1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(***********************************************************************)
(* *)
(* This module defines proof facilities relevant to the *)
(* toplevel. In particular it defines the global proof *)
(* environment. *)
(* *)
(***********************************************************************)
open Util
open Pp
open Names
module NamedDecl = Context.Named.Declaration
(*** Proof Modes ***)
(* Type of proof modes :
- A function [set] to set it *from standard mode*
- A function [reset] to reset the *standard mode* from it *)
type proof_mode_name = string
type proof_mode = {
name : proof_mode_name ;
set : unit -> unit ;
reset : unit -> unit
}
let proof_modes = Hashtbl.create 6
let find_proof_mode n =
try Hashtbl.find proof_modes n
with Not_found ->
CErrors.user_err Pp.(str (Format.sprintf "No proof mode named \"%s\"." n))
let register_proof_mode ({name = n} as m) =
Hashtbl.add proof_modes n (CEphemeron.create m)
(* initial mode: standard mode *)
let standard = { name = "No" ; set = (fun ()->()) ; reset = (fun () -> ()) }
let _ = register_proof_mode standard
(* Default proof mode, to be set at the beginning of proofs. *)
let default_proof_mode = ref (find_proof_mode "No")
let get_default_proof_mode_name () =
(CEphemeron.default !default_proof_mode standard).name
let _ =
Goptions.(declare_string_option {
optdepr = false;
optname = "default proof mode" ;
optkey = ["Default";"Proof";"Mode"] ;
optread = begin fun () ->
(CEphemeron.default !default_proof_mode standard).name
end;
optwrite = begin fun n ->
default_proof_mode := find_proof_mode n
end
})
(*** Proof Global Environment ***)
(* Extra info on proofs. *)
type lemma_possible_guards = int list list
type proof_object = {
id : Names.Id.t;
entries : Safe_typing.private_constants Entries.definition_entry list;
persistence : Decl_kinds.goal_kind;
universes: UState.t;
}
type opacity_flag = Opaque | Transparent
type proof_ending =
| Admitted of Names.Id.t * Decl_kinds.goal_kind * Entries.parameter_entry * UState.t
| Proved of opacity_flag *
Misctypes.lident option *
proof_object
type proof_terminator = proof_ending -> unit
type closed_proof = proof_object * proof_terminator
type pstate = {
pid : Id.t; (* the name of the theorem whose proof is being constructed *)
terminator : proof_terminator CEphemeron.key;
endline_tactic : Genarg.glob_generic_argument option;
section_vars : Context.Named.t option;
proof : Proof.t;
strength : Decl_kinds.goal_kind;
mode : proof_mode CEphemeron.key;
universe_decl: Univdecls.universe_decl;
}
type t = pstate list
type state = t
let make_terminator f = f
let apply_terminator f = f
(* The head of [!pstates] is the actual current proof, the other ones are
to be resumed when the current proof is closed or aborted. *)
let pstates = ref ([] : pstate list)
(* Current proof_mode, for bookkeeping *)
let current_proof_mode = ref !default_proof_mode
(* combinators for proof modes *)
let update_proof_mode () =
match !pstates with
| { mode = m } :: _ ->
CEphemeron.iter_opt !current_proof_mode (fun x -> x.reset ());
current_proof_mode := m;
CEphemeron.iter_opt !current_proof_mode (fun x -> x.set ())
| _ ->
CEphemeron.iter_opt !current_proof_mode (fun x -> x.reset ());
current_proof_mode := find_proof_mode "No"
(* combinators for the current_proof lists *)
let push a l = l := a::!l;
update_proof_mode ()
exception NoSuchProof
let _ = CErrors.register_handler begin function
| NoSuchProof -> CErrors.user_err Pp.(str "No such proof.")
| _ -> raise CErrors.Unhandled
end
exception NoCurrentProof
let _ = CErrors.register_handler begin function
| NoCurrentProof -> CErrors.user_err Pp.(str "No focused proof (No proof-editing in progress).")
| _ -> raise CErrors.Unhandled
end
(*** Proof Global manipulation ***)
let get_all_proof_names () =
List.map (function { pid = id } -> id) !pstates
let cur_pstate () =
match !pstates with
| np::_ -> np
| [] -> raise NoCurrentProof
let give_me_the_proof () = (cur_pstate ()).proof
let give_me_the_proof_opt () = try Some (give_me_the_proof ()) with | NoCurrentProof -> None
let get_current_proof_name () = (cur_pstate ()).pid
let with_current_proof f =
match !pstates with
| [] -> raise NoCurrentProof
| p :: rest ->
let et =
match p.endline_tactic with
| None -> Proofview.tclUNIT ()
| Some tac ->
let open Geninterp in
let ist = { lfun = Id.Map.empty; extra = TacStore.empty } in
let Genarg.GenArg (Genarg.Glbwit tag, tac) = tac in
let tac = Geninterp.interp tag ist tac in
Ftactic.run tac (fun _ -> Proofview.tclUNIT ())
in
let (newpr,ret) = f et p.proof in
let p = { p with proof = newpr } in
pstates := p :: rest;
ret
let simple_with_current_proof f = with_current_proof (fun t p -> f t p , ())
let compact_the_proof () = simple_with_current_proof (fun _ -> Proof.compact)
(* Sets the tactic to be used when a tactic line is closed with [...] *)
let set_endline_tactic tac =
match !pstates with
| [] -> raise NoCurrentProof
| p :: rest -> pstates := { p with endline_tactic = Some tac } :: rest
(* spiwack: it might be considered to move error messages away.
Or else to remove special exceptions from Proof_global.
Arguments for the former: there is no reason Proof_global is only
accessed directly through vernacular commands. Error message should be
pushed to external layers, and so we should be able to have a finer
control on error message on complex actions. *)
let msg_proofs () =
match get_all_proof_names () with
| [] -> (spc () ++ str"(No proof-editing in progress).")
| l -> (str"." ++ fnl () ++ str"Proofs currently edited:" ++ spc () ++
(pr_sequence Id.print l) ++ str".")
let there_is_a_proof () = not (List.is_empty !pstates)
let there_are_pending_proofs () = there_is_a_proof ()
let check_no_pending_proof () =
if not (there_are_pending_proofs ()) then
()
else begin
CErrors.user_err
(str"Proof editing in progress" ++ msg_proofs () ++ fnl() ++
str"Use \"Abort All\" first or complete proof(s).")
end
let discard_gen id =
pstates := List.filter (fun { pid = id' } -> not (Id.equal id id')) !pstates
let discard {CAst.loc;v=id} =
let n = List.length !pstates in
discard_gen id;
if Int.equal (List.length !pstates) n then
CErrors.user_err ?loc
~hdr:"Pfedit.delete_proof" (str"No such proof" ++ msg_proofs ())
let discard_current () =
if List.is_empty !pstates then raise NoCurrentProof else pstates := List.tl !pstates
let discard_all () = pstates := []
(* [set_proof_mode] sets the proof mode to be used after it's called. It is
typically called by the Proof Mode command. *)
let set_proof_mode m id =
pstates :=
List.map (function { pid = id' } as p ->
if Id.equal id' id then { p with mode = m } else p) !pstates;
update_proof_mode ()
let set_proof_mode mn =
set_proof_mode (find_proof_mode mn) (get_current_proof_name ())
let activate_proof_mode mode =
CEphemeron.iter_opt (find_proof_mode mode) (fun x -> x.set ())
let disactivate_current_proof_mode () =
CEphemeron.iter_opt !current_proof_mode (fun x -> x.reset ())
let default_universe_decl =
let open Misctypes in
{ univdecl_instance = [];
univdecl_extensible_instance = true;
univdecl_constraints = Univ.Constraint.empty;
univdecl_extensible_constraints = true }
(** [start_proof sigma id pl str goals terminator] starts a proof of name
[id] with goals [goals] (a list of pairs of environment and
conclusion); [str] describes what kind of theorem/definition this
is (spiwack: for potential printing, I believe is used only by
closing commands and the xml plugin); [terminator] is used at the
end of the proof to close the proof. The proof is started in the
evar map [sigma] (which can typically contain universe
constraints), and with universe bindings pl. *)
let start_proof sigma id ?(pl=default_universe_decl) str goals terminator =
let initial_state = {
pid = id;
terminator = CEphemeron.create terminator;
proof = Proof.start sigma goals;
endline_tactic = None;
section_vars = None;
strength = str;
mode = find_proof_mode "No";
universe_decl = pl } in
push initial_state pstates
let start_dependent_proof id ?(pl=default_universe_decl) str goals terminator =
let initial_state = {
pid = id;
terminator = CEphemeron.create terminator;
proof = Proof.dependent_start goals;
endline_tactic = None;
section_vars = None;
strength = str;
mode = find_proof_mode "No";
universe_decl = pl } in
push initial_state pstates
let get_used_variables () = (cur_pstate ()).section_vars
let get_universe_decl () = (cur_pstate ()).universe_decl
let proof_using_auto_clear = ref false
let _ = Goptions.declare_bool_option
{ Goptions.optdepr = false;
Goptions.optname = "Proof using Clear Unused";
Goptions.optkey = ["Proof";"Using";"Clear";"Unused"];
Goptions.optread = (fun () -> !proof_using_auto_clear);
Goptions.optwrite = (fun b -> proof_using_auto_clear := b) }
let set_used_variables l =
let open Context.Named.Declaration in
let env = Global.env () in
let ids = List.fold_right Id.Set.add l Id.Set.empty in
let ctx = Environ.keep_hyps env ids in
let ctx_set =
List.fold_right Id.Set.add (List.map NamedDecl.get_id ctx) Id.Set.empty in
let vars_of = Environ.global_vars_set in
let aux env entry (ctx, all_safe, to_clear as orig) =
match entry with
| LocalAssum (x,_) ->
if Id.Set.mem x all_safe then orig
else (ctx, all_safe, (CAst.make x)::to_clear)
| LocalDef (x,bo, ty) as decl ->
if Id.Set.mem x all_safe then orig else
let vars = Id.Set.union (vars_of env bo) (vars_of env ty) in
if Id.Set.subset vars all_safe
then (decl :: ctx, Id.Set.add x all_safe, to_clear)
else (ctx, all_safe, (CAst.make x) :: to_clear) in
let ctx, _, to_clear =
Environ.fold_named_context aux env ~init:(ctx,ctx_set,[]) in
let to_clear = if !proof_using_auto_clear then to_clear else [] in
match !pstates with
| [] -> raise NoCurrentProof
| p :: rest ->
if not (Option.is_empty p.section_vars) then
CErrors.user_err Pp.(str "Used section variables can be declared only once");
pstates := { p with section_vars = Some ctx} :: rest;
ctx, to_clear
let get_open_goals () =
let gl, gll, shelf , _ , _ = Proof.proof (cur_pstate ()).proof in
List.length gl +
List.fold_left (+) 0
(List.map (fun (l1,l2) -> List.length l1 + List.length l2) gll) +
List.length shelf
type closed_proof_output = (Constr.t * Safe_typing.private_constants) list * UState.t
let close_proof ~keep_body_ucst_separate ?feedback_id ~now
(fpl : closed_proof_output Future.computation) =
let { pid; section_vars; strength; proof; terminator; universe_decl } =
cur_pstate () in
let poly = pi2 strength (* Polymorphic *) in
let initial_goals = Proof.initial_goals proof in
let initial_euctx = Proof.initial_euctx proof in
let constrain_variables ctx =
UState.constrain_variables (fst (UState.context_set initial_euctx)) ctx
in
let fpl, univs = Future.split2 fpl in
let universes = if poly || now then Future.force univs else initial_euctx in
(* Because of dependent subgoals at the beginning of proofs, we could
have existential variables in the initial types of goals, we need to
normalise them for the kernel. *)
let subst_evar k =
Proof.in_proof proof (fun m -> Evd.existential_opt_value0 m k) in
let nf = UnivSubst.nf_evars_and_universes_opt_subst subst_evar
(UState.subst universes) in
let make_body =
if poly || now then
let make_body t (c, eff) =
let body = c in
let allow_deferred =
not poly && (keep_body_ucst_separate ||
not (Safe_typing.empty_private_constants = eff))
in
let typ = if allow_deferred then t else nf t in
let env = Global.env () in
let used_univs_body = Univops.universes_of_constr env body in
let used_univs_typ = Univops.universes_of_constr env typ in
if allow_deferred then
let initunivs = UState.const_univ_entry ~poly initial_euctx in
let ctx = constrain_variables universes in
(* For vi2vo compilation proofs are computed now but we need to
complement the univ constraints of the typ with the ones of
the body. So we keep the two sets distinct. *)
let used_univs = Univ.LSet.union used_univs_body used_univs_typ in
let ctx_body = UState.restrict ctx used_univs in
let univs = UState.check_mono_univ_decl ctx_body universe_decl in
(initunivs, typ), ((body, univs), eff)
else
(* Since the proof is computed now, we can simply have 1 set of
constraints in which we merge the ones for the body and the ones
for the typ. We recheck the declaration after restricting with
the actually used universes.
TODO: check if restrict is really necessary now. *)
let used_univs = Univ.LSet.union used_univs_body used_univs_typ in
let ctx = UState.restrict universes used_univs in
let univs = UState.check_univ_decl ~poly ctx universe_decl in
(univs, typ), ((body, Univ.ContextSet.empty), eff)
in
fun t p -> Future.split2 (Future.chain p (make_body t))
else
fun t p ->
(* Already checked the univ_decl for the type universes when starting the proof. *)
let univctx = Entries.Monomorphic_const_entry (UState.context_set universes) in
Future.from_val (univctx, nf t),
Future.chain p (fun (pt,eff) ->
(* Deferred proof, we already checked the universe declaration with
the initial universes, ensure that the final universes respect
the declaration as well. If the declaration is non-extensible,
this will prevent the body from adding universes and constraints. *)
let bodyunivs = constrain_variables (Future.force univs) in
let univs = UState.check_mono_univ_decl bodyunivs universe_decl in
(pt,univs),eff)
in
let entry_fn p (_, t) =
let t = EConstr.Unsafe.to_constr t in
let univstyp, body = make_body t p in
let univs, typ = Future.force univstyp in
{Entries.
const_entry_body = body;
const_entry_secctx = section_vars;
const_entry_feedback = feedback_id;
const_entry_type = Some typ;
const_entry_inline_code = false;
const_entry_opaque = true;
const_entry_universes = univs; }
in
let entries = Future.map2 entry_fn fpl initial_goals in
{ id = pid; entries = entries; persistence = strength;
universes },
fun pr_ending -> CEphemeron.get terminator pr_ending
let return_proof ?(allow_partial=false) () =
let { pid; proof; strength = (_,poly,_) } = cur_pstate () in
if allow_partial then begin
let proofs = Proof.partial_proof proof in
let _,_,_,_, evd = Proof.proof proof in
let eff = Evd.eval_side_effects evd in
(** ppedrot: FIXME, this is surely wrong. There is no reason to duplicate
side-effects... This may explain why one need to uniquize side-effects
thereafter... *)
let proofs = List.map (fun c -> EConstr.Unsafe.to_constr c, eff) proofs in
proofs, Evd.evar_universe_context evd
end else
let initial_goals = Proof.initial_goals proof in
let evd =
let error s =
let prf = str " (in proof " ++ Id.print pid ++ str ")" in
raise (CErrors.UserError(Some "last tactic before Qed",s ++ prf))
in
try Proof.return proof with
| Proof.UnfinishedProof ->
error(str"Attempt to save an incomplete proof")
| Proof.HasShelvedGoals ->
error(str"Attempt to save a proof with shelved goals")
| Proof.HasGivenUpGoals ->
error(strbrk"Attempt to save a proof with given up goals. If this is really what you want to do, use Admitted in place of Qed.")
| Proof.HasUnresolvedEvar->
error(strbrk"Attempt to save a proof with existential variables still non-instantiated") in
let eff = Evd.eval_side_effects evd in
let evd = Evd.minimize_universes evd in
(** ppedrot: FIXME, this is surely wrong. There is no reason to duplicate
side-effects... This may explain why one need to uniquize side-effects
thereafter... *)
let proofs =
List.map (fun (c, _) -> (Evarutil.nf_evars_universes evd (EConstr.Unsafe.to_constr c), eff)) initial_goals in
proofs, Evd.evar_universe_context evd
let close_future_proof ~feedback_id proof =
close_proof ~keep_body_ucst_separate:true ~feedback_id ~now:false proof
let close_proof ~keep_body_ucst_separate fix_exn =
close_proof ~keep_body_ucst_separate ~now:true
(Future.from_val ~fix_exn (return_proof ()))
(** Gets the current terminator without checking that the proof has
been completed. Useful for the likes of [Admitted]. *)
let get_terminator () = CEphemeron.get ( cur_pstate() ).terminator
let set_terminator hook =
match !pstates with
| [] -> raise NoCurrentProof
| p :: ps -> pstates := { p with terminator = CEphemeron.create hook } :: ps
module V82 = struct
let get_current_initial_conclusions () =
let { pid; strength; proof } = cur_pstate () in
let initial = Proof.initial_goals proof in
let goals = List.map (fun (o, c) -> c) initial in
pid, (goals, strength)
end
let freeze ~marshallable =
match marshallable with
| `Yes ->
CErrors.anomaly (Pp.str"full marshalling of proof state not supported.")
| `Shallow -> !pstates
| `No -> !pstates
let unfreeze s = pstates := s; update_proof_mode ()
let proof_of_state = function { proof }::_ -> proof | _ -> raise NoCurrentProof
let copy_terminators ~src ~tgt =
assert(List.length src = List.length tgt);
List.map2 (fun op p -> { p with terminator = op.terminator }) src tgt
let update_global_env () =
with_current_proof (fun _ p ->
Proof.in_proof p (fun sigma ->
let tac = Proofview.Unsafe.tclEVARS (Evd.update_sigma_env sigma (Global.env ())) in
let (p,(status,info)) = Proof.run_tactic (Global.env ()) tac p in
(p, ())))
(* XXX: Bullet hook, should be really moved elsewhere *)
let _ =
let hook n =
try
let prf = give_me_the_proof () in
(Proof_bullet.suggest prf)
with NoCurrentProof -> mt ()
in
Proofview.set_nosuchgoals_hook hook
|