1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* The proofview datastructure is a pure datastructure underlying the notion
of proof (namely, a proof is a proofview which can evolve and has safety
mechanisms attached).
The general idea of the structure is that it is composed of a chemical
solution: an unstructured bag of stuff which has some relations with
one another, which represents the various subnodes of the proof. Together
with a comb: a datastructure that gives some order to some of these nodes,
namely the (focused) open goals.
The natural candidate for the solution is an {!Evd.evar_map}, that is
a calculus of evars. The comb is then a list of goals (evars wrapped
with some extra information, like possible name anotations).
There is also need of a list of the evars which initialised the proofview
to be able to return information about the proofview. *)
open Pp
open Util
(* Type of proofviews. *)
type proofview = Proofview_monad.proofview
open Proofview_monad
type entry = (Term.constr * Term.types) list
let proofview p =
p.comb , p.solution
(* Initialises a proofview, the argument is a list of environement,
conclusion types, and optional names, creating that many initial goals. *)
let init sigma =
let rec aux = function
| [] -> [], { solution = sigma; comb = []; }
| (env, typ) :: l ->
let ret, { solution = sol; comb = comb } = aux l in
let (new_defs , econstr) = Evarutil.new_evar sol env typ in
let (e, _) = Term.destEvar econstr in
let gl = Goal.build e in
let entry = (econstr, typ) :: ret in
entry, { solution = new_defs; comb = gl::comb; }
in
fun l ->
let entry, v = aux l in
(* Marks all the goal unresolvable for typeclasses. *)
entry, { v with solution = Typeclasses.mark_unresolvables v.solution }
type telescope =
| TNil of Evd.evar_map
| TCons of Environ.env * Evd.evar_map * Term.types * (Evd.evar_map -> Term.constr -> telescope)
let dependent_init =
let rec aux = function
| TNil sigma -> [], { solution = sigma; comb = []; }
| TCons (env, sigma, typ, t) ->
let (sigma, econstr ) = Evarutil.new_evar sigma env typ in
let ret, { solution = sol; comb = comb } = aux (t sigma econstr) in
let (e, _) = Term.destEvar econstr in
let gl = Goal.build e in
let entry = (econstr, typ) :: ret in
entry, { solution = sol; comb = gl :: comb; }
in
fun t ->
let entry, v = aux t in
(* Marks all the goal unresolvable for typeclasses. *)
entry, { v with solution = Typeclasses.mark_unresolvables v.solution }
let initial_goals initial = initial
(* Returns whether this proofview is finished or not. That is,
if it has empty subgoals in the comb. There could still be unsolved
subgoaled, but they would then be out of the view, focused out. *)
let finished = function
| {comb = []} -> true
| _ -> false
(* Returns the current value of the proofview partial proofs. *)
let return { solution=defs } = defs
let return_constr { solution = defs } c = Evarutil.nf_evar defs c
let partial_proof entry pv = List.map (return_constr pv) (List.map fst entry)
let emit_side_effects eff x =
{ x with solution = Evd.emit_side_effects eff x.solution }
(* let return { initial=init; solution=defs } = *)
(* let evdref = ref defs in *)
(* let nf,subst = Evarutil.e_nf_evars_and_universes evdref in *)
(* ((List.map (fun (c,t) -> (nf c, nf t)) init, subst), *)
(* Evd.universe_context !evdref) *)
(* spiwack: this function should probably go in the Util section,
but I'd rather have Util (or a separate module for lists)
raise proper exceptions before *)
(* [IndexOutOfRange] occurs in case of malformed indices
with respect to list lengths. *)
exception IndexOutOfRange
(* no handler: should not be allowed to reach toplevel *)
(* [list_goto i l] returns a pair of lists [c,t] where
[c] has length [i] and is the reversed of the [i] first
elements of [l], and [t] is the rest of the list.
The idea is to navigate through the list, [c] is then
seen as the context of the current position.
Raises [IndexOutOfRange] if [i > length l]*)
let list_goto =
let rec aux acc index = function
| l when Int.equal index 0-> (acc,l)
| [] -> raise IndexOutOfRange
| a::q -> aux (a::acc) (index-1) q
in
fun i l ->
if i < 0 then
raise IndexOutOfRange
else
aux [] i l
(* Type of the object which allow to unfocus a view.*)
(* First component is a reverse list of what comes before
and second component is what goes after (in the expected
order) *)
type focus_context = Goal.goal list * Goal.goal list
let focus_context f = f
(* This (internal) function extracts a sublist between two indices, and
returns this sublist together with its context:
if it returns [(a,(b,c))] then [a] is the sublist and (rev b)@a@c is the
original list.
The focused list has lenght [j-i-1] and contains the goals from
number [i] to number [j] (both included) the first goal of the list
being numbered [1].
[focus_sublist i j l] raises [IndexOutOfRange] if
[i > length l], or [j > length l] or [ j < i ]. *)
let focus_sublist i j l =
let (left,sub_right) = list_goto (i-1) l in
let (sub, right) =
try List.chop (j-i+1) sub_right
with Failure _ -> raise IndexOutOfRange
in
(sub, (left,right))
(* Inverse operation to the previous one. *)
let unfocus_sublist (left,right) s =
List.rev_append left (s@right)
(* [focus i j] focuses a proofview on the goals from index [i] to index [j]
(inclusive). (i.e. goals number [i] to [j] become the only goals of the
returned proofview). The first goal has index 1.
It returns the focus proof, and a context for the focus trace. *)
let focus i j sp =
let (new_comb, context) = focus_sublist i j sp.comb in
( { sp with comb = new_comb } , context )
(* Unfocuses a proofview with respect to a context. *)
let undefined defs l =
Option.List.flatten (List.map (Goal.advance defs) l)
let unfocus c sp =
{ sp with comb = undefined sp.solution (unfocus_sublist c sp.comb) }
(* The tactic monad:
- Tactics are objects which apply a transformation to all
the subgoals of the current view at the same time. By opposition
to the old vision of applying it to a single goal. It allows
tactics such as [shelve_unifiable] or tactics to reorder
the focused goals (not done yet).
(* spiwack: the ordering of goals, though, is actually rather
brittle. It would be much more interesting to find a more
robust way to adress goals, I have no idea at this time
though*)
or global automation tactic for dependent subgoals (instantiating
an evar has influences on the other goals of the proof in progress,
not being able to take that into account causes the current eauto
tactic to fail on some instances where it could succeed).
Another benefit is that it is possible to write tactics that can
be executed even if there are no focused goals.
- Tactics form a monad ['a tactic], in a sense a tactic can be
seens as a function (without argument) which returns a value
of type 'a and modifies the environement (in our case: the view).
Tactics of course have arguments, but these are given at the
meta-level as OCaml functions.
Most tactics in the sense we are used to return [()], that is
no really interesting values. But some might pass information
around.
(* spiwack: as far as I'm aware this doesn't really relate to
F. Kirchner and C. Muñoz.
*)
The tactics seen in Coq's Ltac are (for now at least) only
[unit tactic], the return values are kept for the OCaml toolkit.
The operation or the monad are [Proofview.tclUNIT] (which is the
"return" of the tactic monad) [Proofview.tclBIND] (which is
the "bind") and [Proofview.tclTHEN] (which is a specialized
bind on unit-returning tactics).
*)
(* type of tactics:
tactics can
- access the environment,
- report unsafe status, shelved goals and given up goals
- access and change the current [proofview]
- backtrack on previous changes of the proofview *)
module Proof = Proofview_monad.Logical
type +'a tactic = 'a Proof.t
type 'a case =
| Fail of exn
| Next of 'a * (exn -> 'a tactic)
(* Applies a tactic to the current proofview. *)
let apply env t sp =
let (((next_r,next_state),status)) = Proofview_monad.NonLogical.run (Proof.run t env sp) in
next_r , next_state , status
(*** tacticals ***)
let catchable_exception = function
| Proof_errors.Exception _ -> false
| e -> Errors.noncritical e
(* Unit of the tactic monad *)
let tclUNIT a = (Proof.ret a:'a Proof.t)
let tclCHECKINTERRUPT a = Control.check_for_interrupt (); Proof.ret a
(* Bind operation of the tactic monad *)
let tclBIND = Proof.bind
(* Interpretes the ";" (semicolon) of Ltac.
As a monadic operation, it's a specialized "bind"
on unit-returning tactic (meaning "there is no value to bind") *)
let tclTHEN = Proof.seq
(* [tclIGNORE t] has the same operational content as [t],
but drops the value at the end. *)
let tclIGNORE = Proof.ignore
(* [tclOR t1 t2 = t1] as long as [t1] succeeds. Whenever the successes
of [t1] have been depleted and it failed with [e], then it behaves
as [t2 e]. No interleaving at this point. *)
let tclOR t1 t2 =
Proof.plus t1 t2
(* [tclZERO e] always fails with error message [e]*)
let tclZERO = Proof.zero
(* [tclCASE t] observes the head of the tactic and returns it as a value *)
let tclCASE t =
let map = function
| Nil e -> Fail e
| Cons (x, t) -> Next (x, t)
in
Proof.map map (Proof.split t)
(* [tclORELSE t1 t2] behaves like [t1] if [t1] succeeds at least once
or [t2] if [t1] fails. *)
let tclORELSE t1 t2 =
(* spiwack: convenience notations, waiting for ocaml 3.12 *)
let (>>=) = Proof.bind in
Proof.split t1 >>= function
| Nil e -> t2 e
| Cons (a,t1') -> Proof.plus (Proof.ret a) t1'
(* [tclIFCATCH a s f] is a generalisation of [tclORELSE]: if [a]
succeeds at least once then it behaves as [tclBIND a s] otherwise, if [a]
fails with [e], then it behaves as [f e]. *)
let tclIFCATCH a s f =
(* spiwack: convenience notations, waiting for ocaml 3.12 *)
let (>>=) = Proof.bind in
Proof.split a >>= function
| Nil e -> f e
| Cons (x,a') -> Proof.plus (s x) (fun e -> (a' e) >>= fun x' -> (s x'))
(* [tclONCE t] fails if [t] fails, otherwise it has exactly one
success. *)
let tclONCE = Proof.once
exception MoreThanOneSuccess
let _ = Errors.register_handler begin function
| MoreThanOneSuccess -> Errors.error "This tactic has more than one success."
| _ -> raise Errors.Unhandled
end
(* [tclONCE e t] succeeds as [t] if [t] has exactly one
success. Otherwise it fails. It may behave differently than [t] as
there may be extra non-logical effects used to discover that [t]
does not have a second success. Moreover the second success may be
conditional on the error recieved: [e] is used. *)
let tclEXACTLY_ONCE e t =
(* spiwack: convenience notations, waiting for ocaml 3.12 *)
let (>>=) = Proof.bind in
Proof.split t >>= function
| Nil e -> tclZERO e
| Cons (x,k) ->
Proof.split (k e) >>= function
| Nil _ -> tclUNIT x
| _ -> tclZERO MoreThanOneSuccess
(* Focuses a tactic at a range of subgoals, found by their indices. *)
exception NoSuchGoals
let _ = Errors.register_handler begin function
| NoSuchGoals -> Errors.error "No such goals."
| _ -> raise Errors.Unhandled
end
let tclFOCUS_gen nosuchgoal i j t =
(* spiwack: convenience notations, waiting for ocaml 3.12 *)
let (>>=) = Proof.bind in
let (>>) = Proof.seq in
Proof.get >>= fun initial ->
try
let (focused,context) = focus i j initial in
Proof.set focused >>
t >>= fun result ->
Proof.modify (fun next -> unfocus context next) >>
Proof.ret result
with IndexOutOfRange -> nosuchgoal
let tclFOCUS i j t = tclFOCUS_gen (tclZERO NoSuchGoals) i j t
let tclTRYFOCUS i j t = tclFOCUS_gen (tclUNIT ()) i j t
(* Dispatch tacticals are used to apply a different tactic to each goal under
consideration. They come in two flavours:
[tclDISPATCH] takes a list of [unit tactic]-s and build a [unit tactic].
[tclDISPATCHL] takes a list of ['a tactic] and returns an ['a list tactic].
They both work by applying each of the tactic to the corresponding
goal (starting with the first goal). In the case of [tclDISPATCHL],
the tactic returns a list of the same size as the argument list (of
tactics), each element being the result of the tactic executed in
the corresponding goal. *)
exception SizeMismatch
let _ = Errors.register_handler begin function
| SizeMismatch -> Errors.error "Incorrect number of goals."
| _ -> raise Errors.Unhandled
end
(* A monadic list iteration function *)
(* spiwack: may be moved to a generic libray, or maybe as extracted
code for extra efficiency? *)
(* val list_iter : 'a list -> 'b -> ('a -> 'b -> 'b tactic) -> 'b tactic *)
let rec list_iter l s i =
(* spiwack: convenience notations, waiting for ocaml 3.12 *)
let (>>=) = tclBIND in
match l with
| [] -> tclUNIT s
| [a] -> i a s
| a::l ->
i a s >>= fun r ->
list_iter l r i
(* val list_iter : 'a list -> 'b list -> 'c -> ('a -> 'b -> 'c -> 'c tactic) -> 'c tactic *)
let rec list_iter2 l1 l2 s i =
(* spiwack: convenience notations, waiting for ocaml 3.12 *)
let (>>=) = tclBIND in
match l1 , l2 with
| [] , [] -> tclUNIT s
| [a] , [b] -> i a b s
| a::l1 , b::l2 ->
i a b s >>= fun r ->
list_iter2 l1 l2 r i
| _ , _ -> tclZERO SizeMismatch
(* A variant of [Proof.set] specialized on the comb. Doesn't change
the underlying "solution" (i.e. [evar_map]) *)
let set_comb c =
Proof.modify (fun step -> { step with comb = c })
let on_advance g ~solved ~adv =
(* spiwack: convenience notations, waiting for ocaml 3.12 *)
let (>>=) = Proof.bind in
Proof.get >>= fun step ->
match Goal.advance step.solution g with
| None -> solved (* If [first] has been solved by side effect: do nothing. *)
| Some g -> adv g
(* A variant of list_iter where we iter over the focused list of
goals. The argument tactic is executed in a focus comprising only
of the current goal, a goal which has been solved by side effect is
skipped. The generated subgoals are concatenated in order. *)
(* val list_iter_goal : 'a -> (Goal.goal -> 'a -> 'a tactic) -> 'a tactic *)
let list_iter_goal s i =
(* spiwack: convenience notations, waiting for ocaml 3.12 *)
let (>>=) = Proof.bind in
let (>>) = Proof.seq in
Proof.get >>= fun initial ->
list_iter initial.comb (s,[]) begin fun goal ((r,subgoals) as cur) ->
on_advance goal
~solved: ( Proof.ret cur )
~adv: begin fun goal ->
set_comb [goal] >>
i goal r >>= fun r ->
Proof.map (fun step -> (r, step.comb :: subgoals)) Proof.get
end
end >>= fun (r,subgoals) ->
set_comb (List.flatten (List.rev subgoals)) >>
Proof.ret r
(* spiwack: essentially a copy/paste of the above… *)
(* val list_iter_goal : 'a list -> 'b -> (Goal.goal -> 'a -> 'b -> 'b tactic) -> 'b tactic *)
let list_iter_goal2 l s i =
(* spiwack: convenience notations, waiting for ocaml 3.12 *)
let (>>=) = Proof.bind in
let (>>) = Proof.seq in
Proof.get >>= fun initial ->
list_iter2 initial.comb l (s,[]) begin fun goal a ((r,subgoals) as cur) ->
on_advance goal
~solved: ( Proof.ret cur )
~adv: begin fun goal ->
set_comb [goal] >>
i goal a r >>= fun r ->
Proof.map (fun step -> (r, step.comb :: subgoals)) Proof.get
end
end >>= fun (r,subgoals) ->
set_comb (List.flatten (List.rev subgoals)) >>
Proof.ret r
(* spiwack: we use an parametrised function to generate the dispatch
tacticals. [tclDISPATCHGEN] takes an argument [join] to reify the
list of produced value into the final value. *)
let tclDISPATCHGEN f join tacs =
(* spiwack: convenience notations, waiting for ocaml 3.12 *)
let (>>=) = Proof.bind in
match tacs with
| [] ->
begin
Proof.get >>= fun initial ->
match initial.comb with
| [] -> tclUNIT (join [])
| _ -> tclZERO SizeMismatch
end
| [tac] ->
begin
Proof.get >>= fun initial ->
match initial.comb with
| [goal] ->
on_advance goal
~solved:( tclUNIT (join []) )
~adv:begin fun _ ->
Proof.map (fun res -> join [res]) (f tac)
end
| _ -> tclZERO SizeMismatch
end
| _ ->
let iter _ t cur = Proof.map (fun y -> y :: cur) (f t) in
let ans = list_iter_goal2 tacs [] iter in
Proof.map join ans
let tclDISPATCH tacs = tclDISPATCHGEN Util.identity ignore tacs
let tclDISPATCHL tacs =
tclDISPATCHGEN Util.identity List.rev tacs
let extend_to_list startxs rx endxs l =
(* spiwack: I use [l] essentially as a natural number *)
let rec duplicate acc = function
| [] -> acc
| _::rest -> duplicate (rx::acc) rest
in
let rec tail to_match rest =
match rest, to_match with
| [] , _::_ -> raise SizeMismatch
| _::rest , _::to_match -> tail to_match rest
| _ , [] -> duplicate endxs rest
in
let rec copy pref rest =
match rest,pref with
| [] , _::_ -> raise SizeMismatch
| _::rest, a::pref -> a::(copy pref rest)
| _ , [] -> tail endxs rest
in
copy startxs l
let tclEXTEND tacs1 rtac tacs2 =
(* spiwack: convenience notations, waiting for ocaml 3.12 *)
let (>>=) = Proof.bind in
Proof.get >>= fun step ->
try
let tacs = extend_to_list tacs1 rtac tacs2 step.comb in
tclDISPATCH tacs
with SizeMismatch -> tclZERO SizeMismatch
let tclINDEPENDENT tac =
(* spiwack: convenience notations, waiting for ocaml 3.12 *)
let (>>=) = Proof.bind in
Proof.get >>= fun initial ->
match initial.comb with
| [] -> tclUNIT ()
| [_] -> tac
| _ -> list_iter_goal () (fun _ () -> tac)
(* No backtracking can happen here, hence, as opposed to the dispatch tacticals,
everything is done in one step. *)
let sensitive_on_proofview s env step =
let wrap g ((defs, partial_list) as partial_res) =
match Goal.advance defs g with
| None -> partial_res
| Some g ->
let { Goal.subgoals = sg } , d' = Goal.eval s env defs g in
(d', sg::partial_list)
in
let ( new_defs , combed_subgoals ) =
List.fold_right wrap step.comb (step.solution,[])
in
{ solution = new_defs; comb = List.flatten combed_subgoals; }
let tclSENSITIVE s =
(* spiwack: convenience notations, waiting for ocaml 3.12 *)
let (>>=) = Proof.bind in
Proof.current >>= fun env ->
Proof.get >>= fun step ->
try
let next = sensitive_on_proofview s env step in
Proof.set next
with e when catchable_exception e ->
let e = Errors.push e in
tclZERO e
let tclPROGRESS t =
(* spiwack: convenience notations, waiting for ocaml 3.12 *)
let (>>=) = Proof.bind in
Proof.get >>= fun initial ->
t >>= fun res ->
Proof.get >>= fun final ->
let test =
Evd.progress_evar_map initial.solution final.solution &&
not (Util.List.for_all2eq (fun i f -> Goal.equal initial.solution i final.solution f) initial.comb final.comb)
in
if test then
tclUNIT res
else
tclZERO (Errors.UserError ("Proofview.tclPROGRESS" , Pp.str"Failed to progress."))
let tclEVARMAP =
Proof.map (fun initial -> initial.solution) Proof.get
let tclENV = Proof.current
let tclEFFECTS eff =
Proof.modify (fun initial -> emit_side_effects eff initial)
exception Timeout
let _ = Errors.register_handler begin function
| Timeout -> Errors.errorlabstrm "Proofview.tclTIMEOUT" (Pp.str"Tactic timeout!")
| _ -> Pervasives.raise Errors.Unhandled
end
let tclTIMEOUT n t =
(* spiwack: convenience notations, waiting for ocaml 3.12 *)
let (>>=) = Proof.bind in
let (>>) = Proof.seq in
(* spiwack: as one of the monad is a continuation passing monad, it
doesn't force the computation to be threaded inside the underlying
(IO) monad. Hence I force it myself by asking for the evaluation of
a dummy value first, lest [timeout] be called when everything has
already been computed. *)
let t = Proof.lift (Proofview_monad.NonLogical.ret ()) >> t in
Proof.current >>= fun env ->
Proof.get >>= fun initial ->
Proof.lift begin
Proofview_monad.NonLogical.catch
begin
Proofview_monad.NonLogical.bind
(Proofview_monad.NonLogical.timeout n (Proof.run t env initial))
(fun r -> Proofview_monad.NonLogical.ret (Util.Inl r))
end
begin function
| Proof_errors.Timeout -> Proofview_monad.NonLogical.ret (Util.Inr Timeout)
| Proof_errors.TacticFailure e as src ->
let e = Backtrace.app_backtrace ~src ~dst:e in
Proofview_monad.NonLogical.ret (Util.Inr e)
| e -> Proofview_monad.NonLogical.raise e
end
end >>= function
| Util.Inl ((res,s),m) ->
Proof.set s >>
Proof.put m >>
Proof.ret res
| Util.Inr e -> tclZERO e
let tclTIME s t =
let (>>=) = Proof.bind in
let pr_time t1 t2 n msg =
let msg =
if n = 0 then
str msg
else
str (msg ^ " after ") ++ int n ++ str (String.plural n " backtracking")
in
msg_info(str "Tactic call" ++ pr_opt str s ++ str " ran for " ++
System.fmt_time_difference t1 t2 ++ str " " ++ surround msg) in
let rec aux n t =
tclUNIT () >>= fun () ->
let tstart = System.get_time() in
Proof.split t >>= function
| Nil e ->
begin
let tend = System.get_time() in
pr_time tstart tend n "failure";
tclZERO e
end
| Cons (x,k) ->
let tend = System.get_time() in
pr_time tstart tend n "success";
tclOR (tclUNIT x) (fun e -> aux (n+1) (k e))
in aux 0 t
let mark_as_unsafe =
Proof.put (false,([],[]))
(* Shelves all the goals under focus. *)
let shelve =
(* spiwack: convenience notations, waiting for ocaml 3.12 *)
let (>>=) = Proof.bind in
let (>>) = Proof.seq in
Proof.get >>= fun initial ->
Proof.set {initial with comb=[]} >>
Proof.put (true,(initial.comb,[]))
(* Shelves the unifiable goals under focus, i.e. the goals which
appear in other goals under focus (the unfocused goals are not
considered). *)
let shelve_unifiable =
(* spiwack: convenience notations, waiting for ocaml 3.12 *)
let (>>=) = Proof.bind in
let (>>) = Proof.seq in
Proof.get >>= fun initial ->
let (u,n) = Goal.partition_unifiable initial.solution initial.comb in
Proof.set {initial with comb=n} >>
Proof.put (true,(u,[]))
(* [unshelve l p] adds all the goals in [l] at the end of the focused
goals of p *)
let unshelve l p =
{ p with comb = p.comb@l }
(* Gives up on the goal under focus. Reports an unsafe status. Proofs
with given up goals cannot be closed. *)
let give_up =
(* spiwack: convenience notations, waiting for ocaml 3.12 *)
let (>>=) = Proof.bind in
let (>>) = Proof.seq in
Proof.get >>= fun initial ->
Proof.set {initial with comb=[]} >>
Proof.put (false,([],initial.comb))
(*** Commands ***)
let in_proofview p k =
k p.solution
module Notations = struct
let (>>=) = tclBIND
let (<*>) = tclTHEN
let (<+>) t1 t2 = tclOR t1 (fun _ -> t2)
end
open Notations
module Monad =
Monad.Make(struct type +'a t = 'a tactic let return=tclUNIT let (>>=)=(>>=) end)
(*** Compatibility layer with <= 8.2 tactics ***)
module V82 = struct
type tac = Goal.goal Evd.sigma -> Goal.goal list Evd.sigma
let tactic tac =
(* spiwack: we ignore the dependencies between goals here,
expectingly preserving the semantics of <= 8.2 tactics *)
(* spiwack: convenience notations, waiting for ocaml 3.12 *)
let (>>=) = Proof.bind in
Proof.get >>= fun ps ->
try
let tac gl evd =
let glsigma =
tac { Evd.it = gl ; sigma = evd; } in
let sigma = glsigma.Evd.sigma in
let g = glsigma.Evd.it in
( g, sigma )
in
(* Old style tactics expect the goals normalized with respect to evars. *)
let (initgoals,initevd) =
Evd.Monad.List.map (fun g s -> Goal.V82.nf_evar s g) ps.comb ps.solution
in
let (goalss,evd) = Evd.Monad.List.map tac initgoals initevd in
let sgs = List.flatten goalss in
Proof.set { solution = evd; comb = sgs; }
with e when catchable_exception e ->
let e = Errors.push e in
tclZERO e
(* normalises the evars in the goals, and stores the result in
solution. *)
let nf_evar_goals =
Proof.modify begin fun ps ->
let map g s = Goal.V82.nf_evar s g in
let (goals,evd) = Evd.Monad.List.map map ps.comb ps.solution in
{ solution = evd; comb = goals; }
end
(* A [Proofview.tactic] version of [Refiner.tclEVARS] *)
let tclEVARS evd =
Proof.modify (fun ps -> { ps with solution = evd })
let tclEVARUNIVCONTEXT ctx =
Proof.modify (fun ps -> { ps with solution = Evd.set_universe_context ps.solution ctx })
let has_unresolved_evar pv =
Evd.has_undefined pv.solution
(* Main function in the implementation of Grab Existential Variables.*)
let grab pv =
let undef = Evd.undefined_map pv.solution in
let goals =
List.map begin fun (e,_) ->
Goal.build e
end (Evar.Map.bindings undef)
in
{ pv with comb = goals }
(* Returns the open goals of the proofview together with the evar_map to
interprete them. *)
let goals { comb = comb ; solution = solution; } =
{ Evd.it = comb ; sigma = solution }
let top_goals initial { solution=solution; } =
let goals = List.map (fun (t,_) -> Goal.V82.build (fst (Term.destEvar t))) initial in
{ Evd.it = goals ; sigma=solution; }
let top_evars initial =
let evars_of_initial (c,_) =
Evar.Set.elements (Evarutil.evars_of_term c)
in
List.flatten (List.map evars_of_initial initial)
let instantiate_evar n com pv =
let (evk,_) =
let evl = Evarutil.non_instantiated pv.solution in
let evl = Evar.Map.bindings evl in
if (n <= 0) then
Errors.error "incorrect existential variable index"
else if List.length evl < n then
Errors.error "not so many uninstantiated existential variables"
else
List.nth evl (n-1)
in
{ pv with
solution = Evar_refiner.instantiate_pf_com evk com pv.solution }
let of_tactic t gls =
try
let init = { solution = gls.Evd.sigma ; comb = [gls.Evd.it] } in
let (_,final,_) = apply (Goal.V82.env gls.Evd.sigma gls.Evd.it) t init in
{ Evd.sigma = final.solution ; it = final.comb }
with Proof_errors.TacticFailure e as src ->
let src = Errors.push src in
let e = Backtrace.app_backtrace ~src ~dst:e in
raise e
let put_status b =
Proof.put (b,([],[]))
let catchable_exception = catchable_exception
let wrap_exceptions f =
try f ()
with e when catchable_exception e -> let e = Errors.push e in tclZERO e
end
type goal = Goal.goal
let build_goal = Goal.build
let partial_solution = Goal.V82.partial_solution
module Goal = struct
type 'a t = {
env : Environ.env;
sigma : Evd.evar_map;
hyps : Environ.named_context_val;
concl : Term.constr ;
self : Goal.goal ; (* for compatibility with old-style definitions *)
}
let assume (gl : 'a t) = (gl :> [ `NF ] t)
let env { env=env } = env
let sigma { sigma=sigma } = sigma
let hyps { hyps=hyps } = Environ.named_context_of_val hyps
let concl { concl=concl } = concl
let lift s k =
(* spiwack: convenience notations, waiting for ocaml 3.12 *)
let (>>=) = Proof.bind in
let (>>) = Proof.seq in
Proof.current >>= fun env ->
Proof.get >>= fun step ->
try
let (ks,sigma) =
Evd.Monad.List.map begin fun g sigma ->
Util.on_fst k (Goal.eval s env sigma g)
end step.comb step.solution
in
Proof.set { step with solution=sigma } >>
tclDISPATCH ks
with e when catchable_exception e ->
let e = Errors.push e in
tclZERO e
let enter_t f = Goal.enter begin fun env sigma hyps concl self ->
let concl = Reductionops.nf_evar sigma concl in
let map_nf c = Reductionops.nf_evar sigma c in
let hyps = Environ.map_named_val map_nf hyps in
f {env=env;sigma=sigma;hyps=hyps;concl=concl;self=self}
end
let enter f =
list_iter_goal () begin fun goal () ->
Proof.current >>= fun env ->
tclEVARMAP >>= fun sigma ->
try
(* enter_t cannot modify the sigma. *)
let (t,_) = Goal.eval (enter_t f) env sigma goal in
t
with e when catchable_exception e ->
let e = Errors.push e in
tclZERO e
end
let raw_enter_t f = Goal.enter begin fun env sigma hyps concl self ->
f {env=env;sigma=sigma;hyps=hyps;concl=concl;self=self}
end
let raw_enter f =
list_iter_goal () begin fun goal () ->
Proof.current >>= fun env ->
tclEVARMAP >>= fun sigma ->
try
(* raw_enter_t cannot modify the sigma. *)
let (t,_) = Goal.eval (raw_enter_t f) env sigma goal in
t
with e when catchable_exception e ->
let e = Errors.push e in
tclZERO e
end
let goals =
Proof.current >>= fun env ->
Proof.get >>= fun step ->
let sigma = step.solution in
let map goal =
match Goal.advance sigma goal with
| None -> None (** ppedrot: Is this check really necessary? *)
| Some goal ->
(** The sigma is unchanged. *)
let (gl, _) = Goal.eval (enter_t (fun gl -> gl)) env sigma goal in
Some gl
in
tclUNIT (List.map_filter map step.comb)
let raw_goals =
Proof.current >>= fun env ->
Proof.get >>= fun step ->
let sigma = step.solution in
let map goal =
match Goal.advance sigma goal with
| None -> None (** ppedrot: Is this check really necessary? *)
| Some goal ->
(** The sigma is unchanged. *)
let (gl, _) = Goal.eval (raw_enter_t (fun gl -> gl)) env sigma goal in
Some gl
in
tclUNIT (List.map_filter map step.comb)
(* compatibility *)
let goal { self=self } = self
let refresh_sigma g =
tclEVARMAP >>= fun sigma ->
tclUNIT { g with sigma }
end
module Refine =
struct
type handle = Evd.evar_map * goal list
let new_evar (evd, evs) env typ =
let src = (Loc.ghost, Evar_kinds.GoalEvar) in
let (evd, ev) = Evarutil.new_evar evd env ~src typ in
let evd = Typeclasses.mark_unresolvables
~filter:(fun ev' _ -> Evar.equal (fst (Term.destEvar ev)) ev') evd in
let (evk, _) = Term.destEvar ev in
let h = (evd, build_goal evk :: evs) in
(h, ev)
let fresh_constructor_instance (evd,evs) env construct =
let (evd,pconstruct) = Evd.fresh_constructor_instance env evd construct in
(evd,evs) , pconstruct
let with_type (evd,evs) env c t =
let my_type = Retyping.get_type_of env evd c in
let j = Environ.make_judge c my_type in
let (evd,j') =
Coercion.inh_conv_coerce_to true (Loc.ghost) env evd j t
in
(evd,evs) , j'.Environ.uj_val
let refine f = Goal.raw_enter begin fun gl ->
let sigma = Goal.sigma gl in
let handle = (sigma, []) in
let ((sigma, evs), c) = f handle in
let sigma = partial_solution sigma gl.Goal.self c in
let modify start = { solution = sigma; comb = undefined sigma (List.rev evs); } in
Proof.modify modify
end
let refine_casted f = Goal.raw_enter begin fun gl ->
let concl = Goal.concl gl in
let env = Goal.env gl in
let f h =
let (h,c) = f h in
with_type h env c concl
in
refine f
end
end
module NonLogical = Proofview_monad.NonLogical
let tclLIFT = Proofview_monad.Logical.lift
|