1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Pp
open Errors
open Util
open Names
open Nameops
open Term
open Vars
open Termops
open Namegen
open Environ
open Evd
open Reduction
open Reductionops
open Tacred
open Pretype_errors
open Evarutil
open Unification
open Misctypes
(* Abbreviations *)
let pf_env = Refiner.pf_env
let pf_type_of gls c = Typing.unsafe_type_of (pf_env gls) gls.sigma c
(******************************************************************)
(* Clausal environments *)
type clausenv = {
env : env;
evd : evar_map;
templval : constr freelisted;
templtyp : constr freelisted }
let cl_env ce = ce.env
let cl_sigma ce = ce.evd
let map_clenv sub clenv =
{ templval = map_fl sub clenv.templval;
templtyp = map_fl sub clenv.templtyp;
evd = cmap sub clenv.evd;
env = clenv.env }
let clenv_nf_meta clenv c = nf_meta clenv.evd c
let clenv_term clenv c = meta_instance clenv.evd c
let clenv_meta_type clenv mv = Typing.meta_type clenv.evd mv
let clenv_value clenv = meta_instance clenv.evd clenv.templval
let clenv_type clenv = meta_instance clenv.evd clenv.templtyp
let refresh_undefined_univs clenv =
match kind_of_term clenv.templval.rebus with
| Var _ -> clenv, Univ.empty_level_subst
| App (f, args) when isVar f -> clenv, Univ.empty_level_subst
| _ ->
let evd', subst = Evd.refresh_undefined_universes clenv.evd in
let map_freelisted f = { f with rebus = subst_univs_level_constr subst f.rebus } in
{ clenv with evd = evd'; templval = map_freelisted clenv.templval;
templtyp = map_freelisted clenv.templtyp }, subst
let clenv_hnf_constr ce t = hnf_constr (cl_env ce) (cl_sigma ce) t
let clenv_get_type_of ce c = Retyping.get_type_of (cl_env ce) (cl_sigma ce) c
exception NotExtensibleClause
let clenv_push_prod cl =
let typ = whd_betadeltaiota (cl_env cl) (cl_sigma cl) (clenv_type cl) in
let rec clrec typ = match kind_of_term typ with
| Cast (t,_,_) -> clrec t
| Prod (na,t,u) ->
let mv = new_meta () in
let dep = dependent (mkRel 1) u in
let na' = if dep then na else Anonymous in
let e' = meta_declare mv t ~name:na' cl.evd in
let concl = if dep then subst1 (mkMeta mv) u else u in
let def = applist (cl.templval.rebus,[mkMeta mv]) in
{ templval = mk_freelisted def;
templtyp = mk_freelisted concl;
evd = e';
env = cl.env }
| _ -> raise NotExtensibleClause
in clrec typ
(* Instantiate the first [bound] products of [t] with metas (all products if
[bound] is [None]; unfold local defs *)
(** [clenv_environments sigma n t] returns [sigma',lmeta,ccl] where
[lmetas] is a list of metas to be applied to a proof of [t] so that
it produces the unification pattern [ccl]; [sigma'] is [sigma]
extended with [lmetas]; if [n] is defined, it limits the size of
the list even if [ccl] is still a product; otherwise, it stops when
[ccl] is not a product; example: if [t] is [forall x y, x=y -> y=x]
and [n] is [None], then [lmetas] is [Meta n1;Meta n2;Meta n3] and
[ccl] is [Meta n1=Meta n2]; if [n] is [Some 1], [lmetas] is [Meta n1]
and [ccl] is [forall y, Meta n1=y -> y=Meta n1] *)
let clenv_environments evd bound t =
let rec clrec (e,metas) n t =
match n, kind_of_term t with
| (Some 0, _) -> (e, List.rev metas, t)
| (n, Cast (t,_,_)) -> clrec (e,metas) n t
| (n, Prod (na,t1,t2)) ->
let mv = new_meta () in
let dep = dependent (mkRel 1) t2 in
let na' = if dep then na else Anonymous in
let e' = meta_declare mv t1 ~name:na' e in
clrec (e', (mkMeta mv)::metas) (Option.map ((+) (-1)) n)
(if dep then (subst1 (mkMeta mv) t2) else t2)
| (n, LetIn (na,b,_,t)) -> clrec (e,metas) n (subst1 b t)
| (n, _) -> (e, List.rev metas, t)
in
clrec (evd,[]) bound t
let mk_clenv_from_env env sigma n (c,cty) =
let evd = create_goal_evar_defs sigma in
let (evd,args,concl) = clenv_environments evd n cty in
{ templval = mk_freelisted (applist (c,args));
templtyp = mk_freelisted concl;
evd = evd;
env = env }
let mk_clenv_from_n gls n (c,cty) =
mk_clenv_from_env (pf_env gls) gls.sigma n (c, cty)
let mk_clenv_from gls = mk_clenv_from_n gls None
let mk_clenv_type_of gls t = mk_clenv_from gls (t,pf_type_of gls t)
(******************************************************************)
(* [mentions clenv mv0 mv1] is true if mv1 is defined and mentions
* mv0, or if one of the free vars on mv1's freelist mentions
* mv0 *)
let mentions clenv mv0 =
let rec menrec mv1 =
Int.equal mv0 mv1 ||
let mlist =
try match meta_opt_fvalue clenv.evd mv1 with
| Some (b,_) -> b.freemetas
| None -> Metaset.empty
with Not_found -> Metaset.empty in
Metaset.exists menrec mlist
in menrec
let error_incompatible_inst clenv mv =
let na = meta_name clenv.evd mv in
match na with
Name id ->
errorlabstrm "clenv_assign"
(str "An incompatible instantiation has already been found for " ++
pr_id id)
| _ ->
anomaly ~label:"clenv_assign" (Pp.str "non dependent metavar already assigned")
(* TODO: replace by clenv_unify (mkMeta mv) rhs ? *)
let clenv_assign mv rhs clenv =
let rhs_fls = mk_freelisted rhs in
if Metaset.exists (mentions clenv mv) rhs_fls.freemetas then
error "clenv_assign: circularity in unification";
try
if meta_defined clenv.evd mv then
if not (Term.eq_constr (fst (meta_fvalue clenv.evd mv)).rebus rhs) then
error_incompatible_inst clenv mv
else
clenv
else
let st = (Conv,TypeNotProcessed) in
{clenv with evd = meta_assign mv (rhs_fls.rebus,st) clenv.evd}
with Not_found ->
error "clenv_assign: undefined meta"
(* [clenv_dependent hyps_only clenv]
* returns a list of the metavars which appear in the template of clenv,
* and which are dependent, This is computed by taking the metavars of the
* template in right-to-left order, and collecting the metavars which appear
* in their types, and adding in all the metavars appearing in the
* type of clenv.
* If [hyps_only] then metavariables occurring in the concl are _excluded_
* If [iter] is also set then all metavariables *recursively* occurring
* in the concl are _excluded_
Details of the strategies used for computing the set of unresolved
dependent metavariables
We typically have a clause of the form
lem(?T:Type,?T,?U:Type,?V:Type,?x:?T,?y:?U,?z:?V,?H:hyp(?x,?z)) :concl(?y,?z)
Then, we compute:
A = the set of all unresolved metas
C = the set of metas occurring in concl (here ?y, ?z)
C* = the recursive closure of C wrt types (here ?y, ?z, ?U, ?V)
D = the set of metas occurring in a type of meta (here ?x, ?T, ?z, ?U, ?V)
NL = the set of duplicated metas even if non dependent (here ?T)
(we make the assumption that duplicated metas have internal dependencies)
Then, for the "apply"-style tactic (hyps_only), missing metas are
A inter ((D minus C) union NL)
for the optimized "apply"-style tactic (taking in care, f_equal style
lemma, from 2/8/10, Coq > 8.3), missing metas are
A inter (( D minus C* ) union NL)
for the "elim"-style tactic, missing metas are
A inter (D union C union NL)
In any case, we respect the order given in A.
*)
let clenv_metas_in_type_of_meta evd mv =
(mk_freelisted (meta_instance evd (meta_ftype evd mv))).freemetas
let dependent_in_type_of_metas clenv mvs =
List.fold_right
(fun mv -> Metaset.union (clenv_metas_in_type_of_meta clenv.evd mv))
mvs Metaset.empty
let dependent_closure clenv mvs =
let rec aux mvs acc =
Metaset.fold
(fun mv deps ->
let metas_of_meta_type = clenv_metas_in_type_of_meta clenv.evd mv in
aux metas_of_meta_type (Metaset.union deps metas_of_meta_type))
mvs acc in
aux mvs mvs
let clenv_dependent_gen hyps_only ?(iter=true) clenv =
let all_undefined = undefined_metas clenv.evd in
let deps_in_concl = (mk_freelisted (clenv_type clenv)).freemetas in
let deps_in_hyps = dependent_in_type_of_metas clenv all_undefined in
let deps_in_concl =
if hyps_only && iter then dependent_closure clenv deps_in_concl
else deps_in_concl in
List.filter
(fun mv ->
if hyps_only then
Metaset.mem mv deps_in_hyps && not (Metaset.mem mv deps_in_concl)
else
Metaset.mem mv deps_in_hyps || Metaset.mem mv deps_in_concl)
all_undefined
let clenv_missing ce = clenv_dependent_gen true ce
let clenv_dependent ce = clenv_dependent_gen false ce
(******************************************************************)
let clenv_unify ?(flags=default_unify_flags ()) cv_pb t1 t2 clenv =
{ clenv with
evd = w_unify ~flags clenv.env clenv.evd cv_pb t1 t2 }
let clenv_unify_meta_types ?(flags=default_unify_flags ()) clenv =
{ clenv with evd = w_unify_meta_types ~flags:flags clenv.env clenv.evd }
let clenv_unique_resolver ?(flags=default_unify_flags ()) clenv gl =
let concl = Goal.V82.concl clenv.evd (sig_it gl) in
if isMeta (fst (decompose_appvect (whd_nored clenv.evd clenv.templtyp.rebus))) then
clenv_unify CUMUL ~flags (clenv_type clenv) concl
(clenv_unify_meta_types ~flags clenv)
else
clenv_unify CUMUL ~flags
(meta_reducible_instance clenv.evd clenv.templtyp) concl clenv
let adjust_meta_source evd mv = function
| loc,Evar_kinds.VarInstance id ->
let rec match_name c l =
match kind_of_term c, l with
| Lambda (Name id,_,c), a::l when Constr.equal a (mkMeta mv) -> Some id
| Lambda (_,_,c), a::l -> match_name c l
| _ -> None in
(* This is very ad hoc code so that an evar inherits the name of the binder
in situations like "ex_intro (fun x => P) ?ev p" *)
let f = function (mv',(Cltyp (_,t) | Clval (_,_,t))) ->
if Metaset.mem mv t.freemetas then
let f,l = decompose_app t.rebus in
match kind_of_term f with
| Meta mv'' ->
(match meta_opt_fvalue evd mv'' with
| Some (c,_) -> match_name c.rebus l
| None -> None)
| Evar ev ->
(match existential_opt_value evd ev with
| Some c -> match_name c l
| None -> None)
| _ -> None
else None in
let id = try List.find_map f (Evd.meta_list evd) with Not_found -> id in
loc,Evar_kinds.VarInstance id
| src -> src
(* [clenv_pose_metas_as_evars clenv dep_mvs]
* For each dependent evar in the clause-env which does not have a value,
* pose a value for it by constructing a fresh evar. We do this in
* left-to-right order, so that every evar's type is always closed w.r.t.
* metas.
* Node added 14/4/08 [HH]: before this date, evars were collected in
clenv_dependent by collect_metas in the fold_constr order which is
(almost) the left-to-right order of dependencies in term. However,
due to K-redexes, collect_metas was sometimes missing some metas.
The call to collect_metas has been replaced by a call to
undefined_metas, but then the order was the one of definition of
the metas (numbers in increasing order) which is _not_ the
dependency order when a clenv_fchain occurs (because clenv_fchain
plugs a term with a list of consecutive metas in place of a - a priori -
arbitrary metavariable belonging to another sequence of consecutive metas:
e.g., clenv_fchain may plug (H ?1 ?2) at the position ?6 of
(nat_ind ?3 ?4 ?5 ?6), leading to a dependency order 3<4<5<1<2).
To ensure the dependency order, we check that the type of each meta
to pose is already meta-free, otherwise we postpone the transformation,
hoping that no cycle may happen.
Another approach could have been to use decimal numbers for metas so that
in the example above, (H ?1 ?2) would have been renumbered (H ?6.1 ?6.2)
then making the numeric order match the dependency order.
*)
let clenv_pose_metas_as_evars clenv dep_mvs =
let rec fold clenv = function
| [] -> clenv
| mv::mvs ->
let ty = clenv_meta_type clenv mv in
(* Postpone the evar-ization if dependent on another meta *)
(* This assumes no cycle in the dependencies - is it correct ? *)
if occur_meta ty then fold clenv (mvs@[mv])
else
let src = evar_source_of_meta mv clenv.evd in
let src = adjust_meta_source clenv.evd mv src in
let (evd,evar) = new_evar (cl_env clenv) clenv.evd ~src ty in
let clenv = clenv_assign mv evar {clenv with evd=evd} in
fold clenv mvs in
fold clenv dep_mvs
(******************************************************************)
let connect_clenv gls clenv =
let evd = evars_reset_evd ~with_conv_pbs:true gls.sigma clenv.evd in
{ clenv with
evd = evd ;
env = Goal.V82.env evd (sig_it gls) }
(* let connect_clenv_key = Profile.declare_profile "connect_clenv";; *)
(* let connect_clenv = Profile.profile2 connect_clenv_key connect_clenv *)
(* [clenv_fchain mv clenv clenv']
*
* Resolves the value of "mv" (which must be undefined) in clenv to be
* the template of clenv' be the value "c", applied to "n" fresh
* metavars, whose types are chosen by destructing "clf", which should
* be a clausale forme generated from the type of "c". The process of
* resolution can cause unification of already-existing metavars, and
* of the fresh ones which get created. This operation is a composite
* of operations which pose new metavars, perform unification on
* terms, and make bindings.
Otherwise said, from
[clenv] = [env;sigma;metas |- c:T]
[clenv'] = [env';sigma';metas' |- d:U]
[mv] = [mi] of type [Ti] in [metas]
then, if the unification of [Ti] and [U] produces map [rho], the
chaining is [env';sigma';rho'(metas),rho(metas') |- c:rho'(T)] for
[rho'] being [rho;mi:=d].
In particular, it assumes that [env'] and [sigma'] extend [env] and [sigma].
*)
let fchain_flags () =
{ (default_unify_flags ()) with
allow_K_in_toplevel_higher_order_unification = true }
let clenv_fchain ?(flags=fchain_flags ()) mv clenv nextclenv =
(* Add the metavars of [nextclenv] to [clenv], with their name-environment *)
let clenv' =
{ templval = clenv.templval;
templtyp = clenv.templtyp;
evd = meta_merge nextclenv.evd clenv.evd;
env = nextclenv.env } in
(* unify the type of the template of [nextclenv] with the type of [mv] *)
let clenv'' =
clenv_unify ~flags CUMUL
(clenv_term clenv' nextclenv.templtyp)
(clenv_meta_type clenv' mv)
clenv' in
(* assign the metavar *)
let clenv''' =
clenv_assign mv (clenv_term clenv' nextclenv.templval) clenv''
in
clenv'''
(***************************************************************)
(* Bindings *)
type arg_bindings = constr explicit_bindings
(* [clenv_independent clenv]
* returns a list of metavariables which appear in the term cval,
* and which are not dependent. That is, they do not appear in
* the types of other metavars which are in cval, nor in the type
* of cval, ctyp. *)
let clenv_independent clenv =
let mvs = collect_metas (clenv_value clenv) in
let ctyp_mvs = (mk_freelisted (clenv_type clenv)).freemetas in
let deps = Metaset.union (dependent_in_type_of_metas clenv mvs) ctyp_mvs in
List.filter (fun mv -> not (Metaset.mem mv deps)) mvs
let qhyp_eq h1 h2 = match h1, h2 with
| NamedHyp n1, NamedHyp n2 -> Id.equal n1 n2
| AnonHyp i1, AnonHyp i2 -> Int.equal i1 i2
| _ -> false
let check_bindings bl =
match List.duplicates qhyp_eq (List.map pi2 bl) with
| NamedHyp s :: _ ->
errorlabstrm ""
(str "The variable " ++ pr_id s ++
str " occurs more than once in binding list.");
| AnonHyp n :: _ ->
errorlabstrm ""
(str "The position " ++ int n ++
str " occurs more than once in binding list.")
| [] -> ()
let meta_of_binder clause loc mvs = function
| NamedHyp s -> meta_with_name clause.evd s
| AnonHyp n ->
try List.nth mvs (n-1)
with (Failure _|Invalid_argument _) ->
errorlabstrm "" (str "No such binder.")
let error_already_defined b =
match b with
| NamedHyp id ->
errorlabstrm ""
(str "Binder name \"" ++ pr_id id ++
str"\" already defined with incompatible value.")
| AnonHyp n ->
anomaly
(str "Position " ++ int n ++ str" already defined.")
let clenv_unify_binding_type clenv c t u =
if isMeta (fst (decompose_appvect (whd_nored clenv.evd u))) then
(* Not enough information to know if some subtyping is needed *)
CoerceToType, clenv, c
else
(* Enough information so as to try a coercion now *)
try
let evd,c = w_coerce_to_type (cl_env clenv) clenv.evd c t u in
TypeProcessed, { clenv with evd = evd }, c
with
| PretypeError (_,_,ActualTypeNotCoercible (_,_,NotClean _)) as e ->
raise e
| e when precatchable_exception e ->
TypeNotProcessed, clenv, c
let clenv_assign_binding clenv k c =
let k_typ = clenv_hnf_constr clenv (clenv_meta_type clenv k) in
let c_typ = nf_betaiota clenv.evd (clenv_get_type_of clenv c) in
let status,clenv',c = clenv_unify_binding_type clenv c c_typ k_typ in
{ clenv' with evd = meta_assign k (c,(Conv,status)) clenv'.evd }
let clenv_match_args bl clenv =
if List.is_empty bl then
clenv
else
let mvs = clenv_independent clenv in
check_bindings bl;
List.fold_left
(fun clenv (loc,b,c) ->
let k = meta_of_binder clenv loc mvs b in
if meta_defined clenv.evd k then
if Term.eq_constr (fst (meta_fvalue clenv.evd k)).rebus c then clenv
else error_already_defined b
else
clenv_assign_binding clenv k c)
clenv bl
exception NoSuchBinding
let clenv_constrain_last_binding c clenv =
let all_mvs = collect_metas clenv.templval.rebus in
let k = try List.last all_mvs with Failure _ -> raise NoSuchBinding in
clenv_assign_binding clenv k c
let error_not_right_number_missing_arguments n =
errorlabstrm ""
(strbrk "Not the right number of missing arguments (expected " ++
int n ++ str ").")
let clenv_constrain_dep_args hyps_only bl clenv =
if List.is_empty bl then
clenv
else
let occlist = clenv_dependent_gen hyps_only clenv in
if Int.equal (List.length occlist) (List.length bl) then
List.fold_left2 clenv_assign_binding clenv occlist bl
else
if hyps_only then
(* Tolerance for compatibility <= 8.3 *)
let occlist' = clenv_dependent_gen hyps_only ~iter:false clenv in
if Int.equal (List.length occlist') (List.length bl) then
List.fold_left2 clenv_assign_binding clenv occlist' bl
else
error_not_right_number_missing_arguments (List.length occlist)
else
error_not_right_number_missing_arguments (List.length occlist)
(****************************************************************)
(* Clausal environment for an application *)
let make_clenv_binding_gen hyps_only n env sigma (c,t) = function
| ImplicitBindings largs ->
let clause = mk_clenv_from_env env sigma n (c,t) in
clenv_constrain_dep_args hyps_only largs clause
| ExplicitBindings lbind ->
let clause = mk_clenv_from_env env sigma n
(c,rename_bound_vars_as_displayed [] [] t)
in clenv_match_args lbind clause
| NoBindings ->
mk_clenv_from_env env sigma n (c,t)
let make_clenv_binding_env_apply env sigma n =
make_clenv_binding_gen true n env sigma
let make_clenv_binding_env env sigma =
make_clenv_binding_gen false None env sigma
let make_clenv_binding_apply env sigma n = make_clenv_binding_gen true n env sigma
let make_clenv_binding env sigma = make_clenv_binding_gen false None env sigma
(****************************************************************)
(* Pretty-print *)
let pr_clenv clenv =
h 0
(str"TEMPL: " ++ print_constr clenv.templval.rebus ++
str" : " ++ print_constr clenv.templtyp.rebus ++ fnl () ++
pr_evar_map (Some 2) clenv.evd)
(****************************************************************)
(** Evar version of mk_clenv *)
type hole = {
hole_evar : constr;
hole_type : types;
hole_deps : bool;
hole_name : Name.t;
}
type clause = {
cl_holes : hole list;
cl_concl : types;
}
let make_evar_clause env sigma ?len t =
let bound = match len with
| None -> -1
| Some n -> assert (0 <= n); n
in
(** FIXME: do the renaming online *)
let t = rename_bound_vars_as_displayed [] [] t in
let rec clrec (sigma, holes) n t =
if n = 0 then (sigma, holes, t)
else match kind_of_term t with
| Cast (t, _, _) -> clrec (sigma, holes) n t
| Prod (na, t1, t2) ->
let store = Typeclasses.set_resolvable Evd.Store.empty false in
let sigma, ev = new_evar ~store env sigma t1 in
let dep = dependent (mkRel 1) t2 in
let hole = {
hole_evar = ev;
hole_type = t1;
hole_deps = dep;
(* We fix it later *)
hole_name = na;
} in
let t2 = if dep then subst1 ev t2 else t2 in
clrec (sigma, hole :: holes) (pred n) t2
| LetIn (na, b, _, t) -> clrec (sigma, holes) n (subst1 b t)
| _ -> (sigma, holes, t)
in
let (sigma, holes, t) = clrec (sigma, []) bound t in
let holes = List.rev holes in
let clause = { cl_concl = t; cl_holes = holes } in
(sigma, clause)
let explain_no_such_bound_variable holes id =
let fold h accu = match h.hole_name with
| Anonymous -> accu
| Name id -> id :: accu
in
let mvl = List.fold_right fold holes [] in
let expl = match mvl with
| [] -> str " (no bound variables at all in the expression)."
| [id] -> str "(possible name is: " ++ pr_id id ++ str ")."
| _ -> str "(possible names are: " ++ pr_enum pr_id mvl ++ str ")."
in
errorlabstrm "" (str "No such bound variable " ++ pr_id id ++ expl)
let evar_with_name holes id =
let map h = match h.hole_name with
| Anonymous -> None
| Name id' -> if Id.equal id id' then Some h else None
in
let hole = List.map_filter map holes in
match hole with
| [] -> explain_no_such_bound_variable holes id
| [h] -> h.hole_evar
| _ ->
errorlabstrm ""
(str "Binder name \"" ++ pr_id id ++
str "\" occurs more than once in clause.")
let evar_of_binder holes = function
| NamedHyp s -> evar_with_name holes s
| AnonHyp n ->
try
let h = List.nth holes (pred n) in
h.hole_evar
with e when Errors.noncritical e ->
errorlabstrm "" (str "No such binder.")
let define_with_type sigma env ev c =
let t = Retyping.get_type_of env sigma ev in
let ty = Retyping.get_type_of env sigma c in
let j = Environ.make_judge c ty in
let (sigma, j) = Coercion.inh_conv_coerce_to true (Loc.ghost) env sigma j t in
let (ev, _) = destEvar ev in
let sigma = Evd.define ev j.Environ.uj_val sigma in
sigma
let solve_evar_clause env sigma hyp_only clause = function
| NoBindings -> sigma
| ImplicitBindings largs ->
let fold holes h =
if h.hole_deps then
(** Some subsequent term uses the hole *)
let (ev, _) = destEvar h.hole_evar in
let is_dep hole = occur_evar ev hole.hole_type in
let in_hyp = List.exists is_dep holes in
let in_ccl = occur_evar ev clause.cl_concl in
let dep = if hyp_only then in_hyp && not in_ccl else in_hyp || in_ccl in
let h = { h with hole_deps = dep } in
h :: holes
else
(** The hole does not occur anywhere *)
h :: holes
in
let holes = List.fold_left fold [] (List.rev clause.cl_holes) in
let map h = if h.hole_deps then Some h.hole_evar else None in
let evs = List.map_filter map holes in
let len = List.length evs in
if Int.equal len (List.length largs) then
let fold sigma ev arg = define_with_type sigma env ev arg in
let sigma = List.fold_left2 fold sigma evs largs in
sigma
else
error_not_right_number_missing_arguments len
| ExplicitBindings lbind ->
let () = check_bindings lbind in
let fold sigma (_, binder, c) =
let ev = evar_of_binder clause.cl_holes binder in
define_with_type sigma env ev c
in
let sigma = List.fold_left fold sigma lbind in
sigma
|