aboutsummaryrefslogtreecommitdiffhomepage
path: root/proofs/proofview.ml
blob: e19236df04e0f09ee93e58fae39f90c80bf1e48f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* The proofview datastructure is a pure datastructure underlying the notion
   of proof (namely, a proof is a proofview which can evolve and has safety
   mechanisms attached).
   The general idea of the structure is that it is composed of a chemical
   solution: an unstructured bag of stuff which has some relations with 
   one another, which represents the various subnodes of the proof. Together
   with a comb: a datastructure that gives some order to some of these nodes, 
   namely the (focused) open goals. 
   The natural candidate for the solution is an {!Evd.evar_map}, that is
   a calculus of evars. The comb is then a list of goals (evars wrapped 
   with some extra information, like possible name anotations).
   There is also need of a list of the evars which initialised the proofview
   to be able to return information about the proofview. *)

open Pp
open Util

(* Type of proofviews. *)
type proofview = Proofview_monad.proofview
open Proofview_monad

type entry = (Term.constr * Term.types) list

let proofview p =
  p.comb , p.solution

(* Initialises a proofview, the argument is a list of environement, 
   conclusion types, and optional names, creating that many initial goals. *)
let init sigma =
  let rec aux = function
  | [] ->  [], { solution = sigma; comb = []; }
  | (env, typ) :: l ->
    let ret, { solution = sol; comb = comb } = aux l in
    let src = (Loc.ghost,Evar_kinds.GoalEvar) in
    let naming = Misctypes.IntroIdentifier (Names.Id.of_string "Main") in
    let (new_defs , econstr) = Evarutil.new_evar env sol ~src ~naming typ in
    let (e, _) = Term.destEvar econstr in
    let gl = Goal.build e in
    let entry = (econstr, typ) :: ret in
    entry, { solution = new_defs; comb = gl::comb; }
  in
  fun l ->
    let entry, v = aux l in
    (* Marks all the goal unresolvable for typeclasses. *)
    entry, { v with solution = Typeclasses.mark_unresolvables v.solution }

type telescope =
  | TNil of Evd.evar_map
  | TCons of Environ.env * Evd.evar_map * Term.types * (Evd.evar_map -> Term.constr -> telescope)

let dependent_init =
  let rec aux = function
  | TNil sigma -> [], { solution = sigma; comb = []; }
  | TCons (env, sigma, typ, t) ->
    let (sigma, econstr ) = Evarutil.new_evar env sigma typ in
    let ret, { solution = sol; comb = comb } = aux (t sigma econstr) in
    let (e, _) = Term.destEvar econstr in
    let gl = Goal.build e in
    let entry = (econstr, typ) :: ret in
    entry, { solution = sol; comb = gl :: comb; }
  in
  fun t ->
    let entry, v = aux t in
    (* Marks all the goal unresolvable for typeclasses. *)
    entry, { v with solution = Typeclasses.mark_unresolvables v.solution }

let initial_goals initial = initial

(* Returns whether this proofview is finished or not. That is,
   if it has empty subgoals in the comb. There could still be unsolved
   subgoaled, but they would then be out of the view, focused out. *)
let finished = function
  | {comb = []} -> true
  | _  -> false

(* Returns the current value of the proofview partial proofs. *)
let return { solution=defs } = defs

let return_constr { solution = defs } c = Evarutil.nf_evar defs c

let partial_proof entry pv = List.map (return_constr pv) (List.map fst entry)

let emit_side_effects eff x =
  { x with solution = Evd.emit_side_effects eff x.solution }

(* let return { initial=init; solution=defs }  = *)
(*   let evdref = ref defs in *)
(*   let nf,subst = Evarutil.e_nf_evars_and_universes evdref in *)
(*   ((List.map (fun (c,t) -> (nf c, nf t)) init, subst), *)
(*    Evd.universe_context !evdref) *)

(* spiwack: this function should probably go in the Util section,
    but I'd rather have Util (or a separate module for lists)
    raise proper exceptions before *)
(* [IndexOutOfRange] occurs in case of malformed indices
   with respect to list lengths. *)
exception IndexOutOfRange
(* no handler: should not be allowed to reach toplevel *)

(* [list_goto i l] returns a pair of lists [c,t] where
   [c] has length [i] and is the reversed of the [i] first
   elements of [l], and [t] is the rest of the list.
   The idea is to navigate through the list, [c] is then
   seen as the context of the current position. 
   Raises [IndexOutOfRange] if [i > length l]*)
let list_goto = 
  let rec aux acc index = function
    | l when Int.equal index 0-> (acc,l)
    | [] -> raise IndexOutOfRange
    | a::q -> aux (a::acc) (index-1) q
  in
  fun i l ->
    if i < 0 then
      raise IndexOutOfRange
    else
      aux [] i l

(* Type of the object which allow to unfocus a view.*)
(* First component is a reverse list of what comes before
   and second component is what goes after (in the expected
   order) *)
type focus_context = Goal.goal list * Goal.goal list

let focus_context f = f

(* This (internal) function extracts a sublist between two indices, and
   returns this sublist together with its context:
   if it returns [(a,(b,c))] then [a] is the sublist and (rev b)@a@c is the
   original list.
   The focused list has lenght [j-i-1] and contains the goals from
   number [i] to number [j] (both included) the first goal of the list
   being numbered [1].
   [focus_sublist i j l] raises [IndexOutOfRange] if
   [i > length l], or [j > length l] or [ j < i ].  *)
let focus_sublist i j l =
  let (left,sub_right) = list_goto (i-1) l in
  let (sub, right) = 
    try List.chop (j-i+1) sub_right
    with Failure _ -> raise IndexOutOfRange
  in
  (sub, (left,right))

(* Inverse operation to the previous one. *)
let unfocus_sublist (left,right) s =
  List.rev_append left (s@right)


(* [focus i j] focuses a proofview on the goals from index [i] to index [j] 
   (inclusive). (i.e. goals number [i] to [j] become the only goals of the
   returned proofview). The first goal has index 1.
   It returns the focus proof, and a context for the focus trace. *)
let focus i j sp =
  let (new_comb, context) = focus_sublist i j sp.comb in
  ( { sp with comb = new_comb } , context )

(* Unfocuses a proofview with respect to a context. *)
let undefined defs l =
  Option.List.flatten (List.map (Goal.advance defs) l)
let unfocus c sp =
  { sp with comb = undefined sp.solution (unfocus_sublist c sp.comb) }


(* The tactic monad:
   - Tactics are objects which apply a transformation to all
     the subgoals of the current view at the same time. By opposition
     to the old vision of applying it to a single goal. It allows 
     tactics such as [shelve_unifiable] or tactics to reorder
     the focused goals (not done yet).
     (* spiwack: the ordering of goals, though, is actually rather
        brittle. It would be much more interesting to find a more
        robust way to adress goals, I have no idea at this time 
        though*) 
     or global automation tactic for dependent subgoals (instantiating
     an evar has influences on the other goals of the proof in progress,
     not being able to take that into account causes the current eauto
     tactic to fail on some instances where it could succeed).
     Another benefit is that it is possible to write tactics that can
     be executed even if there are no focused goals.
   - Tactics form a monad ['a tactic], in a sense a tactic can be 
     seens as a function (without argument) which returns a value
     of type 'a and modifies the environement (in our case: the view).
     Tactics of course have arguments, but these are given at the 
     meta-level as OCaml functions.
     Most tactics in the sense we are used to return [()], that is
     no really interesting values. But some might pass information 
     around. 
     (* spiwack: as far as I'm aware this doesn't really relate to
        F. Kirchner and C. Muñoz.
     *)
     The tactics seen in Coq's Ltac are (for now at least) only 
     [unit tactic], the return values are kept for the OCaml toolkit.
     The operation or the monad are [Proofview.tclUNIT] (which is the 
     "return" of the tactic monad) [Proofview.tclBIND] (which is
     the "bind") and [Proofview.tclTHEN] (which is a specialized
     bind on unit-returning tactics).
*)

(* type of tactics:

   tactics can
   - access the environment,
   - report unsafe status, shelved goals and given up goals
   - access and change the current [proofview]
   - backtrack on previous changes of the proofview *)
module Proof = Proofview_monad.Logical
type +'a tactic = 'a Proof.t

type 'a case =
| Fail of exn
| Next of 'a * (exn -> 'a tactic)

(* Applies a tactic to the current proofview. *)
let apply env t sp =
  let (((next_r,next_state),status)) = Proofview_monad.NonLogical.run (Proof.run t env sp) in
  next_r , next_state , status

(*** tacticals ***)


let catchable_exception = function
  | Proofview_monad.Exception _ -> false
  | e -> Errors.noncritical e


(* Unit of the tactic monad *)
let tclUNIT a = (Proof.ret a:'a Proof.t)

(* Bind operation of the tactic monad *)
let tclBIND = Proof.bind

(* Interpretes the ";" (semicolon) of Ltac.
   As a monadic operation, it's a specialized "bind"
   on unit-returning tactic (meaning "there is no value to bind") *)
let tclTHEN = Proof.seq

(* [tclIGNORE t] has the same operational content as [t],
   but drops the value at the end. *)
let tclIGNORE = Proof.ignore

(* [tclOR t1 t2 = t1] as long as [t1] succeeds. Whenever the successes
   of [t1] have been depleted and it failed with [e], then it behaves
   as [t2 e].  No interleaving at this point. *)
let tclOR t1 t2 =
  Proof.plus t1 t2

(* [tclZERO e] always fails with error message [e]*)
let tclZERO = Proof.zero

(* [tclCASE t] observes the head of the tactic and returns it as a value *)
let tclCASE t =
  let map = function
  | Nil e -> Fail e
  | Cons (x, t) -> Next (x, t)
  in
  Proof.map map (Proof.split t)

(* [tclORELSE t1 t2] behaves like [t1] if [t1] succeeds at least once
   or [t2] if [t1] fails. *)
let tclORELSE t1 t2 =
  (* spiwack: convenience notations, waiting for ocaml 3.12 *)
  let (>>=) = Proof.bind in
  Proof.split t1 >>= function
    | Nil e -> t2 e
    | Cons (a,t1') -> Proof.plus (Proof.ret a) t1'

(* [tclIFCATCH a s f] is a generalisation of [tclORELSE]: if [a]
   succeeds at least once then it behaves as [tclBIND a s] otherwise, if [a]
   fails with [e], then it behaves as [f e]. *)
let tclIFCATCH a s f =
  (* spiwack: convenience notations, waiting for ocaml 3.12 *)
  let (>>=) = Proof.bind in
  Proof.split a >>= function
    | Nil e -> f e
    | Cons (x,a') -> Proof.plus (s x) (fun e -> (a' e) >>= fun x' -> (s x'))

(* [tclONCE t] fails if [t] fails, otherwise it has exactly one
   success. *)
let tclONCE = Proof.once

let tclBREAK = Proof.break

exception MoreThanOneSuccess
let _ = Errors.register_handler begin function
  | MoreThanOneSuccess -> Errors.error "This tactic has more than one success."
  | _ -> raise Errors.Unhandled
end

(* [tclONCE e t] succeeds as [t] if [t] has exactly one
   success. Otherwise it fails.  It may behave differently than [t] as
   there may be extra non-logical effects used to discover that [t]
   does not have a second success. Moreover the second success may be
   conditional on the error recieved: [e] is used. *)
let tclEXACTLY_ONCE e t =
  (* spiwack: convenience notations, waiting for ocaml 3.12 *)
  let (>>=) = Proof.bind in
  Proof.split t >>= function
    | Nil e -> tclZERO e
    | Cons (x,k) ->
        Proof.split (k e) >>= function
          | Nil _ -> tclUNIT x
          | _ -> tclZERO MoreThanOneSuccess


(* Focuses a tactic at a range of subgoals, found by their indices. *)
exception NoSuchGoals of int
let _ = Errors.register_handler begin function
  | NoSuchGoals n -> Errors.error ("No such " ^ String.plural n "goal" ^".")
  | _ -> raise Errors.Unhandled
end
let tclFOCUS_gen nosuchgoal i j t =
  (* spiwack: convenience notations, waiting for ocaml 3.12 *)
  let (>>=) = Proof.bind in
  let (>>) = Proof.seq in
  Proof.get >>= fun initial ->
  try
    let (focused,context) = focus i j initial in
    Proof.set focused >>
    t >>= fun result ->
    Proof.modify (fun next -> unfocus context next) >>
    Proof.ret result
  with IndexOutOfRange -> nosuchgoal

let tclFOCUS i j t = tclFOCUS_gen (tclZERO (NoSuchGoals (j+1-i))) i j t
let tclTRYFOCUS i j t = tclFOCUS_gen (tclUNIT ()) i j t

let tclFOCUSID id t =
  let (>>=) = Proof.bind in
  let (>>) = Proof.seq in
  Proof.get >>= fun initial ->
  let rec aux n = function
    | [] -> tclZERO (NoSuchGoals 1)
    | g::l ->
        if Names.Id.equal (Goal.goal_ident initial.solution g) id then
          let (focused,context) = focus n n initial in
          Proof.set focused >>
            t >>= fun result ->
          Proof.modify (fun next -> unfocus context next) >>
            Proof.ret result
        else
          aux (n+1) l in
  aux 1 initial.comb


(* Dispatch tacticals are used to apply a different tactic to each goal under
   consideration. They come in two flavours:
   [tclDISPATCH] takes a list of [unit tactic]-s and build a [unit tactic].
   [tclDISPATCHL] takes a list of ['a tactic] and returns an ['a list tactic].

   They both work by applying each of the tactic to the corresponding
   goal (starting with the first goal). In the case of [tclDISPATCHL],
   the tactic returns a list of the same size as the argument list (of
   tactics), each element being the result of the tactic executed in
   the corresponding goal. *)
exception SizeMismatch of int*int
let _ = Errors.register_handler begin function
  | SizeMismatch (i,_) ->
      let open Pp in
      let errmsg =
        str"Incorrect number of goals" ++ spc() ++
        str"(expected "++int i++str" tactics)."
      in
      Errors.errorlabstrm "" errmsg
  | _ -> raise Errors.Unhandled
end

(* A monadic list iteration function *)
(* spiwack: may be moved to a generic libray, or maybe as extracted
   code for extra efficiency? *)
(* val list_iter : 'a list -> 'b -> ('a -> 'b -> 'b tactic) -> 'b tactic *)
let rec list_iter l s i =
  (* spiwack: convenience notations, waiting for ocaml 3.12 *)
  let (>>=) = tclBIND in
  match l with
  | [] -> tclUNIT s
  | [a] -> i a s
  | a::l ->
      i a s >>= fun r ->
      list_iter l r i

(* val list_iter : 'a list -> 'b list -> 'c -> ('a -> 'b -> 'c -> 'c tactic) -> 'c tactic *)
let list_iter2 l1 l2 s i =
  (* spiwack: convenience notations, waiting for ocaml 3.12 *)
  let (>>=) = tclBIND in
  let rec list_iter2 l1 l2 s i =
    match l1 , l2 with
    | [] , [] -> tclUNIT s
    | [a] , [b] -> i a b s
    | a::l1 , b::l2 ->
        i a b s >>= fun r ->
        list_iter2 l1 l2 r i
    | _ , _ -> tclZERO (SizeMismatch (0,0)) (* placeholder *)
  in
  tclORELSE
    (list_iter2 l1 l2 s i)
    begin function
      | SizeMismatch _ -> tclZERO (SizeMismatch (List.length l1,List.length l2))
      | reraise -> tclZERO reraise
    end

(* A variant of [Proof.set] specialized on the comb. Doesn't change
   the underlying "solution" (i.e. [evar_map]) *)
let set_comb c =
  Proof.modify (fun step -> { step with comb = c })

let on_advance g ~solved ~adv =
  (* spiwack: convenience notations, waiting for ocaml 3.12 *)
  let (>>=) = Proof.bind in
  Proof.get >>= fun step ->
  match Goal.advance step.solution g with
  | None -> solved (* If [first] has been solved by side effect: do nothing. *)
  | Some g -> adv g

(* A variant of list_iter where we iter over the focused list of
   goals. The argument tactic is executed in a focus comprising only
   of the current goal, a goal which has been solved by side effect is
   skipped. The generated subgoals are concatenated in order.  *)
(* val list_iter_goal : 'a -> (Goal.goal -> 'a -> 'a tactic) -> 'a tactic *)
let list_iter_goal s i =
  (* spiwack: convenience notations, waiting for ocaml 3.12 *)
  let (>>=) = Proof.bind in
  let (>>) = Proof.seq in
  Proof.get >>= fun initial ->
  list_iter initial.comb (s,[]) begin fun goal ((r,subgoals) as cur) ->
    on_advance goal
      ~solved: ( Proof.ret cur )
      ~adv: begin fun goal ->
        set_comb [goal] >>
        i goal r >>= fun r ->
        Proof.map (fun step -> (r, step.comb :: subgoals)) Proof.get
      end
  end >>= fun (r,subgoals) ->
  set_comb (List.flatten (List.rev subgoals)) >>
  Proof.ret r

(* spiwack: essentially a copy/paste of the above… *)
(* val list_iter_goal : 'a list -> 'b -> (Goal.goal -> 'a -> 'b -> 'b tactic) -> 'b tactic *)
let list_iter_goal2 l s i =
  (* spiwack: convenience notations, waiting for ocaml 3.12 *)
  let (>>=) = Proof.bind in
  let (>>) = Proof.seq in
  Proof.get >>= fun initial ->
  list_iter2 initial.comb l (s,[]) begin fun goal a ((r,subgoals) as cur) ->
    on_advance goal
      ~solved: ( Proof.ret cur )
      ~adv: begin fun goal ->
        set_comb [goal] >>
        i goal a r >>= fun r ->
        Proof.map (fun step -> (r, step.comb :: subgoals)) Proof.get
      end
  end >>= fun (r,subgoals) ->
  set_comb (List.flatten (List.rev subgoals)) >>
  Proof.ret r

(* spiwack: we use an parametrised function to generate the dispatch
   tacticals.  [tclDISPATCHGEN] takes an argument [join] to reify the
   list of produced value into the final value. *)
let tclDISPATCHGEN f join tacs =
  (* spiwack: convenience notations, waiting for ocaml 3.12 *)
  let (>>=) = Proof.bind in
  match tacs with
  | [] ->
      begin 
        Proof.get >>= fun initial ->
        match initial.comb with
        | [] -> tclUNIT (join [])
        | _ -> tclZERO (SizeMismatch (List.length initial.comb,0))
      end
  | [tac] ->
      begin
        Proof.get >>= fun initial ->
        match initial.comb with
        | [goal] ->
            on_advance goal
              ~solved:( tclUNIT (join []) )
              ~adv:begin fun _ ->
                Proof.map (fun res -> join [res]) (f tac)
              end
        | _ -> tclZERO (SizeMismatch(List.length initial.comb,1))
      end
  | _ ->
      let iter _ t cur = Proof.map (fun y -> y :: cur) (f t) in
      let ans = list_iter_goal2 tacs [] iter in
      Proof.map join ans

let tclDISPATCH tacs = tclDISPATCHGEN Util.identity ignore tacs

let tclDISPATCHL tacs =
  tclDISPATCHGEN Util.identity List.rev tacs

let extend_to_list startxs rx endxs l =
  (* spiwack: I use [l] essentially as a natural number *)
  let rec duplicate acc = function
    | [] -> acc
    | _::rest -> duplicate (rx::acc) rest
  in
  let rec tail to_match rest =
    match rest, to_match with
    | [] , _::_ -> raise (SizeMismatch(0,0)) (* placeholder *)
    | _::rest , _::to_match -> tail to_match rest
    | _ , [] -> duplicate endxs rest
  in
  let rec copy pref rest =
    match rest,pref with
    | [] , _::_ -> raise (SizeMismatch(0,0)) (* placeholder *)
    | _::rest, a::pref -> a::(copy pref rest)
    | _ , [] -> tail endxs rest
  in
  copy startxs l

let tclEXTEND tacs1 rtac tacs2 =
  (* spiwack: convenience notations, waiting for ocaml 3.12 *)
  let (>>=) = Proof.bind in
  Proof.get >>= fun step ->
  try
    let tacs = extend_to_list tacs1 rtac tacs2 step.comb in
    tclDISPATCH tacs
  with SizeMismatch _ ->
    tclZERO (SizeMismatch(
      List.length step.comb,
      (List.length tacs1)+(List.length tacs2)))
(* spiwack: failure occur only when the number of goals is too
   small. Hence we can assume that [rtac] is replicated 0 times for
   any error message. *)

let tclINDEPENDENT tac =
  (* spiwack: convenience notations, waiting for ocaml 3.12 *)
  let (>>=) = Proof.bind in
  Proof.get >>= fun initial ->
  match initial.comb with
  | [] -> tclUNIT ()
  | [_] -> tac
  | _ -> list_iter_goal () (fun _ () -> tac)

let tclNEWGOALS gls =
  Proof.modify begin fun step ->
  let map gl = Goal.advance step.solution gl in
  let gls = List.map_filter map gls in
  { step with comb = step.comb @ gls }
  end

let tclPROGRESS t =
  (* spiwack: convenience notations, waiting for ocaml 3.12 *)
  let (>>=) = Proof.bind in
  Proof.get >>= fun initial ->
  t >>= fun res ->
  Proof.get >>= fun final ->
  let test =
    Evd.progress_evar_map initial.solution final.solution &&
    not (Util.List.for_all2eq (fun i f -> Goal.equal initial.solution i final.solution f) initial.comb final.comb)
  in
  if test then
    tclUNIT res
  else
    tclZERO (Errors.UserError ("Proofview.tclPROGRESS" , Pp.str"Failed to progress."))

let tclEVARMAP =
  Proof.map (fun initial -> initial.solution) Proof.get

let tclENV = Proof.current

let tclEFFECTS eff =
  Proof.bind (Proof.ret ())
    (fun () -> (* The Global.env should be taken at exec time *)
       Proof.seq
         (Proof.update (Global.env ()))
         (Proof.modify (fun initial -> emit_side_effects eff initial)))

exception Timeout
let _ = Errors.register_handler begin function
  | Timeout -> Errors.errorlabstrm "Proofview.tclTIMEOUT" (Pp.str"Tactic timeout!")
  | _ -> Pervasives.raise Errors.Unhandled
end

let tclTIMEOUT n t =
  (* spiwack: convenience notations, waiting for ocaml 3.12 *)
  let (>>=) = Proof.bind in
  let (>>) = Proof.seq in
  (* spiwack: as one of the monad is a continuation passing monad, it
     doesn't force the computation to be threaded inside the underlying
     (IO) monad. Hence I force it myself by asking for the evaluation of
     a dummy value first, lest [timeout] be called when everything has
     already been computed. *)
  let t = Proof.lift (Proofview_monad.NonLogical.ret ()) >> t in
  Proof.current >>= fun env ->
  Proof.get >>= fun initial ->
  Proof.lift begin
    Proofview_monad.NonLogical.catch
      begin
        Proofview_monad.NonLogical.bind
          (Proofview_monad.NonLogical.timeout n (Proof.run t env initial))
          (fun r -> Proofview_monad.NonLogical.ret (Util.Inl r))
      end
      begin function
        | Proofview_monad.Timeout -> Proofview_monad.NonLogical.ret (Util.Inr Timeout)
        | Proofview_monad.TacticFailure e as src ->
          let e = Backtrace.app_backtrace ~src ~dst:e in
          Proofview_monad.NonLogical.ret (Util.Inr e)
        | e -> Proofview_monad.NonLogical.raise e
      end
  end >>= function
    | Util.Inl ((res,s),m) ->
        Proof.set s >>
        Proof.put m >>
        Proof.ret res
    | Util.Inr e -> tclZERO e

let tclTIME s t =
  let (>>=) = Proof.bind in
  let pr_time t1 t2 n msg =
    let msg =
      if n = 0 then
        str msg
      else
        str (msg ^ " after ") ++ int n ++ str (String.plural n " backtracking")
    in
    msg_info(str "Tactic call" ++ pr_opt str s ++ str " ran for " ++
             System.fmt_time_difference t1 t2 ++ str " " ++ surround msg) in
  let rec aux n t =
    tclUNIT () >>= fun () ->
    let tstart = System.get_time() in
    Proof.split t >>= function
    | Nil e ->
      begin
        let tend = System.get_time() in
        pr_time tstart tend n "failure";
        tclZERO e
      end
    | Cons (x,k) ->
        let tend = System.get_time() in
        pr_time tstart tend n "success";
        tclOR (tclUNIT x) (fun e -> aux (n+1) (k e))
  in aux 0 t

let mark_as_unsafe =
  Proof.put (false,([],[]))

(* Shelves all the goals under focus. *)
let shelve =
  (* spiwack: convenience notations, waiting for ocaml 3.12 *)
  let (>>=) = Proof.bind in
  let (>>) = Proof.seq in
  Proof.get >>= fun initial ->
  Proof.set {initial with comb=[]} >>
  Proof.put (true,(initial.comb,[]))

(* Shelves the unifiable goals under focus, i.e. the goals which
   appear in other goals under focus (the unfocused goals are not
   considered). *)
let shelve_unifiable =
  (* spiwack: convenience notations, waiting for ocaml 3.12 *)
  let (>>=) = Proof.bind in
  let (>>) = Proof.seq in
  Proof.get >>= fun initial ->
  let (u,n) = Goal.partition_unifiable initial.solution initial.comb in
  Proof.set {initial with comb=n} >>
  Proof.put (true,(u,[]))

let check_no_dependencies =
  let (>>=) = Proof.bind in
  Proof.get >>= fun initial ->
  let (u,n) = Goal.partition_unifiable initial.solution initial.comb in
  match u with
  | [] -> tclUNIT ()
  | gls ->
      let l = List.map (Goal.dependent_goal_ident initial.solution) gls in
      let l = List.map (fun id -> Names.Name id) l in
      tclZERO (Logic.RefinerError (Logic.UnresolvedBindings l))

(* [unshelve l p] adds all the goals in [l] at the end of the focused
   goals of p *)
let unshelve l p =
  { p with comb = p.comb@l }

(* Gives up on the goal under focus. Reports an unsafe status. Proofs
   with given up goals cannot be closed. *)
let give_up =
  (* spiwack: convenience notations, waiting for ocaml 3.12 *)
  let (>>=) = Proof.bind in
  let (>>) = Proof.seq in
  Proof.get >>= fun initial ->
  Proof.set {initial with comb=[]} >>
  Proof.put (false,([],initial.comb))

(** [goodmod p m] computes the representative of [p] modulo [m] in the
    interval [[0,m-1]].*)
let goodmod p m =
  let p' = p mod m in
  (* if [n] is negative [n mod l] is negative of absolute value less
     than [l], so [(n mod l)+l] is the representative of [n] in the
     interval [[0,l-1]].*)
  if p' < 0 then p'+m else p'

let cycle n =
  (* spiwack: convenience notations, waiting for ocaml 3.12 *)
  let (>>=) = Proof.bind in
  Proof.get >>= fun initial ->
  let l = List.length initial.comb in
  let n' = goodmod n l in
  let (front,rear) = List.chop n' initial.comb in
  Proof.set {initial with comb=rear@front}

let swap i j =
  (* spiwack: convenience notations, waiting for ocaml 3.12 *)
  let (>>=) = Proof.bind in
  Proof.get >>= fun initial ->
  let l = List.length initial.comb in
  let i = if i>0 then i-1 else i and j = if j>0 then j-1 else j in
  let i = goodmod i l and j = goodmod j l in
  let comb =
    CList.map_i begin fun k x ->
      match k with
      | k when Int.equal k i -> CList.nth initial.comb j
      | k when Int.equal k j -> CList.nth initial.comb i
      | _ -> x
    end 0 initial.comb
  in
  Proof.set {initial with comb}

let revgoals =
  (* spiwack: convenience notations, waiting for ocaml 3.12 *)
  let (>>=) = Proof.bind in
  Proof.get >>= fun initial ->
  Proof.set {initial with comb=List.rev initial.comb}

let numgoals =
  (* spiwack: convenience notations, waiting for ocaml 3.12 *)
  let (>>=) = Proof.bind in
  Proof.get >>= fun { comb } ->
  Proof.ret (List.length comb)

(*** Commands ***)

let in_proofview p k =
  k p.solution



module Notations = struct
  let (>>=) = tclBIND
  let (<*>) = tclTHEN
  let (<+>) t1 t2 = tclOR t1 (fun _ -> t2)
end

open Notations

module Monad =
  Monad.Make(struct type +'a t = 'a tactic let return=tclUNIT let (>>=)=(>>=) end)


(*** Compatibility layer with <= 8.2 tactics ***)
module V82 = struct
  type tac = Goal.goal Evd.sigma -> Goal.goal list Evd.sigma

  let tactic tac =
    (* spiwack: we ignore the dependencies between goals here,
       expectingly preserving the semantics of <= 8.2 tactics *)
    (* spiwack: convenience notations, waiting for ocaml 3.12 *)
    let (>>=) = Proof.bind in
    Proof.get >>= fun ps ->
    try
      let tac gl evd = 
        let glsigma  =
          tac { Evd.it = gl ; sigma = evd; }  in
        let sigma = glsigma.Evd.sigma in
        let g = glsigma.Evd.it in
        ( g, sigma )
      in
        (* Old style tactics expect the goals normalized with respect to evars. *)
      let (initgoals,initevd) =
        Evd.Monad.List.map (fun g s -> Goal.V82.nf_evar s g) ps.comb ps.solution
      in
      let (goalss,evd) = Evd.Monad.List.map tac initgoals initevd in
      let sgs = List.flatten goalss in
      Proof.set { solution = evd; comb = sgs; }
    with e when catchable_exception e ->
      let e = Errors.push e in
      tclZERO e


  (* normalises the evars in the goals, and stores the result in
     solution. *)
  let nf_evar_goals =
    Proof.modify begin fun ps ->
    let map g s = Goal.V82.nf_evar s g in
    let (goals,evd) = Evd.Monad.List.map map ps.comb ps.solution in
    { solution = evd; comb = goals; }
    end

  (* A [Proofview.tactic] version of [Refiner.tclEVARS] *)
  let tclEVARS evd =
    Proof.modify (fun ps -> { ps with solution = evd })

  let tclEVARSADVANCE evd =
    Proof.modify (fun ps -> { solution = evd; comb = undefined evd ps.comb })

  let tclEVARUNIVCONTEXT ctx = 
    Proof.modify (fun ps -> { ps with solution = Evd.set_universe_context ps.solution ctx })
      
  let has_unresolved_evar pv =
    Evd.has_undefined pv.solution

  (* Main function in the implementation of Grab Existential Variables.*)
  let grab pv =
    let undef = Evd.undefined_map pv.solution in
    let goals =
      List.map begin fun (e,_) ->
	Goal.build e
      end (Evar.Map.bindings undef)
    in
    { pv with comb = goals }
      
    

  (* Returns the open goals of the proofview together with the evar_map to 
     interprete them. *)
  let goals { comb = comb ; solution = solution; } =
   { Evd.it = comb ; sigma = solution }

  let top_goals initial { solution=solution; } =
    let goals = List.map (fun (t,_) -> Goal.V82.build (fst (Term.destEvar t))) initial in
    { Evd.it = goals ; sigma=solution; }

  let top_evars initial =
    let evars_of_initial (c,_) =
      Evar.Set.elements (Evd.evars_of_term c)
    in
    List.flatten (List.map evars_of_initial initial)

  let instantiate_evar n com pv =
    let (evk,_) =
      let evl = Evarutil.non_instantiated pv.solution in
      let evl = Evar.Map.bindings evl in
      if (n <= 0) then
	Errors.error "incorrect existential variable index"
      else if List.length evl < n then
	  Errors.error "not so many uninstantiated existential variables"
      else
	List.nth evl (n-1) 
    in
    { pv with
	solution = Evar_refiner.instantiate_pf_com evk com pv.solution }

  let of_tactic t gls =
    try
      let init = { solution = gls.Evd.sigma ; comb = [gls.Evd.it] } in
      let (_,final,_) = apply (Goal.V82.env gls.Evd.sigma gls.Evd.it) t init in
      { Evd.sigma = final.solution ; it = final.comb }
    with Proofview_monad.TacticFailure e as src ->
      let src = Errors.push src in
      let e = Backtrace.app_backtrace ~src ~dst:e in
      raise e

  let put_status b =
    Proof.put (b,([],[]))

  let catchable_exception = catchable_exception

  let wrap_exceptions f =
    try f ()
    with e when catchable_exception e -> let e = Errors.push e in tclZERO e

end

type goal = Goal.goal
let build_goal = Goal.build
let partial_solution = Goal.V82.partial_solution
let partial_solution_to = Goal.V82.partial_solution_to

module Goal = struct

  type 'a t = {
    env : Environ.env;
    sigma : Evd.evar_map;
    concl : Term.constr ;
    self : Goal.goal ; (* for compatibility with old-style definitions *)
  }

  let assume (gl : 'a t) = (gl :> [ `NF ] t)

  let env { env=env } = env
  let sigma { sigma=sigma } = sigma
  let hyps { env=env } = Environ.named_context env
  let concl { concl=concl } = concl

  let raw_concl { concl=concl } = concl

  let nf_enter_t = Goal.nf_enter begin fun env sigma concl self ->
    {env=env;sigma=sigma;concl=concl;self=self}
  end

  let nf_enter f =
    list_iter_goal () begin fun goal () ->
      Proof.current >>= fun env ->
      tclEVARMAP >>= fun sigma ->
      try
        let (gl, sigma) = Goal.eval nf_enter_t env sigma goal in
        tclTHEN (V82.tclEVARS sigma) (f gl)
      with e when catchable_exception e ->
        let e = Errors.push e in
        tclZERO e
    end

  let normalize { self } =
    Proof.current >>= fun env ->
    tclEVARMAP >>= fun sigma ->
    let (gl,sigma) = Goal.eval nf_enter_t env sigma self in
    tclTHEN (V82.tclEVARS sigma) (tclUNIT gl)

  let enter_t f = Goal.enter begin fun env sigma concl self ->
    f {env=env;sigma=sigma;concl=concl;self=self}
  end

  let enter f =
    list_iter_goal () begin fun goal () ->
      Proof.current >>= fun env ->
      tclEVARMAP >>= fun sigma ->
      try
        (* raw_enter_t cannot modify the sigma. *)
        let (t,_) = Goal.eval (enter_t f) env sigma goal in
        t
      with e when catchable_exception e ->
        let e = Errors.push e in
        tclZERO e
    end

  let goals =
    Proof.current >>= fun env ->
    Proof.get >>= fun step ->
    let sigma = step.solution in
    let map goal =
      match Goal.advance sigma goal with
      | None -> None (** ppedrot: Is this check really necessary? *)
      | Some goal ->
        let gl =
          tclEVARMAP >>= fun sigma ->
          (** The sigma is unchanged. *)
          let (gl, _) = Goal.eval (enter_t (fun gl -> gl)) env sigma goal in
          tclUNIT gl
        in
        Some gl
    in
    tclUNIT (List.map_filter map step.comb)

  (* compatibility *)
  let goal { self=self } = self
  let refresh_sigma g =
    tclEVARMAP >>= fun sigma ->
    tclUNIT { g with sigma }

end

module Refine =
struct
  type handle = Evd.evar_map * Evar.t list * Evar.t option

  let new_evar (evd, evs, evkmain) ?(main=false) env typ =
    let src = (Loc.ghost, Evar_kinds.GoalEvar) in
    let naming =
      if main then
        (* waiting for a more principled approach
           (unnamed evars, private names?) *)
        Misctypes.IntroFresh (Names.Id.of_string "tmp_goal")
      else
        Misctypes.IntroAnonymous in
    let (evd, ev) = Evarutil.new_evar env evd ~src ~naming typ in
    let evd = Typeclasses.mark_unresolvables 
      ~filter:(fun ev' _ -> Evar.equal (fst (Term.destEvar ev)) ev') evd in
    let (evk, _) = Term.destEvar ev in
    let evkmain =
      if main then match evkmain with
      | Some _ -> Errors.error "Only one main subgoal per instantiation."
      | None -> Some evk
      else evkmain in
    let h = (evd, evk :: evs, evkmain) in
    (h, ev)

  let new_evar_instance (evd, evs, evkmain) ctx typ inst =
    let src = (Loc.ghost, Evar_kinds.GoalEvar) in
    let (evd, ev) = Evarutil.new_evar_instance ctx evd ~src typ inst in
    let evd = Typeclasses.mark_unresolvables 
      ~filter:(fun ev' _ -> Evar.equal (fst (Term.destEvar ev)) ev') evd in
    let (evk, _) = Term.destEvar ev in
    let h = (evd, evk :: evs, evkmain) in
    (h, ev)

  let fresh_constructor_instance (evd,evs,evkmain) env construct =
    let (evd,pconstruct) = Evd.fresh_constructor_instance env evd construct in
    (evd,evs,evkmain) , pconstruct

  let with_type (evd,evs,evkmain) env c t =
    let my_type = Retyping.get_type_of env evd c in
    let j = Environ.make_judge c my_type in
    let (evd,j') =
      Coercion.inh_conv_coerce_to true (Loc.ghost) env evd j t
    in
    (evd,evs,evkmain) , j'.Environ.uj_val

  let typecheck_evar ev env sigma =
    let info = Evd.find sigma ev in
    let evdref = ref sigma in
    let env = Environ.reset_with_named_context (Evd.evar_hyps info) env in
    let _ = Typing.sort_of env evdref (Evd.evar_concl info) in
    !evdref

  let typecheck_proof c concl env sigma =
    let evdref = ref sigma in
    let () = Typing.check env evdref c concl in
    !evdref

  let refine ?(unsafe = false) f = Goal.enter begin fun gl ->
    let sigma = Goal.sigma gl in
    let env = Goal.env gl in
    let concl = Goal.concl gl in
    let handle = (sigma, [], None) in
    let ((sigma, evs, evkmain), c) = f handle in
    (** Check that the introduced evars are well-typed *)
    let fold accu ev = typecheck_evar ev env accu in
    let sigma = if unsafe then sigma else List.fold_left fold sigma evs in
    (** Check that the refined term is typesafe *)
    let sigma = if unsafe then sigma else typecheck_proof c concl env sigma in
    (** Proceed to the refinement *)
    let sigma = match evkmain with
      | None -> partial_solution sigma gl.Goal.self c 
      | Some evk -> partial_solution_to sigma gl.Goal.self (build_goal evk) c in
    let comb = undefined sigma (List.rev_map build_goal evs) in
    Proof.set { solution = sigma; comb; }
  end

  let refine_casted ?(unsafe = false) f = Goal.enter begin fun gl ->
    let concl = Goal.concl gl in
    let env = Goal.env gl in
    let f h = let (h, c) = f h in with_type h env c concl in
    refine ~unsafe f
  end

  let update (evd, gls, evkmain) f =
    let nevd, ans = f evd in
    let fold ev _ accu =
      if not (Evd.mem evd ev) then ev :: accu else accu
    in
    let gls = Evd.fold_undefined fold nevd gls in
    (nevd, gls, evkmain), ans

end

module NonLogical = Proofview_monad.NonLogical

let tclLIFT = Proofview_monad.Logical.lift

let tclCHECKINTERRUPT =
   tclLIFT (NonLogical.make Control.check_for_interrupt)