
open Pfedit
open Genredexpr
open Tacred
open Tactics
open Tacticals
open Clenv
open Hiddentac
open Libnames
open Globnames
open Nametab
open Smartlocate
open Libobject
open Printer
open Tacexpr
open Mod_subst
open Misctypes
open Locus
(****************************************************************************)
(* The Type of Constructions Autotactic Hints *)
(****************************************************************************)
type 'a auto_tactic =
| Res_pf of constr * 'a (* Hint Apply *)
| ERes_pf of constr * 'a (* Hint EApply *)
| Give_exact of constr
| Res_pf_THEN_trivial_fail of constr * 'a (* Hint Immediate *)
| Unfold_nth of evaluable_global_reference (* Hint Unfold *)
| Extern of glob_tactic_expr (* Hint Extern *)
type hints_path_atom =
| PathHints of global_reference list
| PathAny
type hints_path =
| PathAtom of hints_path_atom
| PathStar of hints_path
| PathSeq of hints_path * hints_path
| PathOr of hints_path * hints_path
| PathEmpty
| PathEpsilon
type 'a gen_auto_tactic = {
pri : int; (* A number lower is higher priority *)
pat : constr_pattern option; (* A pattern for the concl of the Goal *)
name : hints_path_atom; (* A potential name to refer to the hint *)
code : 'a auto_tactic (* the tactic to apply when the concl matches pat *)
}
type pri_auto_tactic = clausenv gen_auto_tactic
type hint_entry = global_reference option * types gen_auto_tactic
let pri_order_int (id1, {pri=pri1}) (id2, {pri=pri2}) =
let d = pri1 - pri2 in
if Int.equal d 0 then id2 - id1
else d
let pri_order t1 t2 = pri_order_int t1 t2 <= 0
let insert v l =
let rec insrec = function
| [] -> [v]
| h::tl -> if pri_order v h then v::h::tl else h::(insrec tl)
in
insrec l
(* Nov 98 -- Papageno *)
(* Les Hints sont ré-organisés en plusieurs databases.
La table impérative "searchtable", de type "hint_db_table",
associe une database (hint_db) à chaque nom.
Une hint_db est une table d'association fonctionelle constr -> search_entry
Le constr correspond à la constante de tête de la conclusion.
Une search_entry est un triplet comprenant :
- la liste des tactiques qui n'ont pas de pattern associé
- la liste des tactiques qui ont un pattern
- un discrimination net borné (Btermdn.t) constitué de tous les
patterns de la seconde liste de tactiques *)
type stored_data = int * pri_auto_tactic
(* First component is the index of insertion in the table, to keep most recent first semantics. *)
module Bounded_net = Btermdn.Make(struct
type t = stored_data
let compare = pri_order_int
end)
type search_entry = stored_data list * stored_data list * Bounded_net.t
let empty_se = ([],[],Bounded_net.create ())
let eq_pri_auto_tactic (_, x) (_, y) =
if Int.equal x.pri y.pri && Option.equal constr_pattern_eq x.pat y.pat then
match x.code,y.code with
| Res_pf(cstr,_),Res_pf(cstr1,_) ->
eq_constr cstr cstr1
| ERes_pf(cstr,_),ERes_pf(cstr1,_) ->
eq_constr cstr cstr1
| Give_exact cstr,Give_exact cstr1 ->
eq_constr cstr cstr1
| Res_pf_THEN_trivial_fail(cstr,_)
,Res_pf_THEN_trivial_fail(cstr1,_) ->
eq_constr cstr cstr1
| _,_ -> false
else
false
let add_tac pat t st (l,l',dn) =
match pat with
| None -> if not (List.exists (eq_pri_auto_tactic t) l) then (insert t l, l', dn) else (l, l', dn)
| Some pat ->
if not (List.exists (eq_pri_auto_tactic t) l')
then (l, insert t l', Bounded_net.add st dn (pat,t)) else (l, l', dn)
let rebuild_dn st ((l,l',dn) : search_entry) =
(l, l', List.fold_left (fun dn (id, t) -> Bounded_net.add (Some st) dn (Option.get t.pat, (id, t)))
(Bounded_net.create ()) l')
let lookup_tacs (hdc,c) st (l,l',dn) =
let l' = List.map snd (Bounded_net.lookup st dn c) in
let sl' = List.stable_sort pri_order_int l' in
Sort.merge pri_order l sl'
module Constr_map = Map.Make(RefOrdered)
let is_transparent_gr (ids, csts) = function
| VarRef id -> Idpred.mem id ids
| ConstRef cst -> Cpred.mem cst csts
| IndRef _ | ConstructRef _ -> false
let dummy_goal = Goal.V82.dummy_goal
let translate_hint (go,p) =
let mk_clenv (c,t) =
let cl = mk_clenv_from dummy_goal (c,t) in {cl with env = empty_env }
in
let code = match p.code with
| Res_pf (c,t) -> Res_pf (c, mk_clenv (c,t))
| ERes_pf (c,t) -> ERes_pf (c, mk_clenv (c,t))
| Res_pf_THEN_trivial_fail (c,t) ->
Res_pf_THEN_trivial_fail (c, mk_clenv (c,t))
| Give_exact c -> Give_exact c
| Unfold_nth e -> Unfold_nth e
| Extern t -> Extern t
in
(go,{ p with code = code })
let hints_path_atom_eq h1 h2 = match h1, h2 with
| PathHints l1, PathHints l2 -> List.equal eq_gr l1 l2
| PathAny, PathAny -> true
| _ -> false
let rec hints_path_eq h1 h2 = match h1, h2 with
| PathAtom h1, PathAtom h2 -> hints_path_atom_eq h1 h2
| PathStar h1, PathStar h2 -> hints_path_eq h1 h2
| PathSeq (l1, r1), PathSeq (l2, r2) ->
hints_path_eq l1 l2 && hints_path_eq r1 r2
| PathOr (l1, r1), PathOr (l2, r2) ->
hints_path_eq l1 l2 && hints_path_eq r1 r2
| PathEmpty, PathEmpty -> true
| PathEpsilon, PathEpsilon -> true
| _ -> false
let path_matches hp hints =
let rec aux hp hints k =
match hp, hints with
| PathAtom _, [] -> false
| PathAtom PathAny, (_ :: hints') -> k hints'
| PathAtom p, (h :: hints') ->
if hints_path_atom_eq p h then k hints' else false
| PathStar hp', hints ->
k hints || aux hp' hints (fun hints' -> aux hp hints' k)
| PathSeq (hp, hp'), hints ->
aux hp hints (fun hints' -> aux hp' hints' k)
| PathOr (hp, hp'), hints ->
aux hp hints k || aux hp' hints k
| PathEmpty, _ -> false
| PathEpsilon, hints -> k hints
in aux hp hints (fun hints' -> true)
let rec matches_epsilon = function
| PathAtom _ -> false
| PathStar _ -> true
| PathSeq (p, p') -> matches_epsilon p && matches_epsilon p'
| PathOr (p, p') -> matches_epsilon p || matches_epsilon p'
| PathEmpty -> false
| PathEpsilon -> true
let rec is_empty = function
| PathAtom _ -> false
| PathStar _ -> false
| PathSeq (p, p') -> is_empty p || is_empty p'
| PathOr (p, p') -> matches_epsilon p && matches_epsilon p'
| PathEmpty -> true
| PathEpsilon -> false
let rec path_derivate hp hint =
let rec derivate_atoms hints hints' =
match hints, hints' with
| gr :: grs, gr' :: grs' when eq_gr gr gr' -> derivate_atoms grs grs'
| [], [] -> PathEpsilon
| [], hints -> PathEmpty
| grs, [] -> PathAtom (PathHints grs)
| _, _ -> PathEmpty
in
match hp with
| PathAtom PathAny -> PathEpsilon
| PathAtom (PathHints grs) ->
(match grs, hint with
| h :: hints, PathAny -> PathEmpty
| hints, PathHints hints' -> derivate_atoms hints hints'
| _, _ -> assert false)
| PathStar p -> if path_matches p [hint] then hp else PathEpsilon
| PathSeq (hp, hp') ->
let hpder = path_derivate hp hint in
if matches_epsilon hp then
PathOr (PathSeq (hpder, hp'), path_derivate hp' hint)
else if is_empty hpder then PathEmpty
else PathSeq (hpder, hp')
| PathOr (hp, hp') ->
PathOr (path_derivate hp hint, path_derivate hp' hint)
| PathEmpty -> PathEmpty
| PathEpsilon -> PathEmpty
let rec normalize_path h =
match h with
| PathStar PathEpsilon -> PathEpsilon
| PathSeq (PathEmpty, _) | PathSeq (_, PathEmpty) -> PathEmpty
| PathSeq (PathEpsilon, p) | PathSeq (p, PathEpsilon) -> normalize_path p
| PathOr (PathEmpty, p) | PathOr (p, PathEmpty) -> normalize_path p
| PathOr (p, q) ->
let p', q' = normalize_path p, normalize_path q in
if hints_path_eq p p' && hints_path_eq q q' then h
else normalize_path (PathOr (p', q'))
| PathSeq (p, q) ->
let p', q' = normalize_path p, normalize_path q in
if hints_path_eq p p' && hints_path_eq q q' then h
else normalize_path (PathSeq (p', q'))
| _ -> h
let path_derivate hp hint = normalize_path (path_derivate hp hint)
let rec pp_hints_path = function
| PathAtom (PathAny) -> str"."
| PathAtom (PathHints grs) -> pr_sequence pr_global grs
| PathStar p -> str "(" ++ pp_hints_path p ++ str")*"
| PathSeq (p, p') -> pp_hints_path p ++ str" ; " ++ pp_hints_path p'
| PathOr (p, p') ->
str "(" ++ pp_hints_path p ++ spc () ++ str"|" ++ spc () ++ pp_hints_path p' ++ str ")"
| PathEmpty -> str"Ø"
| PathEpsilon -> str"ε"
let subst_path_atom subst p =
match p with
| PathAny -> p
| PathHints grs ->
let gr' gr = fst (subst_global subst gr) in
let grs' = List.smartmap gr' grs in
if grs' == grs then p else PathHints grs'
let rec subst_hints_path subst hp =
match hp with
| PathAtom p ->
let p' = subst_path_atom subst p in
if p' == p then hp else PathAtom p'
| PathStar p -> let p' = subst_hints_path subst p in
if p' == p then hp else PathStar p'
| PathSeq (p, q) ->
let p' = subst_hints_path subst p in
let q' = subst_hints_path subst q in
if p' == p && q' == q then hp else PathSeq (p', q')
| PathOr (p, q) ->
let p' = subst_hints_path subst p in
let q' = subst_hints_path subst q in
if p' == p && q' == q then hp else PathOr (p', q')
| _ -> hp
module Hint_db = struct
type t = {
hintdb_state : Names.transparent_state;
hintdb_cut : hints_path;
hintdb_unfolds : Idset.t * Cset.t;
mutable hintdb_max_id : int;
use_dn : bool;
hintdb_map : search_entry Constr_map.t;
(* A list of unindexed entries starting with an unfoldable constant
or with no associated pattern. *)
hintdb_nopat : (global_reference option * stored_data) list
}
let next_hint_id t =
let h = t.hintdb_max_id in t.hintdb_max_id <- succ t.hintdb_max_id; h
let empty st use_dn = { hintdb_state = st;
hintdb_cut = PathEmpty;
hintdb_unfolds = (Idset.empty, Cset.empty);
hintdb_max_id = 0;
use_dn = use_dn;
hintdb_map = Constr_map.empty;
hintdb_nopat = [] }
let find key db =
try Constr_map.find key db.hintdb_map
with Not_found -> empty_se
let map_none db =
List.map snd (Sort.merge pri_order (List.map snd db.hintdb_nopat) [])
let map_all k db =
let (l,l',_) = find k db in
List.map snd (Sort.merge pri_order (List.map snd db.hintdb_nopat @ l) l')
let map_auto (k,c) db =
let st = if db.use_dn then Some db.hintdb_state else None in
let l' = lookup_tacs (k,c) st (find k db) in
List.map snd (Sort.merge pri_order (List.map snd db.hintdb_nopat) l')
let is_exact = function
| Give_exact _ -> true
| _ -> false
let is_unfold = function
| Unfold_nth _ -> true
| _ -> false
let addkv gr id v db =
let idv = id, v in
let k = match gr with
| Some gr -> if db.use_dn && is_transparent_gr db.hintdb_state gr &&
is_unfold v.code then None else Some gr
| None -> None
in
let dnst = if db.use_dn then Some db.hintdb_state else None in
let pat = if not db.use_dn && is_exact v.code then None else v.pat in
match k with
| None ->
if not (List.exists (fun (_, (_, v')) -> Pervasives.(=) v v') db.hintdb_nopat) then (** FIXME *)
{ db with hintdb_nopat = (gr,idv) :: db.hintdb_nopat }
else db
| Some gr ->
let oval = find gr db in
{ db with hintdb_map = Constr_map.add gr (add_tac pat idv dnst oval) db.hintdb_map }
let rebuild_db st' db =
let db' =
{ db with hintdb_map = Constr_map.map (rebuild_dn st') db.hintdb_map;
hintdb_state = st'; hintdb_nopat = [] }
in
List.fold_left (fun db (gr,(id,v)) -> addkv gr id v db) db' db.hintdb_nopat
let add_one kv db =
let (k,v) = translate_hint kv in
let st',db,rebuild =
match v.code with
| Unfold_nth egr ->
let addunf (ids,csts) (ids',csts') =
match egr with
| EvalVarRef id -> (Idpred.add id ids, csts), (Idset.add id ids', csts')
| EvalConstRef cst -> (ids, Cpred.add cst csts), (ids', Cset.add cst csts')
in
let state, unfs = addunf db.hintdb_state db.hintdb_unfolds in
state, { db with hintdb_unfolds = unfs }, true
| _ -> db.hintdb_state, db, false
in
let db = if db.use_dn && rebuild then rebuild_db st' db else db
in addkv k (next_hint_id db) v db
let add_list l db = List.fold_left (fun db k -> add_one k db) db l
let remove_sdl p sdl = List.smartfilter p sdl
let remove_he st p (sl1, sl2, dn as he) =
let sl1' = remove_sdl p sl1 and sl2' = remove_sdl p sl2 in
if sl1' == sl1 && sl2' == sl2 then he
else rebuild_dn st (sl1', sl2', dn)
let remove_list grs db =
let filter (_, h) = match h.name with PathHints [gr] -> not (List.mem gr grs) | _ -> true in
let hintmap = Constr_map.map (remove_he db.hintdb_state filter) db.hintdb_map in
let hintnopat = List.smartfilter (fun (ge, sd) -> filter sd) db.hintdb_nopat in
{ db with hintdb_map = hintmap; hintdb_nopat = hintnopat }
let remove_one gr db = remove_list [gr] db
let iter f db =
f None (List.map (fun x -> snd (snd x)) db.hintdb_nopat);
Constr_map.iter (fun k (l,l',_) -> f (Some k) (List.map snd (l@l'))) db.hintdb_map
let fold f db accu =
let accu = f None (List.map (fun x -> snd (snd x)) db.hintdb_nopat) accu in
Constr_map.fold (fun k (l,l',_) -> f (Some k) (List.map snd (l@l'))) db.hintdb_map accu
let transparent_state db = db.hintdb_state
let set_transparent_state db st =
if db.use_dn then rebuild_db st db
else { db with hintdb_state = st }
let add_cut path db =
{ db with hintdb_cut = normalize_path (PathOr (db.hintdb_cut, path)) }
let cut db = db.hintdb_cut
let unfolds db = db.hintdb_unfolds
let use_dn db = db.use_dn
end
module Hintdbmap = Gmap
type hint_db = Hint_db.t
type hint_db_table = (string,hint_db) Hintdbmap.t ref
type hint_db_name = string
let searchtable = (ref Hintdbmap.empty : hint_db_table)
let searchtable_map name =
Hintdbmap.find name !searchtable
let searchtable_add (name,db) =
searchtable := Hintdbmap.add name db !searchtable
let current_db_names () =
Hintdbmap.dom !searchtable
(**************************************************************************)
(* Definition of the summary *)
(**************************************************************************)
let auto_init : (unit -> unit) ref = ref (fun () -> ())
let add_auto_init f =
let init = !auto_init in
auto_init := (fun () -> init (); f ())
let init () = searchtable := Hintdbmap.empty; !auto_init ()
let freeze () = !searchtable
let unfreeze fs = searchtable := fs
let _ = Summary.declare_summary "search"
{ Summary.freeze_function = freeze;
Summary.unfreeze_function = unfreeze;
Summary.init_function = init }
(**************************************************************************)
(* Auxiliary functions to prepare AUTOHINT objects *)
(**************************************************************************)
let rec nb_hyp c = match kind_of_term c with
| Prod(_,_,c2) -> if noccurn 1 c2 then 1+(nb_hyp c2) else nb_hyp c2
| _ -> 0
(* adding and removing tactics in the search table *)
let try_head_pattern c =
try head_pattern_bound c
with BoundPattern -> error "Bound head variable."
let make_exact_entry sigma pri ?(name=PathAny) (c,cty) =
let cty = strip_outer_cast cty in
match kind_of_term cty with
| Prod _ -> failwith "make_exact_entry"
| _ ->
let pat = snd (Patternops.pattern_of_constr sigma cty) in
let hd =
try head_pattern_bound pat
with BoundPattern -> failwith "make_exact_entry"
in
(Some hd,
{ pri = (match pri with None -> 0 | Some p -> p);
pat = Some pat;
name = name;
code = Give_exact c })
let make_apply_entry env sigma (eapply,hnf,verbose) pri ?(name=PathAny) (c,cty) =
let cty = if hnf then hnf_constr env sigma cty else cty in
match kind_of_term cty with
| Prod _ ->
let ce = mk_clenv_from dummy_goal (c,cty) in
let c' = clenv_type (* ~reduce:false *) ce in
let pat = snd (Patternops.pattern_of_constr sigma c') in
let hd =
try head_pattern_bound pat
with BoundPattern -> failwith "make_apply_entry" in
let nmiss = List.length (clenv_missing ce) in
if Int.equal nmiss 0 then
(Some hd,
{ pri = (match pri with None -> nb_hyp cty | Some p -> p);
pat = Some pat;
name = name;
code = Res_pf(c,cty) })
else begin
if not eapply then failwith "make_apply_entry";
if verbose then
msg_warning (str "the hint: eapply " ++ pr_lconstr c ++
str " will only be used by eauto");
(Some hd,
{ pri = (match pri with None -> nb_hyp cty + nmiss | Some p -> p);
pat = Some pat;
name = name;
code = ERes_pf(c,cty) })
end
| _ -> failwith "make_apply_entry"
(* flags is (e,h,v) with e=true if eapply and h=true if hnf and v=true if verbose
c is a constr
cty is the type of constr *)
let make_resolves env sigma flags pri ?name c =
let cty = Retyping.get_type_of env sigma c in
let try_apply f =
try Some (f (c, cty)) with Failure _ -> None in
let ents = List.map_filter try_apply
[make_exact_entry sigma pri ?name; make_apply_entry env sigma flags pri ?name]
in
if List.is_empty ents then
errorlabstrm "Hint"
(pr_lconstr c ++ spc() ++
(if pi1 flags then str"cannot be used as a hint."
else str "can be used as a hint only for eauto."));
ents
(* used to add an hypothesis to the local hint database *)
let make_resolve_hyp env sigma (hname,_,htyp) =
try
[make_apply_entry env sigma (true, true, false) None
~name:(PathHints [VarRef hname])
(mkVar hname, htyp)]
with
| Failure _ -> []
| e when Logic.catchable_exception e -> anomaly "make_resolve_hyp"
(* REM : in most cases hintname = id *)
let make_unfold eref =
let g = global_of_evaluable_reference eref in
(Some g,
{ pri = 4;
pat = None;
name = PathHints [g];
code = Unfold_nth eref })
let make_extern pri pat tacast =
let hdconstr = Option.map try_head_pattern pat in
(hdconstr,
{ pri = pri;
pat = pat;
name = PathAny;
code = Extern tacast })
let make_trivial env sigma ?(name=PathAny) r =
let c = constr_of_global_or_constr r in
let t = hnf_constr env sigma (type_of env sigma c) in
let hd = head_of_constr_reference (fst (head_constr t)) in
let ce = mk_clenv_from dummy_goal (c,t) in
(Some hd, { pri=1;
pat = Some (snd (Patternops.pattern_of_constr sigma (clenv_type ce)));
name = name;
code=Res_pf_THEN_trivial_fail(c,t) })
open Vernacexpr
(**************************************************************************)
(* declaration of the AUTOHINT library object *)
(**************************************************************************)
(* If the database does not exist, it is created *)
(* TODO: should a warning be printed in this case ?? *)
let get_db dbname =
try searchtable_map dbname
with Not_found -> Hint_db.empty empty_transparent_state false
let add_hint dbname hintlist =
let db = get_db dbname in
let db' = Hint_db.add_list hintlist db in
searchtable_add (dbname,db')
let add_transparency dbname grs b =
let db = get_db dbname in
let st = Hint_db.transparent_state db in
let st' =
List.fold_left (fun (ids, csts) gr ->
match gr with
| EvalConstRef c -> (ids, (if b then Cpred.add else Cpred.remove) c csts)
| EvalVarRef v -> (if b then Idpred.add else Idpred.remove) v ids, csts)
st grs
in searchtable_add (dbname, Hint_db.set_transparent_state db st')
let remove_hint dbname grs =
let db = get_db dbname in
let db' = Hint_db.remove_list grs db in
searchtable_add (dbname, db')
type hint_action =
| CreateDB of bool * transparent_state
| AddTransparency of evaluable_global_reference list * bool
| AddHints of hint_entry list
| RemoveHints of global_reference list
| AddCut of hints_path
let add_cut dbname path =
let db = get_db dbname in
let db' = Hint_db.add_cut path db in
searchtable_add (dbname, db')
type hint_obj = bool * string * hint_action (* locality, name, action *)
let cache_autohint (_,(local,name,hints)) =
match hints with
| CreateDB (b, st) -> searchtable_add (name, Hint_db.empty st b)
| AddTransparency (grs, b) -> add_transparency name grs b
| AddHints hints -> add_hint name hints
| RemoveHints grs -> remove_hint name grs
| AddCut path -> add_cut name path
let forward_subst_tactic =
ref (fun _ -> failwith "subst_tactic is not installed for auto")
let set_extern_subst_tactic f = forward_subst_tactic := f
let subst_autohint (subst,(local,name,hintlist as obj)) =
let subst_key gr =
let (lab'', elab') = subst_global subst gr in
let gr' =
(try head_of_constr_reference (fst (head_constr_bound elab'))
with Tactics.Bound -> lab'')
in if gr' == gr then gr else gr'
in
let subst_hint (k,data as hint) =
let k' = Option.smartmap subst_key k in
let pat' = Option.smartmap (subst_pattern subst) data.pat in
let code' = match data.code with
| Res_pf (c,t) ->
let c' = subst_mps subst c in
let t' = subst_mps subst t in
if c==c' && t'==t then data.code else Res_pf (c', t')
| ERes_pf (c,t) ->
let c' = subst_mps subst c in
let t' = subst_mps subst t in
if c==c' && t'==t then data.code else ERes_pf (c',t')
| Give_exact c ->
let c' = subst_mps subst c in
if c==c' then data.code else Give_exact c'
| Res_pf_THEN_trivial_fail (c,t) ->
let c' = subst_mps subst c in
let t' = subst_mps subst t in
if c==c' && t==t' then data.code else Res_pf_THEN_trivial_fail (c',t')
| Unfold_nth ref ->
let ref' = subst_evaluable_reference subst ref in
if ref==ref' then data.code else Unfold_nth ref'
| Extern tac ->
let tac' = !forward_subst_tactic subst tac in
if tac==tac' then data.code else Extern tac'
in
let name' = subst_path_atom subst data.name in
let data' =
if data.pat==pat' && data.name == name' && data.code==code' then data
else { data with pat = pat'; name = name'; code = code' }
in
if k' == k && data' == data then hint else (k',data')
in
match hintlist with
| CreateDB _ -> obj
| AddTransparency (grs, b) ->
let grs' = List.smartmap (subst_evaluable_reference subst) grs in
if grs==grs' then obj else (local, name, AddTransparency (grs', b))
| AddHints hintlist ->
let hintlist' = List.smartmap subst_hint hintlist in
if hintlist' == hintlist then obj else
(local,name,AddHints hintlist')
| RemoveHints grs ->
let grs' = List.smartmap (fun x -> fst (subst_global subst x)) grs in
if grs==grs' then obj else (local, name, RemoveHints grs')
| AddCut path ->
let path' = subst_hints_path subst path in
if path' == path then obj else (local, name, AddCut path')
let classify_autohint ((local,name,hintlist) as obj) =
match hintlist with
| AddHints [] -> Dispose
| _ -> if local then Dispose else Substitute obj
let inAutoHint : hint_obj -> obj =
declare_object {(default_object "AUTOHINT") with
cache_function = cache_autohint;
load_function = (fun _ -> cache_autohint);
subst_function = subst_autohint;
classify_function = classify_autohint; }
let create_hint_db l n st b =
Lib.add_anonymous_leaf (inAutoHint (l,n,CreateDB (b, st)))
let remove_hints local dbnames grs =
let dbnames = if List.is_empty dbnames then ["core"] else dbnames in
List.iter
(fun dbname ->
Lib.add_anonymous_leaf (inAutoHint(local, dbname, RemoveHints grs)))
dbnames
open Misctypes
(**************************************************************************)
(* The "Hint" vernacular command *)
(**************************************************************************)
let add_resolves env sigma clist local dbnames =
List.iter
(fun dbname ->
Lib.add_anonymous_leaf
(inAutoHint
(local,dbname, AddHints
(List.flatten (List.map (fun (x, hnf, path, gr) ->
let c =
match gr with
| IsConstr c -> c
| IsGlobal gr -> constr_of_global gr
in
make_resolves env sigma (true,hnf,Flags.is_verbose()) x ~name:path c) clist)))))
dbnames
let add_unfolds l local dbnames =
List.iter
(fun dbname -> Lib.add_anonymous_leaf
(inAutoHint (local,dbname, AddHints (List.map make_unfold l))))
dbnames
let add_cuts l local dbnames =
List.iter
(fun dbname -> Lib.add_anonymous_leaf
(inAutoHint (local,dbname, AddCut l)))
dbnames
let add_transparency l b local dbnames =
List.iter
(fun dbname -> Lib.add_anonymous_leaf
(inAutoHint (local,dbname, AddTransparency (l, b))))
dbnames
let add_extern pri pat tacast local dbname =
(* We check that all metas that appear in tacast have at least
one occurence in the left pattern pat *)
let tacmetas = [] in
match pat with
| Some (patmetas,pat) ->
(match (List.subtract tacmetas patmetas) with
| i::_ ->
errorlabstrm "add_extern"
(str "The meta-variable ?" ++ Ppconstr.pr_patvar i ++ str" is not bound.")
| [] ->
Lib.add_anonymous_leaf
(inAutoHint(local,dbname, AddHints [make_extern pri (Some pat) tacast])))
| None ->
Lib.add_anonymous_leaf
(inAutoHint(local,dbname, AddHints [make_extern pri None tacast]))
let add_externs pri pat tacast local dbnames =
List.iter (add_extern pri pat tacast local) dbnames
let add_trivials env sigma l local dbnames =
List.iter
(fun dbname ->
Lib.add_anonymous_leaf (
inAutoHint(local,dbname,
AddHints (List.map (fun (name, c) -> make_trivial env sigma ~name c) l))))
dbnames
let forward_intern_tac =
ref (fun _ -> failwith "intern_tac is not installed for auto")
let set_extern_intern_tac f = forward_intern_tac := f
type hints_entry =
| HintsResolveEntry of (int option * bool * hints_path_atom * global_reference_or_constr) list
| HintsImmediateEntry of (hints_path_atom * global_reference_or_constr) list
| HintsCutEntry of hints_path
| HintsUnfoldEntry of evaluable_global_reference list
| HintsTransparencyEntry of evaluable_global_reference list * bool
| HintsExternEntry of
int * (patvar list * constr_pattern) option * glob_tactic_expr
let h = id_of_string "H"
exception Found of constr * types
let prepare_hint env (sigma,c) =
let sigma = Typeclasses.resolve_typeclasses ~fail:false env sigma in
(* We re-abstract over uninstantiated evars.
It is actually a bit stupid to generalize over evars since the first
thing make_resolves will do is to re-instantiate the products *)
let c = drop_extra_implicit_args (Evarutil.nf_evar sigma c) in
let vars = ref (collect_vars c) in
let subst = ref [] in
let rec find_next_evar c = match kind_of_term c with
| Evar (evk,args as ev) ->
(* We skip the test whether args is the identity or not *)
let t = Evarutil.nf_evar sigma (existential_type sigma ev) in
let t = List.fold_right (fun (e,id) c -> replace_term e id c) !subst t in
if not (Int.Set.is_empty (free_rels t)) then
error "Hints with holes dependent on a bound variable not supported.";
if occur_existential t then
(* Not clever enough to construct dependency graph of evars *)
error "Not clever enough to deal with evars dependent in other evars.";
raise (Found (c,t))
| _ -> iter_constr find_next_evar c in
let rec iter c =
try find_next_evar c; c
with Found (evar,t) ->
let id = next_ident_away_from h (fun id -> Idset.mem id !vars) in
vars := Idset.add id !vars;
subst := (evar,mkVar id)::!subst;
mkNamedLambda id t (iter (replace_term evar (mkVar id) c)) in
iter c
let interp_hints =
fun h ->
let f c =
let evd,c = Constrintern.interp_open_constr Evd.empty (Global.env()) c in
let c = prepare_hint (Global.env()) (evd,c) in
Evarutil.check_evars (Global.env()) Evd.empty evd c;
c in
let fr r =
let gr = global_with_alias r in
let r' = evaluable_of_global_reference (Global.env()) gr in
Dumpglob.add_glob (loc_of_reference r) gr;
r' in
let fi c =
match c with
| HintsReference c ->
let gr = global_with_alias c in
(PathHints [gr], IsGlobal gr)
| HintsConstr c -> (PathAny, IsConstr (f c))
in
let fres (o, b, c) =
let path, gr = fi c in
(o, b, path, gr)
in
let fp = Constrintern.intern_constr_pattern Evd.empty (Global.env()) in
match h with
| HintsResolve lhints -> HintsResolveEntry (List.map fres lhints)
| HintsImmediate lhints -> HintsImmediateEntry (List.map fi lhints)
| HintsUnfold lhints -> HintsUnfoldEntry (List.map fr lhints)
| HintsTransparency (lhints, b) ->
HintsTransparencyEntry (List.map fr lhints, b)
| HintsConstructors lqid ->
let constr_hints_of_ind qid =
let ind = global_inductive_with_alias qid in
Dumpglob.dump_reference (fst (qualid_of_reference qid)) "<>" (string_of_reference qid) "ind";
List.tabulate (fun i -> let c = (ind,i+1) in
let gr = ConstructRef c in
None, true, PathHints [gr], IsGlobal gr)
(nconstructors ind) in
HintsResolveEntry (List.flatten (List.map constr_hints_of_ind lqid))
| HintsExtern (pri, patcom, tacexp) ->
let pat = Option.map fp patcom in
let tacexp = !forward_intern_tac (match pat with None -> [] | Some (l, _) -> l) tacexp in
HintsExternEntry (pri, pat, tacexp)
let add_hints local dbnames0 h =
if List.mem "nocore" dbnames0 then
error "The hint database \"nocore\" is meant to stay empty.";
let dbnames = if List.is_empty dbnames0 then ["core"] else dbnames0 in
let env = Global.env() and sigma = Evd.empty in
match h with
| HintsResolveEntry lhints -> add_resolves env sigma lhints local dbnames
| HintsImmediateEntry lhints -> add_trivials env sigma lhints local dbnames
| HintsCutEntry lhints -> add_cuts lhints local dbnames
| HintsUnfoldEntry lhints -> add_unfolds lhints local dbnames
| HintsTransparencyEntry (lhints, b) ->
add_transparency lhints b local dbnames
| HintsExternEntry (pri, pat, tacexp) ->
add_externs pri pat tacexp local dbnames
(**************************************************************************)
(* Functions for printing the hints *)
(**************************************************************************)
let pr_autotactic =
function
| Res_pf (c,clenv) -> (str"apply " ++ pr_constr c)
| ERes_pf (c,clenv) -> (str"eapply " ++ pr_constr c)
| Give_exact c -> (str"exact " ++ pr_constr c)
| Res_pf_THEN_trivial_fail (c,clenv) ->
(str"apply " ++ pr_constr c ++ str" ; trivial")
| Unfold_nth c -> (str"unfold " ++ pr_evaluable_reference c)
| Extern tac ->
(str "(*external*) " ++ Pptactic.pr_glob_tactic (Global.env()) tac)
let pr_hint (id, v) =
(pr_autotactic v.code ++ str"(level " ++ int v.pri ++ str", id " ++ int id ++ str ")" ++ spc ())
let pr_hint_list hintlist =
(str " " ++ hov 0 (prlist pr_hint hintlist) ++ fnl ())
let pr_hints_db (name,db,hintlist) =
(str "In the database " ++ str name ++ str ":" ++
if List.is_empty hintlist then (str " nothing" ++ fnl ())
else (fnl () ++ pr_hint_list hintlist))
(* Print all hints associated to head c in any database *)
let pr_hint_list_for_head c =
let dbs = Hintdbmap.to_list !searchtable in
let validate (name, db) =
let hints = List.map (fun v -> 0, v) (Hint_db.map_all c db) in
(name, db, hints)
in
let valid_dbs = List.map validate dbs in
if List.is_empty valid_dbs then
(str "No hint declared for :" ++ pr_global c)
else
hov 0
(str"For " ++ pr_global c ++ str" -> " ++ fnl () ++
hov 0 (prlist pr_hints_db valid_dbs))
let pr_hint_ref ref = pr_hint_list_for_head ref
(* Print all hints associated to head id in any database *)
let pr_hint_term cl =
try
let dbs = Hintdbmap.to_list !searchtable in
let valid_dbs =
let fn = try
let (hdc,args) = head_constr_bound cl in
let hd = head_of_constr_reference hdc in
if occur_existential cl then
Hint_db.map_all hd
else Hint_db.map_auto (hd, applist (hdc,args))
with Bound -> Hint_db.map_none
in
let fn db = List.map (fun x -> 0, x) (fn db) in
List.map (fun (name, db) -> (name, db, fn db)) dbs
in
if List.is_empty valid_dbs then
(str "No hint applicable for current goal")
else
(str "Applicable Hints :" ++ fnl () ++
hov 0 (prlist pr_hints_db valid_dbs))
with Match_failure _ | Failure _ ->
(str "No hint applicable for current goal")
let error_no_such_hint_database x =
error ("No such Hint database: "^x^".")
(* print all hints that apply to the concl of the current goal *)
let pr_applicable_hint () =
let pts = get_pftreestate () in
let glss = Proof.V82.subgoals pts in
match glss.Evd.it with
| [] -> Errors.error "No focused goal."
| g::_ ->
let gl = { Evd.it = g; sigma = glss.Evd.sigma } in
pr_hint_term (pf_concl gl)
(* displays the whole hint database db *)
let pr_hint_db db =
let content =
let fold head hintlist accu =
let goal_descr = match head with
| None -> str "For any goal"
| Some head -> str "For " ++ pr_global head
in
let hints = pr_hint_list (List.map (fun x -> (0, x)) hintlist) in
let hint_descr = hov 0 (goal_descr ++ str " -> " ++ hints) in
accu ++ hint_descr
in
Hint_db.fold fold db (mt ())
in
let (ids, csts) = Hint_db.transparent_state db in
hov 0
((if Hint_db.use_dn db then str"Discriminated database"
else str"Non-discriminated database")) ++ fnl () ++
hov 2 (str"Unfoldable variable definitions: " ++ pr_idpred ids) ++ fnl () ++
hov 2 (str"Unfoldable constant definitions: " ++ pr_cpred csts) ++ fnl () ++
hov 2 (str"Cut: " ++ pp_hints_path (Hint_db.cut db)) ++ fnl () ++
content
let pr_hint_db_by_name dbname =
try
let db = searchtable_map dbname in pr_hint_db db
with Not_found ->
error_no_such_hint_database dbname
(* displays all the hints of all databases *)
let pr_searchtable () =
let fold name db accu =
str "In the database " ++ str name ++ str ":" ++ fnl () ++ pr_hint_db db
in
Hintdbmap.fold fold !searchtable (mt ())
(**************************************************************************)
(* Automatic tactics *)
(**************************************************************************)
(**************************************************************************)
(* tactics with a trace mechanism for automatic search *)
(**************************************************************************)
let priority l = List.filter (fun (_, hint) -> Int.equal hint.pri 0) l
(* tell auto not to reuse already instantiated metas in unification (for
compatibility, since otherwise, apply succeeds oftener) *)
open Unification
let auto_unif_flags = {
modulo_conv_on_closed_terms = Some full_transparent_state;
use_metas_eagerly_in_conv_on_closed_terms = false;
modulo_delta = empty_transparent_state;
modulo_delta_types = full_transparent_state;
check_applied_meta_types = false;
resolve_evars = true;
use_pattern_unification = false;
use_meta_bound_pattern_unification = true;
frozen_evars = ExistentialSet.empty;
restrict_conv_on_strict_subterms = false; (* Compat *)
modulo_betaiota = false;
modulo_eta = true;
allow_K_in_toplevel_higher_order_unification = false
}
(* Try unification with the precompiled clause, then use registered Apply *)
let unify_resolve_nodelta (c,clenv) gl =
let clenv' = connect_clenv gl clenv in
let clenv'' = clenv_unique_resolver ~flags:auto_unif_flags clenv' gl in
Clenvtac.clenv_refine false clenv'' gl
let unify_resolve flags (c,clenv) gl =
let clenv' = connect_clenv gl clenv in
let clenv'' = clenv_unique_resolver ~flags clenv' gl in
Clenvtac.clenv_refine false clenv'' gl
let unify_resolve_gen = function
| None -> unify_resolve_nodelta
| Some flags -> unify_resolve flags
(* Util *)
let expand_constructor_hints env lems =
List.map_append (fun (sigma,lem) ->
match kind_of_term lem with
| Ind ind ->
List.tabulate (fun i -> mkConstruct (ind,i+1)) (nconstructors ind)
| _ ->
[prepare_hint env (sigma,lem)]) lems
(* builds a hint database from a constr signature *)
(* typically used with (lid, ltyp) = pf_hyps_types <some goal> *)
let add_hint_lemmas eapply lems hint_db gl =
let lems = expand_constructor_hints (pf_env gl) lems in
let hintlist' =
List.map_append (pf_apply make_resolves gl (eapply,true,false) None) lems in
Hint_db.add_list hintlist' hint_db
let make_local_hint_db ?ts eapply lems gl =
let sign = pf_hyps gl in
let ts = match ts with
| None -> Hint_db.transparent_state (searchtable_map "core")
| Some ts -> ts
in
let hintlist = List.map_append (pf_apply make_resolve_hyp gl) sign in
add_hint_lemmas eapply lems
(Hint_db.add_list hintlist (Hint_db.empty ts false)) gl
(* Serait-ce possible de compiler d'abord la tactique puis de faire la
substitution sans passer par bdize dont l'objectif est de préparer un
terme pour l'affichage ? (HH) *)
(* Si on enlève le dernier argument (gl) conclPattern est calculé une
fois pour toutes : en particulier si Pattern.somatch produit une UserError
Ce qui fait que si la conclusion ne matche pas le pattern, Auto échoue, même
si après Intros la conclusion matche le pattern.
*)
(* conclPattern doit échouer avec error car il est rattraper par tclFIRST *)
let forward_interp_tactic =
ref (fun _ -> failwith "interp_tactic is not installed for auto")
let set_extern_interp f = forward_interp_tactic := f
let conclPattern concl pat tac gl =
let constr_bindings =
match pat with
| None -> []
| Some pat ->
try matches pat concl
with PatternMatchingFailure -> error "conclPattern" in
!forward_interp_tactic constr_bindings tac gl
(***********************************************************)
(** A debugging / verbosity framework for trivial and auto *)
(***********************************************************)
(** The following options allow to trigger debugging/verbosity
without having to adapt the scripts.
Note: if Debug and Info are both activated, Debug take precedence. *)
let global_debug_trivial = ref false
let global_debug_auto = ref false
let global_info_trivial = ref false
let global_info_auto = ref false
let add_option ls refe =
let _ = Goptions.declare_bool_option
{ Goptions.optsync = true;
Goptions.optdepr = false;
Goptions.optname = String.concat " " ls;
Goptions.optkey = ls;
Goptions.optread = (fun () -> !refe);
Goptions.optwrite = (:=) refe }
in ()
let _ =
add_option ["Debug";"Trivial"] global_debug_trivial;
add_option ["Debug";"Auto"] global_debug_auto;
add_option ["Info";"Trivial"] global_info_trivial;
add_option ["Info";"Auto"] global_info_auto
let no_dbg () = (Off,0,ref [])
let mk_trivial_dbg debug =
let d =
if debug == Debug || !global_debug_trivial then Debug
else if debug == Info || !global_info_trivial then Info
else Off
in (d,0,ref [])
(** Note : we start the debug depth of auto at 1 to distinguish it
for trivial (whose depth is 0). *)
let mk_auto_dbg debug =
let d =
if debug == Debug || !global_debug_auto then Debug
else if debug == Info || !global_info_auto then Info
else Off
in (d,1,ref [])
let incr_dbg = function (dbg,depth,trace) -> (dbg,depth+1,trace)
(** A tracing tactic for debug/info trivial/auto *)
let tclLOG (dbg,depth,trace) pp tac =
match dbg with
| Off -> tac
| Debug ->
(* For "debug (trivial/auto)", we directly output messages *)
let s = String.make depth '*' in
begin fun gl ->
try
let out = tac gl in
msg_debug (str s ++ spc () ++ pp () ++ str ". (*success*)");
out
with e ->
msg_debug (str s ++ spc () ++ pp () ++ str ". (*fail*)");
raise e
end
| Info ->
(* For "info (trivial/auto)", we store a log trace *)
begin fun gl ->
try
let out = tac gl in
trace := (depth, Some pp) :: !trace;
out
with e ->
trace := (depth, None) :: !trace;
raise e
end
(** For info, from the linear trace information, we reconstitute the part
of the proof tree we're interested in. The last executed tactic
comes first in the trace (and it should be a successful one).
[depth] is the root depth of the tree fragment we're visiting.
[keep] means we're in a successful tree fragment (the very last
tactic has been successful). *)
let rec cleanup_info_trace depth acc = function
| [] -> acc
| (d,Some pp) :: l -> cleanup_info_trace d ((d,pp)::acc) l
| l -> cleanup_info_trace depth acc (erase_subtree depth l)
and erase_subtree depth = function
| [] -> []
| (d,_) :: l -> if Int.equal d depth then l else erase_subtree depth l
let pr_info_atom (d,pp) =
str (String.make d ' ') ++ pp () ++ str "."
let pr_info_trace = function
| (Info,_,{contents=(d,Some pp)::l}) ->
prlist_with_sep fnl pr_info_atom (cleanup_info_trace d [(d,pp)] l)
| _ -> mt ()
let pr_info_nop = function
| (Info,_,_) -> str "idtac."
| _ -> mt ()
let pr_dbg_header = function
| (Off,_,_) -> mt ()
| (Debug,0,_) -> str "(* debug trivial : *)"
| (Debug,_,_) -> str "(* debug auto : *)"
| (Info,0,_) -> str "(* info trivial : *)"
| (Info,_,_) -> str "(* info auto : *)"
let tclTRY_dbg d tac =
let (level, _, _) = d in
tclORELSE0
(fun gl ->
let out = tac gl in
if level != Off then msg_debug (pr_dbg_header d ++ fnl () ++ pr_info_trace d);
out)
(fun gl ->
if level == Info then msg_debug (pr_info_nop d);
tclIDTAC gl)
(**************************************************************************)
(* The Trivial tactic *)
(**************************************************************************)
(* local_db is a Hint database containing the hypotheses of current goal *)
(* Papageno : cette fonction a été pas mal simplifiée depuis que la base
de Hint impérative a été remplacée par plusieurs bases fonctionnelles *)
let flags_of_state st =
{auto_unif_flags with
modulo_conv_on_closed_terms = Some st; modulo_delta = st}
let hintmap_of hdc concl =
match hdc with
| None -> Hint_db.map_none
| Some hdc ->
if occur_existential concl then Hint_db.map_all hdc
else Hint_db.map_auto (hdc,concl)
let exists_evaluable_reference env = function
| EvalConstRef _ -> true
| EvalVarRef v -> try ignore(lookup_named v env); true with Not_found -> false
let dbg_intro dbg = tclLOG dbg (fun () -> str "intro") intro
let dbg_assumption dbg = tclLOG dbg (fun () -> str "assumption") assumption
let rec trivial_fail_db dbg mod_delta db_list local_db gl =
let intro_tac =
tclTHEN (dbg_intro dbg)
(fun g'->
let hintl = make_resolve_hyp (pf_env g') (project g') (pf_last_hyp g')
in trivial_fail_db dbg mod_delta db_list (Hint_db.add_list hintl local_db) g')
in
tclFIRST
((dbg_assumption dbg)::intro_tac::
(List.map tclCOMPLETE
(trivial_resolve dbg mod_delta db_list local_db (pf_concl gl)))) gl
and my_find_search_nodelta db_list local_db hdc concl =
List.map (fun hint -> (None,hint))
(List.map_append (hintmap_of hdc concl) (local_db::db_list))
and my_find_search mod_delta =
if mod_delta then my_find_search_delta
else my_find_search_nodelta
and my_find_search_delta db_list local_db hdc concl =
let flags = {auto_unif_flags with use_metas_eagerly_in_conv_on_closed_terms = true} in
let f = hintmap_of hdc concl in
if occur_existential concl then
List.map_append
(fun db ->
if Hint_db.use_dn db then
let flags = flags_of_state (Hint_db.transparent_state db) in
List.map (fun x -> (Some flags,x)) (f db)
else
let flags = {flags with modulo_delta = Hint_db.transparent_state db} in
List.map (fun x -> (Some flags,x)) (f db))
(local_db::db_list)
else
List.map_append (fun db ->
if Hint_db.use_dn db then
let flags = flags_of_state (Hint_db.transparent_state db) in
List.map (fun x -> (Some flags, x)) (f db)
else
let (ids, csts as st) = Hint_db.transparent_state db in
let flags, l =
let l =
match hdc with None -> Hint_db.map_none db
| Some hdc ->
if (Idpred.is_empty ids && Cpred.is_empty csts)
then Hint_db.map_auto (hdc,concl) db
else Hint_db.map_all hdc db
in {flags with modulo_delta = st}, l
in List.map (fun x -> (Some flags,x)) l)
(local_db::db_list)
and tac_of_hint dbg db_list local_db concl (flags, ({pat=p; code=t})) =
let tactic =
match t with
| Res_pf (c,cl) -> unify_resolve_gen flags (c,cl)
| ERes_pf _ -> (fun gl -> error "eres_pf")
| Give_exact c -> exact_check c
| Res_pf_THEN_trivial_fail (c,cl) ->
tclTHEN
(unify_resolve_gen flags (c,cl))
(* With "(debug) trivial", we shouldn't end here, and
with "debug auto" we don't display the details of inner trivial *)
(trivial_fail_db (no_dbg ()) (not (Option.is_empty flags)) db_list local_db)
| Unfold_nth c ->
(fun gl ->
if exists_evaluable_reference (pf_env gl) c then
tclPROGRESS (h_reduce (Unfold [AllOccurrences,c]) Locusops.onConcl) gl
else tclFAIL 0 (str"Unbound reference") gl)
| Extern tacast -> conclPattern concl p tacast
in
tclLOG dbg (fun () -> pr_autotactic t) tactic
and trivial_resolve dbg mod_delta db_list local_db cl =
try
let head =
try let hdconstr,_ = head_constr_bound cl in
Some (head_of_constr_reference hdconstr)
with Bound -> None
in
List.map (tac_of_hint dbg db_list local_db cl)
(priority
(my_find_search mod_delta db_list local_db head cl))
with Not_found -> []
(** The use of the "core" database can be de-activated by passing
"nocore" amongst the databases. *)
let make_db_list dbnames =
let use_core = not (List.mem "nocore" dbnames) in
let dbnames = List.remove "nocore" dbnames in
let dbnames = if use_core then "core"::dbnames else dbnames in
let lookup db =
try searchtable_map db with Not_found -> error_no_such_hint_database db
in
List.map lookup dbnames
let trivial ?(debug=Off) lems dbnames gl =
let db_list = make_db_list dbnames in
let d = mk_trivial_dbg debug in
tclTRY_dbg d
(trivial_fail_db d false db_list (make_local_hint_db false lems gl)) gl
let full_trivial ?(debug=Off) lems gl =
let dbnames = Hintdbmap.dom !searchtable in
let dbnames = List.remove "v62" dbnames in
let db_list = List.map (fun x -> searchtable_map x) dbnames in
let d = mk_trivial_dbg debug in
tclTRY_dbg d
(trivial_fail_db d false db_list (make_local_hint_db false lems gl)) gl
let gen_trivial ?(debug=Off) lems = function
| None -> full_trivial ~debug lems
| Some l -> trivial ~debug lems l
let h_trivial ?(debug=Off) lems l = gen_trivial ~debug lems l
(**************************************************************************)
(* The classical Auto tactic *)
(**************************************************************************)
let possible_resolve dbg mod_delta db_list local_db cl =
try
let head =
try let hdconstr,_ = head_constr_bound cl in
Some (head_of_constr_reference hdconstr)
with Bound -> None
in
List.map (tac_of_hint dbg db_list local_db cl)
(my_find_search mod_delta db_list local_db head cl)
with Not_found -> []
let dbg_case dbg id =
tclLOG dbg (fun () -> str "case " ++ pr_id id) (simplest_case (mkVar id))
let extend_local_db gl decl db =
Hint_db.add_list (make_resolve_hyp (pf_env gl) (project gl) decl) db
(* Introduce an hypothesis, then call the continuation tactic [kont]
with the hint db extended with the so-obtained hypothesis *)
let intro_register dbg kont db =
tclTHEN (dbg_intro dbg)
(onLastDecl (fun decl gl -> kont (extend_local_db gl decl db) gl))
(* n is the max depth of search *)
(* local_db contains the local Hypotheses *)
let search d n mod_delta db_list local_db =
let rec search d n local_db =
if Int.equal n 0 then (fun gl -> error "BOUND 2") else
tclORELSE0 (dbg_assumption d)
(tclORELSE0 (intro_register d (search d n) local_db)
(fun gl ->
let d' = incr_dbg d in
tclFIRST
(List.map
(fun ntac -> tclTHEN ntac (search d' (n-1) local_db))
(possible_resolve d mod_delta db_list local_db (pf_concl gl))) gl))
in
search d n local_db
let default_search_depth = ref 5
let delta_auto ?(debug=Off) mod_delta n lems dbnames gl =
let db_list = make_db_list dbnames in
let d = mk_auto_dbg debug in
tclTRY_dbg d
(search d n mod_delta db_list (make_local_hint_db false lems gl)) gl
let auto ?(debug=Off) n = delta_auto ~debug false n
let new_auto ?(debug=Off) n = delta_auto ~debug true n
let default_auto = auto !default_search_depth [] []
let delta_full_auto ?(debug=Off) mod_delta n lems gl =
let dbnames = Hintdbmap.dom !searchtable in
let dbnames = List.remove "v62" dbnames in
let db_list = List.map (fun x -> searchtable_map x) dbnames in
let d = mk_auto_dbg debug in
tclTRY_dbg d
(search d n mod_delta db_list (make_local_hint_db false lems gl)) gl
let full_auto ?(debug=Off) n = delta_full_auto ~debug false n
let new_full_auto ?(debug=Off) n = delta_full_auto ~debug true n
let default_full_auto gl = full_auto !default_search_depth [] gl
let gen_auto ?(debug=Off) n lems dbnames =
let n = match n with None -> !default_search_depth | Some n -> n in
match dbnames with
| None -> full_auto ~debug n lems
| Some l -> auto ~debug n lems l
let h_auto ?(debug=Off) n lems l = gen_auto ~debug n lems l
|