1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Util
open Constr
open Pp
open Names
open Environ
open Declarations
open Globnames
open Libnames
open Goptions
(** Note: there is currently two modes for printing modules.
- The "short" one, that just prints the names of the fields.
- The "rich" one, that also tries to print the types of the fields.
The short version used to be the default behavior, but now we print
types by default. The following option allows changing this.
Technically, the environments in this file are either None in
the "short" mode or (Some env) in the "rich" one.
*)
module Tag =
struct
let definition = "module.definition"
let keyword = "module.keyword"
end
let tag t s = Pp.tag t s
let tag_definition s = tag Tag.definition s
let tag_keyword s = tag Tag.keyword s
let short = ref false
let _ =
declare_bool_option
{ optdepr = false;
optname = "short module printing";
optkey = ["Short";"Module";"Printing"];
optread = (fun () -> !short) ;
optwrite = ((:=) short) }
(** Each time we have to print a non-globally visible structure,
we place its elements in a fake fresh namespace. *)
let mk_fake_top =
let r = ref 0 in
fun () -> incr r; Id.of_string ("FAKETOP"^(string_of_int !r))
let def s = tag_definition (str s)
let keyword s = tag_keyword (str s)
let get_new_id locals id =
let rec get_id l id =
let dir = DirPath.make [id] in
if not (Nametab.exists_module dir) then
id
else
get_id (Id.Set.add id l) (Namegen.next_ident_away id l)
in
let avoid = List.fold_left (fun accu (_, id) -> Id.Set.add id accu) Id.Set.empty locals in
get_id avoid id
(** Inductive declarations *)
open Reduction
let print_params env sigma params =
if List.is_empty params then mt ()
else Printer.pr_rel_context env sigma params ++ brk(1,2)
let print_constructors envpar sigma names types =
let pc =
prlist_with_sep (fun () -> brk(1,0) ++ str "| ")
(fun (id,c) -> Id.print id ++ str " : " ++ Printer.pr_lconstr_env envpar sigma c)
(Array.to_list (Array.map2 (fun n t -> (n,t)) names types))
in
hv 0 (str " " ++ pc)
let build_ind_type env mip =
Inductive.type_of_inductive env mip
let print_one_inductive env sigma mib ((_,i) as ind) =
let u = if Declareops.inductive_is_polymorphic mib then
Univ.AUContext.instance (Declareops.inductive_polymorphic_context mib)
else Univ.Instance.empty in
let mip = mib.mind_packets.(i) in
let params = Inductive.inductive_paramdecls (mib,u) in
let nparamdecls = Context.Rel.length params in
let args = Context.Rel.to_extended_list mkRel 0 params in
let arity = hnf_prod_applist_assum env nparamdecls (build_ind_type env ((mib,mip),u)) args in
let cstrtypes = Inductive.type_of_constructors (ind,u) (mib,mip) in
let cstrtypes = Array.map (fun c -> hnf_prod_applist_assum env nparamdecls c args) cstrtypes in
let envpar = push_rel_context params env in
let inst =
if Declareops.inductive_is_polymorphic mib then
let ctx = Declareops.inductive_polymorphic_context mib in
let ctx = Univ.UContext.make (u, Univ.AUContext.instantiate u ctx) in
Printer.pr_universe_instance sigma ctx
else mt ()
in
hov 0 (
Id.print mip.mind_typename ++ inst ++ brk(1,4) ++ print_params env sigma params ++
str ": " ++ Printer.pr_lconstr_env envpar sigma arity ++ str " :=") ++
brk(0,2) ++ print_constructors envpar sigma mip.mind_consnames cstrtypes
let instantiate_cumulativity_info cumi =
let open Univ in
let univs = ACumulativityInfo.univ_context cumi in
let expose ctx =
let inst = AUContext.instance ctx in
let cst = AUContext.instantiate inst ctx in
UContext.make (inst, cst)
in
CumulativityInfo.make (expose univs, ACumulativityInfo.variance cumi)
let print_mutual_inductive env mind mib udecl =
let inds = List.init (Array.length mib.mind_packets) (fun x -> (mind, x))
in
let keyword =
let open Declarations in
match mib.mind_finite with
| Finite -> "Inductive"
| BiFinite -> "Variant"
| CoFinite -> "CoInductive"
in
let univs =
let open Univ in
if Declareops.inductive_is_polymorphic mib then
Array.to_list (Instance.to_array
(AUContext.instance (Declareops.inductive_polymorphic_context mib)))
else []
in
let bl = Universes.universe_binders_with_opt_names (IndRef (mind, 0)) univs udecl in
let sigma = Evd.from_ctx (Evd.evar_universe_context_of_binders bl) in
hov 0 (Printer.pr_polymorphic (Declareops.inductive_is_polymorphic mib) ++
Printer.pr_cumulative
(Declareops.inductive_is_polymorphic mib)
(Declareops.inductive_is_cumulative mib) ++
def keyword ++ spc () ++
prlist_with_sep (fun () -> fnl () ++ str" with ")
(print_one_inductive env sigma mib) inds ++
match mib.mind_universes with
| Monomorphic_ind _ | Polymorphic_ind _ -> str ""
| Cumulative_ind cumi ->
Printer.pr_cumulativity_info
sigma (instantiate_cumulativity_info cumi))
let get_fields =
let rec prodec_rec l subst c =
match kind c with
| Prod (na,t,c) ->
let id = match na with Name id -> id | Anonymous -> Id.of_string "_" in
prodec_rec ((id,true,Vars.substl subst t)::l) (mkVar id::subst) c
| LetIn (na,b,_,c) ->
let id = match na with Name id -> id | Anonymous -> Id.of_string "_" in
prodec_rec ((id,false,Vars.substl subst b)::l) (mkVar id::subst) c
| _ -> List.rev l
in
prodec_rec [] []
let print_record env mind mib udecl =
let u =
if Declareops.inductive_is_polymorphic mib then
Univ.AUContext.instance (Declareops.inductive_polymorphic_context mib)
else Univ.Instance.empty
in
let mip = mib.mind_packets.(0) in
let params = Inductive.inductive_paramdecls (mib,u) in
let nparamdecls = Context.Rel.length params in
let args = Context.Rel.to_extended_list mkRel 0 params in
let arity = hnf_prod_applist_assum env nparamdecls (build_ind_type env ((mib,mip),u)) args in
let cstrtypes = Inductive.type_of_constructors ((mind,0),u) (mib,mip) in
let cstrtype = hnf_prod_applist_assum env nparamdecls cstrtypes.(0) args in
let fields = get_fields cstrtype in
let envpar = push_rel_context params env in
let bl = Universes.universe_binders_with_opt_names (IndRef (mind,0))
(Array.to_list (Univ.Instance.to_array u)) udecl in
let sigma = Evd.from_ctx (Evd.evar_universe_context_of_binders bl) in
let keyword =
let open Declarations in
match mib.mind_finite with
| BiFinite -> "Record"
| Finite -> "Inductive"
| CoFinite -> "CoInductive"
in
hov 0 (
hov 0 (
Printer.pr_polymorphic (Declareops.inductive_is_polymorphic mib) ++
Printer.pr_cumulative
(Declareops.inductive_is_polymorphic mib)
(Declareops.inductive_is_cumulative mib) ++
def keyword ++ spc () ++ Id.print mip.mind_typename ++ brk(1,4) ++
print_params env sigma params ++
str ": " ++ Printer.pr_lconstr_env envpar sigma arity ++ brk(1,2) ++
str ":= " ++ Id.print mip.mind_consnames.(0)) ++
brk(1,2) ++
hv 2 (str "{ " ++
prlist_with_sep (fun () -> str ";" ++ brk(2,0))
(fun (id,b,c) ->
Id.print id ++ str (if b then " : " else " := ") ++
Printer.pr_lconstr_env envpar sigma c) fields) ++ str" }" ++
match mib.mind_universes with
| Monomorphic_ind _ | Polymorphic_ind _ -> str ""
| Cumulative_ind cumi ->
Printer.pr_cumulativity_info
sigma (instantiate_cumulativity_info cumi)
)
let pr_mutual_inductive_body env mind mib udecl =
if mib.mind_record <> None && not !Flags.raw_print then
print_record env mind mib udecl
else
print_mutual_inductive env mind mib udecl
(** Modpaths *)
let rec print_local_modpath locals = function
| MPbound mbid -> Id.print (Util.List.assoc_f MBId.equal mbid locals)
| MPdot(mp,l) ->
print_local_modpath locals mp ++ str "." ++ Label.print l
| MPfile _ -> raise Not_found
let print_modpath locals mp =
try (* must be with let because streams are lazy! *)
let qid = Nametab.shortest_qualid_of_module mp in
pr_qualid qid
with
| Not_found -> print_local_modpath locals mp
let print_kn locals kn =
try
let qid = Nametab.shortest_qualid_of_modtype kn in
pr_qualid qid
with
Not_found ->
try
print_local_modpath locals kn
with
Not_found -> print_modpath locals kn
let nametab_register_dir obj_mp =
let id = mk_fake_top () in
let obj_dir = DirPath.make [id] in
Nametab.push_dir (Nametab.Until 1) obj_dir (DirModule { obj_dir; obj_mp; obj_sec = DirPath.empty })
(** Nota: the [global_reference] we register in the nametab below
might differ from internal ones, since we cannot recreate here
the canonical part of constant and inductive names, but only
the user names. This works nonetheless since we search now
[Nametab.the_globrevtab] modulo user name. *)
let nametab_register_body mp dir (l,body) =
let push id ref =
Nametab.push (Nametab.Until (1+List.length (DirPath.repr dir)))
(make_path dir id) ref
in
match body with
| SFBmodule _ -> () (* TODO *)
| SFBmodtype _ -> () (* TODO *)
| SFBconst _ ->
push (Label.to_id l) (ConstRef (Constant.make2 mp l))
| SFBmind mib ->
let mind = MutInd.make2 mp l in
Array.iteri
(fun i mip ->
push mip.mind_typename (IndRef (mind,i));
Array.iteri (fun j id -> push id (ConstructRef ((mind,i),j+1)))
mip.mind_consnames)
mib.mind_packets
let nametab_register_module_body mp struc =
(* If [mp] is a globally visible module, we simply import it *)
try Declaremods.really_import_module mp
with Not_found ->
(* Otherwise we try to emulate an import by playing with nametab *)
nametab_register_dir mp;
List.iter (nametab_register_body mp DirPath.empty) struc
let get_typ_expr_alg mtb = match mtb.mod_type_alg with
| Some (NoFunctor me) -> me
| _ -> raise Not_found
let nametab_register_modparam mbid mtb =
let id = MBId.to_id mbid in
match mtb.mod_type with
| MoreFunctor _ -> id (* functorial param : nothing to register *)
| NoFunctor struc ->
(* We first try to use the algebraic type expression if any,
via a Declaremods function that converts back to module entries *)
try
let () = Declaremods.process_module_binding mbid (get_typ_expr_alg mtb) in
id
with e when CErrors.noncritical e ->
(* Otherwise, we try to play with the nametab ourselves *)
let mp = MPbound mbid in
let check id = Nametab.exists_dir (DirPath.make [id]) in
let id = Namegen.next_ident_away_from id check in
let dir = DirPath.make [id] in
nametab_register_dir mp;
List.iter (nametab_register_body mp dir) struc;
id
let print_body is_impl env mp (l,body) =
let name = Label.print l in
hov 2 (match body with
| SFBmodule _ -> keyword "Module" ++ spc () ++ name
| SFBmodtype _ -> keyword "Module Type" ++ spc () ++ name
| SFBconst cb ->
let ctx = Declareops.constant_polymorphic_context cb in
let u =
if Declareops.constant_is_polymorphic cb then
Univ.AUContext.instance ctx
else Univ.Instance.empty
in
let ctx = Univ.UContext.make (u, Univ.AUContext.instantiate u ctx) in
let sigma = Evd.empty in
(match cb.const_body with
| Def _ -> def "Definition" ++ spc ()
| OpaqueDef _ when is_impl -> def "Theorem" ++ spc ()
| _ -> def "Parameter" ++ spc ()) ++ name ++
(match env with
| None -> mt ()
| Some env ->
str " :" ++ spc () ++
hov 0 (Printer.pr_ltype_env env sigma
(Vars.subst_instance_constr u
cb.const_type)) ++
(match cb.const_body with
| Def l when is_impl ->
spc () ++
hov 2 (str ":= " ++
Printer.pr_lconstr_env env sigma
(Vars.subst_instance_constr u (Mod_subst.force_constr l)))
| _ -> mt ()) ++ str "." ++
Printer.pr_universe_ctx sigma ctx)
| SFBmind mib ->
try
let env = Option.get env in
pr_mutual_inductive_body env (MutInd.make2 mp l) mib None
with e when CErrors.noncritical e ->
let keyword =
let open Declarations in
match mib.mind_finite with
| Finite -> def "Inductive"
| BiFinite -> def "Variant"
| CoFinite -> def "CoInductive"
in
keyword ++ spc () ++ name)
let print_struct is_impl env mp struc =
prlist_with_sep spc (print_body is_impl env mp) struc
let print_structure is_type env mp locals struc =
let env' = Option.map
(Modops.add_structure mp struc Mod_subst.empty_delta_resolver) env in
nametab_register_module_body mp struc;
let kwd = if is_type then "Sig" else "Struct" in
hv 2 (keyword kwd ++ spc () ++ print_struct false env' mp struc ++
brk (1,-2) ++ keyword "End")
let rec flatten_app mexpr l = match mexpr with
| MEapply (mexpr, arg) -> flatten_app mexpr (arg::l)
| MEident mp -> mp::l
| MEwith _ -> assert false
let rec print_typ_expr env mp locals mty =
match mty with
| MEident kn -> print_kn locals kn
| MEapply _ ->
let lapp = flatten_app mty [] in
let fapp = List.hd lapp in
let mapp = List.tl lapp in
hov 3 (str"(" ++ (print_kn locals fapp) ++ spc () ++
prlist_with_sep spc (print_modpath locals) mapp ++ str")")
| MEwith(me,WithDef(idl,(c, _)))->
let env' = None in (* TODO: build a proper environment if env <> None *)
let s = String.concat "." (List.map Id.to_string idl) in
(* XXX: What should env and sigma be here? *)
let env = Global.env () in
let sigma = Evd.empty in
hov 2 (print_typ_expr env' mp locals me ++ spc() ++ str "with" ++ spc()
++ def "Definition"++ spc() ++ str s ++ spc() ++ str ":="++ spc()
++ Printer.pr_lconstr_env env sigma c)
| MEwith(me,WithMod(idl,mp'))->
let s = String.concat "." (List.map Id.to_string idl) in
hov 2 (print_typ_expr env mp locals me ++ spc() ++ str "with" ++ spc() ++
keyword "Module"++ spc() ++ str s ++ spc() ++ str ":="++ spc()
++ print_modpath locals mp')
let print_mod_expr env mp locals = function
| MEident mp -> print_modpath locals mp
| MEapply _ as me ->
let lapp = flatten_app me [] in
hov 3
(str"(" ++ prlist_with_sep spc (print_modpath locals) lapp ++ str")")
| MEwith _ -> assert false (* No 'with' syntax for modules *)
let rec print_functor fty fatom is_type env mp locals = function
|NoFunctor me -> fatom is_type env mp locals me
|MoreFunctor (mbid,mtb1,me2) ->
let id = nametab_register_modparam mbid mtb1 in
let mp1 = MPbound mbid in
let pr_mtb1 = fty env mp1 locals mtb1 in
let env' = Option.map (Modops.add_module_type mp1 mtb1) env in
let locals' = (mbid, get_new_id locals (MBId.to_id mbid))::locals in
let kwd = if is_type then "Funsig" else "Functor" in
hov 2
(keyword kwd ++ spc () ++
str "(" ++ Id.print id ++ str ":" ++ pr_mtb1 ++ str ")" ++
spc() ++ print_functor fty fatom is_type env' mp locals' me2)
let rec print_expression x =
print_functor
print_modtype
(function true -> print_typ_expr | false -> print_mod_expr) x
and print_signature x =
print_functor print_modtype print_structure x
and print_modtype env mp locals mtb = match mtb.mod_type_alg with
| Some me -> print_expression true env mp locals me
| None -> print_signature true env mp locals mtb.mod_type
let rec printable_body dir =
let dir = pop_dirpath dir in
DirPath.is_empty dir ||
try
match Nametab.locate_dir (qualid_of_dirpath dir) with
DirOpenModtype _ -> false
| DirModule _ | DirOpenModule _ -> printable_body dir
| _ -> true
with
Not_found -> true
(** Since we might play with nametab above, we should reset to prior
state after the printing *)
let print_expression' is_type env mp me =
States.with_state_protection
(fun e -> print_expression is_type env mp [] e) me
let print_signature' is_type env mp me =
States.with_state_protection
(fun e -> print_signature is_type env mp [] e) me
let unsafe_print_module env mp with_body mb =
let name = print_modpath [] mp in
let pr_equals = spc () ++ str ":= " in
let body = match with_body, mb.mod_expr with
| false, _
| true, Abstract -> mt()
| _, Algebraic me -> pr_equals ++ print_expression' false env mp me
| _, Struct sign -> pr_equals ++ print_signature' false env mp sign
| _, FullStruct -> pr_equals ++ print_signature' false env mp mb.mod_type
in
let modtype = match mb.mod_expr, mb.mod_type_alg with
| FullStruct, _ -> mt ()
| _, Some ty -> brk (1,1) ++ str": " ++ print_expression' true env mp ty
| _, _ -> brk (1,1) ++ str": " ++ print_signature' true env mp mb.mod_type
in
hv 0 (keyword "Module" ++ spc () ++ name ++ modtype ++ body)
exception ShortPrinting
let print_module with_body mp =
let me = Global.lookup_module mp in
try
if !short then raise ShortPrinting;
unsafe_print_module (Some (Global.env ())) mp with_body me ++ fnl ()
with e when CErrors.noncritical e ->
unsafe_print_module None mp with_body me ++ fnl ()
let print_modtype kn =
let mtb = Global.lookup_modtype kn in
let name = print_kn [] kn in
hv 1
(keyword "Module Type" ++ spc () ++ name ++ str " =" ++ spc () ++
(try
if !short then raise ShortPrinting;
print_signature' true (Some (Global.env ())) kn mtb.mod_type
with e when CErrors.noncritical e ->
print_signature' true None kn mtb.mod_type))
|