aboutsummaryrefslogtreecommitdiffhomepage
path: root/proofs/proofview.ml
blob: 7ab7e882ce34fb2cb4eb61b7e4ebe91f625b9e92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)


(** This files defines the basic mechanism of proofs: the [proofview]
    type is the state which tactics manipulate (a global state for
    existential variables, together with the list of goals), and the type
    ['a tactic] is the (abstract) type of tactics modifying the proof
    state and returning a value of type ['a]. *)

open Pp
open Util
open Proofview_monad

(** Main state of tactics *)
type proofview = Proofview_monad.proofview

type entry = (Term.constr * Term.types) list

(** Returns a stylised view of a proofview for use by, for instance,
    ide-s. *)
(* spiwack: the type of [proofview] will change as we push more
   refined functions to ide-s. This would be better than spawning a
   new nearly identical function everytime. Hence the generic name. *)
(* In this version: returns the list of focused goals together with
   the [evar_map] context. *)
let proofview p =
  p.comb , p.solution



(** {6 Starting and querying a proof view} *)

type telescope =
  | TNil of Evd.evar_map
  | TCons of Environ.env * Evd.evar_map * Term.types * (Evd.evar_map -> Term.constr -> telescope)

let dependent_init =
  let rec aux = function
  | TNil sigma -> [], { solution = sigma; comb = []; }
  | TCons (env, sigma, typ, t) ->
    let src = (Loc.ghost,Evar_kinds.GoalEvar) in
    let (sigma, econstr ) = Evarutil.new_evar env sigma ~src typ in
    let ret, { solution = sol; comb = comb } = aux (t sigma econstr) in
    let (gl, _) = Term.destEvar econstr in
    let entry = (econstr, typ) :: ret in
    entry, { solution = sol; comb = gl :: comb; }
  in
  fun t ->
    let entry, v = aux t in
    (* Marks all the goal unresolvable for typeclasses. *)
    let solution = Typeclasses.mark_unresolvables v.solution in
    (* The created goal are not to be shelved. *)
    let solution = Evd.reset_future_goals solution in
    entry, { v with solution }

let init =
  let rec aux sigma = function
    | [] -> TNil sigma
    | (env,g)::l -> TCons (env,sigma,g,(fun sigma _ -> aux sigma l))
  in
  fun sigma l -> dependent_init (aux sigma l)

let initial_goals initial = initial

let finished = function
  | {comb = []} -> true
  | _  -> false

let return { solution=defs } = defs

let return_constr { solution = defs } c = Evarutil.nf_evar defs c

let partial_proof entry pv = CList.map (return_constr pv) (CList.map fst entry)


(** {6 Focusing commands} *)

(** A [focus_context] represents the part of the proof view which has
    been removed by a focusing action, it can be used to unfocus later
    on. *)
(* First component is a reverse list of the goals which come before
   and second component is the list of the goals which go after (in
   the expected order). *)
type focus_context = Evar.t list * Evar.t list


(** Returns a stylised view of a focus_context for use by, for
    instance, ide-s. *)
(* spiwack: the type of [focus_context] will change as we push more
   refined functions to ide-s. This would be better than spawning a
   new nearly identical function everytime. Hence the generic name. *)
(* In this version: the goals in the context, as a "zipper" (the first
   list is in reversed order). *)
let focus_context f = f

(** This (internal) function extracts a sublist between two indices,
    and returns this sublist together with its context: if it returns
    [(a,(b,c))] then [a] is the sublist and (rev b)@a@c is the
    original list.  The focused list has lenght [j-i-1] and contains
    the goals from number [i] to number [j] (both included) the first
    goal of the list being numbered [1].  [focus_sublist i j l] raises
    [IndexOutOfRange] if [i > length l], or [j > length l] or [j <
    i]. *)
let focus_sublist i j l =
  let (left,sub_right) = CList.goto (i-1) l in
  let (sub, right) = 
    try CList.chop (j-i+1) sub_right
    with Failure _ -> raise CList.IndexOutOfRange
  in
  (sub, (left,right))

(** Inverse operation to the previous one. *)
let unfocus_sublist (left,right) s =
  CList.rev_append left (s@right)


(** [focus i j] focuses a proofview on the goals from index [i] to
    index [j] (inclusive, goals are indexed from [1]). I.e. goals
    number [i] to [j] become the only focused goals of the returned
    proofview.  It returns the focused proofview, and a context for
    the focus stack. *)
let focus i j sp =
  let (new_comb, context) = focus_sublist i j sp.comb in
  ( { sp with comb = new_comb } , context )


(** [advance sigma g] returns [Some g'] if [g'] is undefined and is
    the current avatar of [g] (for instance [g] was changed by [clear]
    into [g']). It returns [None] if [g] has been (partially)
    solved. *)
(* spiwack: [advance] is probably performance critical, and the good
   behaviour of its definition may depend sensitively to the actual
   definition of [Evd.find]. Currently, [Evd.find] starts looking for
   a value in the heap of undefined variable, which is small. Hence in
   the most common case, where [advance] is applied to an unsolved
   goal ([advance] is used to figure if a side effect has modified the
   goal) it terminates quickly. *)
let rec advance sigma g =
  let open Evd in
  let evi = Evd.find sigma g in
  match evi.evar_body with
  | Evar_empty -> Some g
  | Evar_defined v ->
      if Option.default false (Store.get evi.evar_extra Evarutil.cleared) then
        let (e,_) = Term.destEvar v in
        advance sigma e
      else
        None

(** [undefined defs l] is the list of goals in [l] which are still
    unsolved (after advancing cleared goals). *)
let undefined defs l = CList.map_filter (advance defs) l

(** Unfocuses a proofview with respect to a context. *)
let unfocus c sp =
  { sp with comb = undefined sp.solution (unfocus_sublist c sp.comb) }


(** {6 The tactic monad} *)

(** - Tactics are objects which apply a transformation to all the
    subgoals of the current view at the same time. By opposition to
    the old vision of applying it to a single goal. It allows tactics
    such as [shelve_unifiable], tactics to reorder the focused goals,
    or global automation tactic for dependent subgoals (instantiating
    an evar has influences on the other goals of the proof in
    progress, not being able to take that into account causes the
    current eauto tactic to fail on some instances where it could
    succeed).  Another benefit is that it is possible to write tactics
    that can be executed even if there are no focused goals.
    - Tactics form a monad ['a tactic], in a sense a tactic can be
    seens as a function (without argument) which returns a value of
    type 'a and modifies the environement (in our case: the view).
    Tactics of course have arguments, but these are given at the
    meta-level as OCaml functions.  Most tactics in the sense we are
    used to return [()], that is no really interesting values. But
    some might pass information around.  The tactics seen in Coq's
    Ltac are (for now at least) only [unit tactic], the return values
    are kept for the OCaml toolkit.  The operation or the monad are
    [Proofview.tclUNIT] (which is the "return" of the tactic monad)
    [Proofview.tclBIND] (which is the "bind") and [Proofview.tclTHEN]
    (which is a specialized bind on unit-returning tactics).
    - Tactics have support for full-backtracking. Tactics can be seen
    having multiple success: if after returning the first success a
    failure is encountered, the tactic can backtrack and use a second
    success if available. The state is backtracked to its previous
    value, except the non-logical state defined in the {!NonLogical}
    module below.
*)
(* spiwack: as far as I'm aware this doesn't really relate to
   F. Kirchner and C. Muñoz. *)

module Proof = Logical

(** type of tactics:

   tactics can
   - access the environment,
   - report unsafe status, shelved goals and given up goals
   - access and change the current [proofview]
   - backtrack on previous changes of the proofview *)
type +'a tactic = 'a Proof.t

(** Applies a tactic to the current proofview. *)
let apply env t sp =
  let (next_r,(next_state,_),status,info) =
    Logic_monad.NonLogical.run (Proof.run t false (sp,env))
  in
  next_r,next_state,status,Trace.to_tree info



(** {7 Monadic primitives} *)

(** Unit of the tactic monad. *)
let tclUNIT = Proof.return

(** Bind operation of the tactic monad. *)
let tclBIND = Proof.(>>=)

(** Interpretes the ";" (semicolon) of Ltac. As a monadic operation,
    it's a specialized "bind". *)
let tclTHEN = Proof.(>>)

(** [tclIGNORE t] has the same operational content as [t], but drops
    the returned value. *)
let tclIGNORE = Proof.ignore

module Monad = Proof



(** {7 Failure and backtracking} *)


(** [tclZERO e] fails with exception [e]. It has no success. *)
let tclZERO = Proof.zero

(** [tclOR t1 t2] behaves like [t1] as long as [t1] succeeds. Whenever
    the successes of [t1] have been depleted and it failed with [e],
    then it behaves as [t2 e]. In other words, [tclOR] inserts a
    backtracking point. *)
let tclOR = Proof.plus

(** [tclORELSE t1 t2] is equal to [t1] if [t1] has at least one
    success or [t2 e] if [t1] fails with [e]. It is analogous to
    [try/with] handler of exception in that it is not a backtracking
    point. *)
let tclORELSE t1 t2 =
  let open Logic_monad in
  let open Proof in
  split t1 >>= function
    | Nil e -> t2 e
    | Cons (a,t1') -> plus (return a) t1'

(** [tclIFCATCH a s f] is a generalisation of {!tclORELSE}: if [a]
    succeeds at least once then it behaves as [tclBIND a s] otherwise,
    if [a] fails with [e], then it behaves as [f e]. *)
let tclIFCATCH a s f =
  let open Logic_monad in
  let open Proof in
  split a >>= function
    | Nil e -> f e
    | Cons (x,a') -> plus (s x) (fun e -> (a' e) >>= fun x' -> (s x'))

(** [tclONCE t] behave like [t] except it has at most one success:
    [tclONCE t] stops after the first success of [t]. If [t] fails
    with [e], [tclONCE t] also fails with [e]. *)
let tclONCE = Proof.once

exception MoreThanOneSuccess
let _ = Errors.register_handler begin function
  | MoreThanOneSuccess -> Errors.error "This tactic has more than one success."
  | _ -> raise Errors.Unhandled
end

(** [tclEXACTLY_ONCE e t] succeeds as [t] if [t] has exactly one
    success. Otherwise it fails. The tactic [t] is run until its first
    success, then a failure with exception [e] is simulated. It [t]
    yields another success, then [tclEXACTLY_ONCE e t] fails with
    [MoreThanOneSuccess] (it is a user error). Otherwise,
    [tclEXACTLY_ONCE e t] succeeds with the first success of
    [t]. Notice that the choice of [e] is relevant, as the presence of
    further successes may depend on [e] (see {!tclOR}). *)
let tclEXACTLY_ONCE e t =
  let open Logic_monad in
  let open Proof in
  split t >>= function
    | Nil e -> tclZERO e
    | Cons (x,k) ->
        Proof.split (k e) >>= function
          | Nil _ -> tclUNIT x
          | _ -> tclZERO MoreThanOneSuccess


(** [tclCASE t] wraps the {!Proofview_monad.Logical.split} primitive. *)
type 'a case =
| Fail of exn
| Next of 'a * (exn -> 'a tactic)
let tclCASE t =
  let open Logic_monad in
  let map = function
  | Nil e -> Fail e
  | Cons (x, t) -> Next (x, t)
  in
  Proof.map map (Proof.split t)

let tclBREAK = Proof.break



(** {7 Focusing tactics} *)

exception NoSuchGoals of int
let _ = Errors.register_handler begin function
  | NoSuchGoals n -> Errors.error ("No such " ^ String.plural n "goal" ^".")
  | _ -> raise Errors.Unhandled
end

(** [tclFOCUS_gen nosuchgoal i j t] applies [t] in a context where
    only the goals numbered [i] to [j] are focused (the rest of the goals
    is restored at the end of the tactic). If the range [i]-[j] is not
    valid, then it [tclFOCUS_gen nosuchgoal i j t] is [nosuchgoal]. *)
let tclFOCUS_gen nosuchgoal i j t =
  let open Proof in
  Pv.get >>= fun initial ->
  try
    let (focused,context) = focus i j initial in
    Pv.set focused >>
    t >>= fun result ->
    Pv.modify (fun next -> unfocus context next) >>
    return result
  with CList.IndexOutOfRange -> nosuchgoal

let tclFOCUS i j t = tclFOCUS_gen (tclZERO (NoSuchGoals (j+1-i))) i j t
let tclTRYFOCUS i j t = tclFOCUS_gen (tclUNIT ()) i j t

(** Like {!tclFOCUS} but selects a single goal by name. *)
let tclFOCUSID id t =
  let open Proof in
  Pv.get >>= fun initial ->
  let rec aux n = function
    | [] -> tclZERO (NoSuchGoals 1)
    | g::l ->
        if Names.Id.equal (Evd.evar_ident g initial.solution) id then
          let (focused,context) = focus n n initial in
          Pv.set focused >>
          t >>= fun result ->
          Pv.modify (fun next -> unfocus context next) >>
          return result
        else
          aux (n+1) l in
  aux 1 initial.comb



(** {7 Dispatching on goals} *)

exception SizeMismatch of int*int
let _ = Errors.register_handler begin function
  | SizeMismatch (i,_) ->
      let open Pp in
      let errmsg =
        str"Incorrect number of goals" ++ spc() ++
        str"(expected "++int i++str(String.plural i " tactic") ++ str")."
      in
      Errors.errorlabstrm "" errmsg
  | _ -> raise Errors.Unhandled
end

(** A variant of [Monad.List.iter] where we iter over the focused list
    of goals. The argument tactic is executed in a focus comprising
    only of the current goal, a goal which has been solved by side
    effect is skipped. The generated subgoals are concatenated in
    order.  *)
let iter_goal i =
  let open Proof in
  Comb.get >>= fun initial ->
  Proof.List.fold_left begin fun (subgoals as cur) goal ->
    Solution.get >>= fun step ->
    match advance step goal with
    | None -> return cur
    | Some goal ->
        Comb.set [goal] >>
        i goal >>
        Proof.map (fun comb -> comb :: subgoals) Comb.get
  end [] initial >>= fun subgoals ->
  Comb.set (CList.flatten (CList.rev subgoals))

(** A variant of [Monad.List.fold_left2] where the first list is the
    list of focused goals. The argument tactic is executed in a focus
    comprising only of the current goal, a goal which has been solved
    by side effect is skipped. The generated subgoals are concatenated
    in order. *)
let fold_left2_goal i s l =
  let open Proof in
  Pv.get >>= fun initial ->
  let err =
    return () >>= fun () -> (* Delay the computation of list lengths. *)
    tclZERO (SizeMismatch (CList.length initial.comb,CList.length l))
  in 
  Proof.List.fold_left2 err begin fun ((r,subgoals) as cur) goal a ->
    Solution.get >>= fun step ->
    match advance step goal with
    | None -> return cur
    | Some goal ->
        Comb.set [goal] >>
        i goal a r >>= fun r ->
        Proof.map (fun comb -> (r, comb :: subgoals)) Comb.get
  end (s,[]) initial.comb l >>= fun (r,subgoals) ->
  Comb.set (CList.flatten (CList.rev subgoals)) >>
  return r

(** Dispatch tacticals are used to apply a different tactic to each
    goal under focus. They come in two flavours: [tclDISPATCH] takes a
    list of [unit tactic]-s and build a [unit tactic]. [tclDISPATCHL]
    takes a list of ['a tactic] and returns an ['a list tactic].

    They both work by applying each of the tactic in a focus
    restricted to the corresponding goal (starting with the first
    goal). In the case of [tclDISPATCHL], the tactic returns a list of
    the same size as the argument list (of tactics), each element
    being the result of the tactic executed in the corresponding goal.

    When the length of the tactic list is not the number of goal,
    raises [SizeMismatch (g,t)] where [g] is the number of available
    goals, and [t] the number of tactics passed.

    [tclDISPATCHGEN join tacs] generalises both functions as the
    successive results of [tacs] are stored in reverse order in a
    list, and [join] is used to convert the result into the expected
    form. *)
let tclDISPATCHGEN0 join tacs =
  match tacs with
  | [] ->
      begin 
        let open Proof in
        Comb.get >>= function
        | [] -> tclUNIT (join [])
        | comb -> tclZERO (SizeMismatch (CList.length comb,0))
      end
  | [tac] ->
      begin
        let open Proof in
        Pv.get >>= function
        | { comb=[goal] ; solution } ->
            begin match advance solution goal with
            | None -> tclUNIT (join [])
            | Some _ -> Proof.map (fun res -> join [res]) tac
            end
        | {comb} -> tclZERO (SizeMismatch(CList.length comb,1))
      end
  | _ ->
      let iter _ t cur = Proof.map (fun y -> y :: cur) t in
      let ans = fold_left2_goal iter [] tacs in
      Proof.map join ans

let tclDISPATCHGEN join tacs =
  let branch t = InfoL.tag (Info.DBranch) t in
  let tacs = CList.map branch tacs in
  InfoL.tag (Info.Dispatch) (tclDISPATCHGEN0 join tacs)

let tclDISPATCH tacs = tclDISPATCHGEN Pervasives.ignore tacs

let tclDISPATCHL tacs = tclDISPATCHGEN CList.rev tacs


(** [extend_to_list startxs rx endxs l] builds a list
    [startxs@[rx,...,rx]@endxs] of the same length as [l]. Raises
    [SizeMismatch] if [startxs@endxs] is already longer than [l]. *)
let extend_to_list startxs rx endxs l =
  (* spiwack: I use [l] essentially as a natural number *)
  let rec duplicate acc = function
    | [] -> acc
    | _::rest -> duplicate (rx::acc) rest
  in
  let rec tail to_match rest =
    match rest, to_match with
    | [] , _::_ -> raise (SizeMismatch(0,0)) (* placeholder *)
    | _::rest , _::to_match -> tail to_match rest
    | _ , [] -> duplicate endxs rest
  in
  let rec copy pref rest =
    match rest,pref with
    | [] , _::_ -> raise (SizeMismatch(0,0)) (* placeholder *)
    | _::rest, a::pref -> a::(copy pref rest)
    | _ , [] -> tail endxs rest
  in
  copy startxs l

(** [tclEXTEND b r e] is a variant of {!tclDISPATCH}, where the [r]
    tactic is "repeated" enough time such that every goal has a tactic
    assigned to it ([b] is the list of tactics applied to the first
    goals, [e] to the last goals, and [r] is applied to every goal in
    between). *)
let tclEXTEND tacs1 rtac tacs2 =
  let open Proof in
  Comb.get >>= fun comb ->
  try
    let tacs = extend_to_list tacs1 rtac tacs2 comb in
    tclDISPATCH tacs
  with SizeMismatch _ ->
    tclZERO (SizeMismatch(
      CList.length comb,
      (CList.length tacs1)+(CList.length tacs2)))
(* spiwack: failure occurs only when the number of goals is too
   small. Hence we can assume that [rtac] is replicated 0 times for
   any error message. *)

(** [tclEXTEND [] tac []]. *)
let tclINDEPENDENT tac =
  let open Proof in
  Pv.get >>= fun initial ->
  match initial.comb with
  | [] -> tclUNIT ()
  | [_] -> tac
  | _ ->
      let tac = InfoL.tag (Info.DBranch) tac in
      InfoL.tag (Info.Dispatch) (iter_goal (fun _ -> tac))



(** {7 Goal manipulation} *)

(** Shelves all the goals under focus. *)
let shelve =
  let open Proof in
  Comb.get >>= fun initial ->
  Comb.set [] >>
  InfoL.leaf (Info.Tactic (fun () -> Pp.str"shelve")) >>
  Shelf.put initial


(** [contained_in_info e evi] checks whether the evar [e] appears in
    the hypotheses, the conclusion or the body of the evar_info
    [evi]. Note: since we want to use it on goals, the body is actually
    supposed to be empty. *)
let contained_in_info sigma e evi =
  Evar.Set.mem e (Evd.evars_of_filtered_evar_info (Evarutil.nf_evar_info sigma evi))

(** [depends_on sigma src tgt] checks whether the goal [src] appears
    as an existential variable in the definition of the goal [tgt] in
    [sigma]. *)
let depends_on sigma src tgt =
  let evi = Evd.find sigma tgt in
  contained_in_info sigma src evi

(** [unifiable sigma g l] checks whether [g] appears in another
    subgoal of [l]. The list [l] may contain [g], but it does not
    affect the result. *)
let unifiable sigma g l =
  CList.exists (fun tgt -> not (Evar.equal g tgt) && depends_on sigma g tgt) l

(** [partition_unifiable sigma l] partitions [l] into a pair [(u,n)]
    where [u] is composed of the unifiable goals, i.e. the goals on
    whose definition other goals of [l] depend, and [n] are the
    non-unifiable goals. *)
let partition_unifiable sigma l =
  CList.partition (fun g -> unifiable sigma g l) l

(** Shelves the unifiable goals under focus, i.e. the goals which
    appear in other goals under focus (the unfocused goals are not
    considered). *)
let shelve_unifiable =
  let open Proof in
  Pv.get >>= fun initial ->
  let (u,n) = partition_unifiable initial.solution initial.comb in
  Comb.set n >>
  InfoL.leaf (Info.Tactic (fun () -> Pp.str"shelve_unifiable")) >>
  Shelf.put u

(** [guard_no_unifiable] fails with error [UnresolvedBindings] if some
    goals are unifiable (see {!shelve_unifiable}) in the current focus. *)
let guard_no_unifiable =
  let open Proof in
  Pv.get >>= fun initial ->
  let (u,n) = partition_unifiable initial.solution initial.comb in
  match u with
  | [] -> tclUNIT ()
  | gls ->
      let l = CList.map (fun g -> Evd.dependent_evar_ident g initial.solution) gls in
      let l = CList.map (fun id -> Names.Name id) l in
      tclZERO (Logic.RefinerError (Logic.UnresolvedBindings l))

(** [unshelve l p] adds all the goals in [l] at the end of the focused
    goals of p *)
let unshelve l p =
  (* advance the goals in case of clear *)
  let l = undefined p.solution l in
  { p with comb = p.comb@l }


(** [goodmod p m] computes the representative of [p] modulo [m] in the
    interval [[0,m-1]].*)
let goodmod p m =
  let p' = p mod m in
  (* if [n] is negative [n mod l] is negative of absolute value less
     than [l], so [(n mod l)+l] is the representative of [n] in the
     interval [[0,l-1]].*)
  if p' < 0 then p'+m else p'

let cycle n =
  let open Proof in
  InfoL.leaf (Info.Tactic (fun () -> Pp.(str"cycle"++spc()++int n))) >>
  Comb.modify begin fun initial ->
    let l = CList.length initial in
    let n' = goodmod n l in
    let (front,rear) = CList.chop n' initial in
    rear@front
  end

let swap i j =
  let open Proof in
  InfoL.leaf (Info.Tactic (fun () -> Pp.(str"swap"++spc()++int i++spc()++int j))) >>
  Comb.modify begin fun initial ->
    let l = CList.length initial in
    let i = if i>0 then i-1 else i and j = if j>0 then j-1 else j in
    let i = goodmod i l and j = goodmod j l in
    CList.map_i begin fun k x ->
      match k with
      | k when Int.equal k i -> CList.nth initial j
      | k when Int.equal k j -> CList.nth initial i
      | _ -> x
    end 0 initial
  end

let revgoals =
  let open Proof in
  InfoL.leaf (Info.Tactic (fun () -> Pp.str"revgoals")) >>
  Comb.modify CList.rev

let numgoals =
  let open Proof in
  Comb.get >>= fun comb ->
  return (CList.length comb)



(** {7 Access primitives} *)

let tclEVARMAP = Solution.get

let tclENV = Env.get



(** {7 Put-like primitives} *)


let emit_side_effects eff x =
  { x with solution = Evd.emit_side_effects eff x.solution }

let tclEFFECTS eff =
  let open Proof in
  return () >>= fun () -> (* The Global.env should be taken at exec time *)
  Env.set (Global.env ()) >>
  Pv.modify (fun initial -> emit_side_effects eff initial)

let mark_as_unsafe = Status.put false

(** Gives up on the goal under focus. Reports an unsafe status. Proofs
    with given up goals cannot be closed. *)
let give_up =
  let open Proof in
  Comb.get >>= fun initial ->
  Comb.set [] >>
  mark_as_unsafe >>
  InfoL.leaf (Info.Tactic (fun () -> Pp.str"give_up")) >>
  Giveup.put initial



(** {7 Control primitives} *)

(** Equality function on goals *)
let goal_equal evars1 gl1 evars2 gl2 =
  let evi1 = Evd.find evars1 gl1 in
  let evi2 = Evd.find evars2 gl2 in
  Evd.eq_evar_info evars2 evi1 evi2

let tclPROGRESS t =
  let open Proof in
  Pv.get >>= fun initial ->
  t >>= fun res ->
  Pv.get >>= fun final ->
  let test =
    Evd.progress_evar_map initial.solution final.solution &&
    not (Util.List.for_all2eq (fun i f -> goal_equal initial.solution i final.solution f) initial.comb final.comb)
  in
  if test then
    tclUNIT res
  else
    tclZERO (Errors.UserError ("Proofview.tclPROGRESS" , Pp.str"Failed to progress."))

exception Timeout
let _ = Errors.register_handler begin function
  | Timeout -> Errors.errorlabstrm "Proofview.tclTIMEOUT" (Pp.str"Tactic timeout!")
  | _ -> Pervasives.raise Errors.Unhandled
end

let tclTIMEOUT n t =
  let open Proof in
  (* spiwack: as one of the monad is a continuation passing monad, it
     doesn't force the computation to be threaded inside the underlying
     (IO) monad. Hence I force it myself by asking for the evaluation of
     a dummy value first, lest [timeout] be called when everything has
     already been computed. *)
  let t = Proof.lift (Logic_monad.NonLogical.return ()) >> t in
  Proof.get >>= fun initial ->
  Proof.current >>= fun envvar ->
  Proof.lift begin
    Logic_monad.NonLogical.catch
      begin
        let open Logic_monad.NonLogical in
        timeout n (Proof.run t envvar initial) >>= fun r ->
        return (Util.Inl r)
      end
      begin let open Logic_monad.NonLogical in function
        | Logic_monad.Timeout -> return (Util.Inr Timeout)
        | Logic_monad.TacticFailure e as src ->
          let e = Backtrace.app_backtrace ~src ~dst:e in
          return (Util.Inr e)
        | e -> Logic_monad.NonLogical.raise e
      end
  end >>= function
    | Util.Inl (res,s,m,i) ->
        Proof.set s >>
        Proof.put m >>
        Proof.update (fun _ -> i) >>
        return res
    | Util.Inr e -> tclZERO e

let tclTIME s t =
  let pr_time t1 t2 n msg =
    let msg =
      if n = 0 then
        str msg
      else
        str (msg ^ " after ") ++ int n ++ str (String.plural n " backtracking")
    in
    msg_info(str "Tactic call" ++ pr_opt str s ++ str " ran for " ++
             System.fmt_time_difference t1 t2 ++ str " " ++ surround msg) in
  let rec aux n t =
    let open Proof in
    tclUNIT () >>= fun () ->
    let tstart = System.get_time() in
    Proof.split t >>= let open Logic_monad in function
    | Nil e ->
      begin
        let tend = System.get_time() in
        pr_time tstart tend n "failure";
        tclZERO e
      end
    | Cons (x,k) ->
        let tend = System.get_time() in
        pr_time tstart tend n "success";
        tclOR (tclUNIT x) (fun e -> aux (n+1) (k e))
  in aux 0 t



(** {7 Unsafe primitives} *)

module Unsafe = struct

  let tclEVARS evd =
    Pv.modify (fun ps -> { ps with solution = evd })

  let tclNEWGOALS gls =
    Pv.modify begin fun step ->
      let gls = undefined step.solution gls in
      { step with comb = step.comb @ gls }
    end

  let tclEVARSADVANCE evd =
    Pv.modify (fun ps -> { solution = evd; comb = undefined evd ps.comb })

  let tclEVARUNIVCONTEXT ctx = 
    Pv.modify (fun ps -> { ps with solution = Evd.set_universe_context ps.solution ctx })

  let reset_future_goals p =
    { p with solution = Evd.reset_future_goals p.solution }

end



(** {7 Notations} *)

module Notations = struct
  let (>>=) = tclBIND
  let (<*>) = tclTHEN
  let (<+>) t1 t2 = tclOR t1 (fun _ -> t2)
end

open Notations



(** {6 Goal-dependent tactics} *)

(* To avoid shadowing by the local [Goal] module *)
module GoalV82 = Goal.V82

let catchable_exception = function
  | Logic_monad.Exception _ -> false
  | e -> Errors.noncritical e


module Goal = struct

  type 'a t = {
    env : Environ.env;
    sigma : Evd.evar_map;
    concl : Term.constr ;
    self : Evar.t ; (* for compatibility with old-style definitions *)
  }

  let assume (gl : 'a t) = (gl :> [ `NF ] t)

  let env { env=env } = env
  let sigma { sigma=sigma } = sigma
  let hyps { env=env } = Environ.named_context env
  let concl { concl=concl } = concl

  let raw_concl { concl=concl } = concl


  let gmake_with info env sigma goal = 
    { env = Environ.reset_with_named_context (Evd.evar_filtered_hyps info) env ;
      sigma = sigma ;
      concl = Evd.evar_concl info ;
      self = goal }

  let nf_gmake env sigma goal =
    let info = Evarutil.nf_evar_info sigma (Evd.find sigma goal) in
    let sigma = Evd.add sigma goal info in
    gmake_with info env sigma goal , sigma

  let nf_enter f =
    InfoL.tag (Info.Dispatch) begin
    iter_goal begin fun goal ->
      Env.get >>= fun env ->
      tclEVARMAP >>= fun sigma ->
      try
        let (gl, sigma) = nf_gmake env sigma goal in
        tclTHEN (Unsafe.tclEVARS sigma) (InfoL.tag (Info.DBranch) (f gl))
      with e when catchable_exception e ->
        let e = Errors.push e in
        tclZERO e
    end
    end

  let normalize { self } =
    Env.get >>= fun env ->
    tclEVARMAP >>= fun sigma ->
    let (gl,sigma) = nf_gmake env sigma self in
    tclTHEN (Unsafe.tclEVARS sigma) (tclUNIT gl)

  let gmake env sigma goal =
    let info = Evd.find sigma goal in
    gmake_with info env sigma goal

  let enter f =
    let f gl = InfoL.tag (Info.DBranch) (f gl) in
    InfoL.tag (Info.Dispatch) begin
    iter_goal begin fun goal ->
      Env.get >>= fun env ->
      tclEVARMAP >>= fun sigma ->
      try f (gmake env sigma goal)
      with e when catchable_exception e ->
        let e = Errors.push e in
        tclZERO e
    end
    end

  let goals =
    Env.get >>= fun env ->
    Pv.get >>= fun step ->
    let sigma = step.solution in
    let map goal =
      match advance sigma goal with
      | None -> None (** ppedrot: Is this check really necessary? *)
      | Some goal ->
        let gl =
          tclEVARMAP >>= fun sigma ->
          tclUNIT (gmake env sigma goal)
        in
        Some gl
    in
    tclUNIT (CList.map_filter map step.comb)

  (* compatibility *)
  let goal { self=self } = self

end



(** {6 The refine tactic} *)

module Refine =
struct

  let mark_as_goal evd content =
    let info = Evd.find evd content in
    let info =
      { info with Evd.evar_source = match info.Evd.evar_source with
      | _, (Evar_kinds.VarInstance _ | Evar_kinds.GoalEvar) as x -> x
      | loc,_ -> loc,Evar_kinds.GoalEvar }
    in
    let info = Typeclasses.mark_unresolvable info in
    Evd.add evd content info

  let typecheck_evar ev env sigma =
    let info = Evd.find sigma ev in
    let evdref = ref sigma in
    let env = Environ.reset_with_named_context (Evd.evar_hyps info) env in
    let _ = Typing.sort_of env evdref (Evd.evar_concl info) in
    !evdref

  let typecheck_proof c concl env sigma =
    let evdref = ref sigma in
    let () = Typing.check env evdref c concl in
    !evdref

  let (pr_constrv,pr_constr) =
    Hook.make ~default:(fun _env _sigma _c -> Pp.str"<constr>") ()

  let refine ?(unsafe = false) f = Goal.enter begin fun gl ->
    let sigma = Goal.sigma gl in
    let env = Goal.env gl in
    let concl = Goal.concl gl in
    (** Save the [future_goals] state to restore them after the
        refinement. *)
    let prev_future_goals = Evd.future_goals sigma in
    let prev_principal_goal = Evd.principal_future_goal sigma in
    (** Create the refinement term *)
    let (sigma, c) = f (Evd.reset_future_goals sigma) in
    let evs = Evd.future_goals sigma in
    let evkmain = Evd.principal_future_goal sigma in
    (** Check that the introduced evars are well-typed *)
    let fold accu ev = typecheck_evar ev env accu in
    let sigma = if unsafe then sigma else CList.fold_left fold sigma evs in
    (** Check that the refined term is typesafe *)
    let sigma = if unsafe then sigma else typecheck_proof c concl env sigma in
    (** Proceed to the refinement *)
    let sigma = match evkmain with
      | None -> Evd.define gl.Goal.self c sigma
      | Some evk ->
          let id = Evd.evar_ident gl.Goal.self sigma in
          Evd.rename evk id (Evd.define gl.Goal.self c sigma)
    in
    (** Restore the [future goals] state. *)
    let sigma = Evd.restore_future_goals sigma prev_future_goals prev_principal_goal in
    (** Select the goals *)
    let comb = undefined sigma (CList.rev evs) in
    let sigma = CList.fold_left mark_as_goal sigma comb in
    let open Proof in
    InfoL.leaf (Info.Tactic (fun () -> Pp.(str"refine"++spc()++ Hook.get pr_constrv env sigma c))) >>
    Pv.set { solution = sigma; comb; }
  end

  (** Useful definitions *)

  let with_type env evd c t =
    let my_type = Retyping.get_type_of env evd c in
    let j = Environ.make_judge c my_type in
    let (evd,j') =
      Coercion.inh_conv_coerce_to true (Loc.ghost) env evd j t
    in
    evd , j'.Environ.uj_val

  let refine_casted ?(unsafe = false) f = Goal.enter begin fun gl ->
    let concl = Goal.concl gl in
    let env = Goal.env gl in
    let f h = let (h, c) = f h in with_type env h c concl in
    refine ~unsafe f
  end
end



(** {6 Trace} *)

module Trace = struct

  let record_info_trace = InfoL.record_trace

  let log m = InfoL.leaf (Info.Msg m)
  let name_tactic m t = InfoL.tag (Info.Tactic m) t

  let pr_info ?(lvl=0) info =
    assert (lvl >= 0);
    Info.(print (collapse lvl info))

end



(** {6 Non-logical state} *)

module NonLogical = Logic_monad.NonLogical

let tclLIFT = Proof.lift

let tclCHECKINTERRUPT =
   tclLIFT (NonLogical.make Control.check_for_interrupt)





(*** Compatibility layer with <= 8.2 tactics ***)
module V82 = struct
  type tac = Evar.t Evd.sigma -> Evar.t list Evd.sigma

  let tactic tac =
    (* spiwack: we ignore the dependencies between goals here,
       expectingly preserving the semantics of <= 8.2 tactics *)
    (* spiwack: convenience notations, waiting for ocaml 3.12 *)
    let open Proof in
    Pv.get >>= fun ps ->
    try
      let tac gl evd = 
        let glsigma  =
          tac { Evd.it = gl ; sigma = evd; }  in
        let sigma = glsigma.Evd.sigma in
        let g = glsigma.Evd.it in
        ( g, sigma )
      in
        (* Old style tactics expect the goals normalized with respect to evars. *)
      let (initgoals,initevd) =
        Evd.Monad.List.map (fun g s -> GoalV82.nf_evar s g) ps.comb ps.solution
      in
      let (goalss,evd) = Evd.Monad.List.map tac initgoals initevd in
      let sgs = CList.flatten goalss in
      InfoL.leaf (Info.Tactic (fun () -> Pp.str"<unknown>")) >>
      Pv.set { solution = evd; comb = sgs; }
    with e when catchable_exception e ->
      let e = Errors.push e in
      tclZERO e


  (* normalises the evars in the goals, and stores the result in
     solution. *)
  let nf_evar_goals =
    Pv.modify begin fun ps ->
    let map g s = GoalV82.nf_evar s g in
    let (goals,evd) = Evd.Monad.List.map map ps.comb ps.solution in
    { solution = evd; comb = goals; }
    end
      
  let has_unresolved_evar pv =
    Evd.has_undefined pv.solution

  (* Main function in the implementation of Grab Existential Variables.*)
  let grab pv =
    let undef = Evd.undefined_map pv.solution in
    let goals = CList.rev_map fst (Evar.Map.bindings undef) in
    { pv with comb = goals }
      
    

  (* Returns the open goals of the proofview together with the evar_map to 
     interprete them. *)
  let goals { comb = comb ; solution = solution; } =
   { Evd.it = comb ; sigma = solution }

  let top_goals initial { solution=solution; } =
    let goals = CList.map (fun (t,_) -> fst (Term.destEvar t)) initial in
    { Evd.it = goals ; sigma=solution; }

  let top_evars initial =
    let evars_of_initial (c,_) =
      Evar.Set.elements (Evd.evars_of_term c)
    in
    CList.flatten (CList.map evars_of_initial initial)

  let instantiate_evar n com pv =
    let (evk,_) =
      let evl = Evarutil.non_instantiated pv.solution in
      let evl = Evar.Map.bindings evl in
      if (n <= 0) then
	Errors.error "incorrect existential variable index"
      else if CList.length evl < n then
	  Errors.error "not so many uninstantiated existential variables"
      else
	CList.nth evl (n-1)
    in
    { pv with
	solution = Evar_refiner.instantiate_pf_com evk com pv.solution }

  let of_tactic t gls =
    try
      let init = { solution = gls.Evd.sigma ; comb = [gls.Evd.it] } in
      let (_,final,_,_) = apply (GoalV82.env gls.Evd.sigma gls.Evd.it) t init in
      { Evd.sigma = final.solution ; it = final.comb }
    with Logic_monad.TacticFailure e as src ->
      let src = Errors.push src in
      let e = Backtrace.app_backtrace ~src ~dst:e in
      raise e

  let put_status = Status.put

  let catchable_exception = catchable_exception

  let wrap_exceptions f =
    try f ()
    with e when catchable_exception e -> let e = Errors.push e in tclZERO e

end