1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Changed by (and thus parts copyright ©) by Lionel Elie Mamane <lionel@mamane.lu>
* on May-June 2006 for implementation of abstraction of pretty-printing of objects.
*)
open Pp
open CErrors
open Util
open Names
open Nameops
open Term
open Termops
open Declarations
open Environ
open Impargs
open Libobject
open Libnames
open Globnames
open Recordops
open Misctypes
open Printer
open Printmod
open Context.Rel.Declaration
(* module RelDecl = Context.Rel.Declaration *)
module NamedDecl = Context.Named.Declaration
type object_pr = {
print_inductive : mutual_inductive -> Pp.t;
print_constant_with_infos : constant -> Pp.t;
print_section_variable : variable -> Pp.t;
print_syntactic_def : kernel_name -> Pp.t;
print_module : bool -> Names.module_path -> Pp.t;
print_modtype : module_path -> Pp.t;
print_named_decl : Context.Named.Declaration.t -> Pp.t;
print_library_entry : bool -> (object_name * Lib.node) -> Pp.t option;
print_context : bool -> int option -> Lib.library_segment -> Pp.t;
print_typed_value_in_env : Environ.env -> Evd.evar_map -> EConstr.constr * EConstr.types -> Pp.t;
print_eval : Reductionops.reduction_function -> env -> Evd.evar_map -> Constrexpr.constr_expr -> EConstr.unsafe_judgment -> Pp.t;
}
let gallina_print_module = print_module
let gallina_print_modtype = print_modtype
(**************)
(** Utilities *)
let print_closed_sections = ref false
let pr_infos_list l = v 0 (prlist_with_sep cut (fun x -> x) l)
let with_line_skip l = if List.is_empty l then mt() else fnl() ++ fnl () ++ pr_infos_list l
let blankline = mt() (* add a blank sentence in the list of infos *)
let add_colon prefix = if ismt prefix then mt () else prefix ++ str ": "
let int_or_no n = if Int.equal n 0 then str "no" else int n
(*******************)
(** Basic printing *)
let print_basename sp = pr_global (ConstRef sp)
let print_ref reduce ref =
let typ, ctx = Global.type_of_global_in_context (Global.env ()) ref in
let typ = Vars.subst_instance_constr (Univ.AUContext.instance ctx) typ in
let typ = EConstr.of_constr typ in
let typ =
if reduce then
let ctx,ccl = Reductionops.splay_prod_assum (Global.env()) Evd.empty typ
in EConstr.it_mkProd_or_LetIn ccl ctx
else typ in
let univs = Global.universes_of_global ref in
let inst = Univ.AUContext.instance univs in
let univs = Univ.UContext.make (inst, Univ.AUContext.instantiate inst univs) in
let env = Global.env () in
let bl = Universes.universe_binders_of_global ref in
let sigma = Evd.from_ctx (Evd.evar_universe_context_of_binders bl) in
let inst =
if Global.is_polymorphic ref then Printer.pr_universe_instance sigma univs
else mt ()
in
hov 0 (pr_global ref ++ inst ++ str " :" ++ spc () ++ pr_letype_env env sigma typ ++
Printer.pr_universe_ctx sigma univs)
(********************************)
(** Printing implicit arguments *)
let pr_impl_name imp = pr_id (name_of_implicit imp)
let print_impargs_by_name max = function
| [] -> []
| impls ->
let n = List.length impls in
[hov 0 (str (String.plural n "Argument") ++ spc() ++
prlist_with_sep pr_comma pr_impl_name impls ++ spc() ++
str (String.conjugate_verb_to_be n) ++ str" implicit" ++
(if max then strbrk " and maximally inserted" else mt()))]
let print_one_impargs_list l =
let imps = List.filter is_status_implicit l in
let maximps = List.filter Impargs.maximal_insertion_of imps in
let nonmaximps = List.subtract Pervasives.(=) imps maximps in (* FIXME *)
print_impargs_by_name false nonmaximps @
print_impargs_by_name true maximps
let print_impargs_list prefix l =
let l = extract_impargs_data l in
List.flatten (List.map (fun (cond,imps) ->
match cond with
| None ->
List.map (fun pp -> add_colon prefix ++ pp)
(print_one_impargs_list imps)
| Some (n1,n2) ->
[v 2 (prlist_with_sep cut (fun x -> x)
[(if ismt prefix then str "When" else prefix ++ str ", when") ++
str " applied to " ++
(if Int.equal n1 n2 then int_or_no n2 else
if Int.equal n1 0 then str "no more than " ++ int n2
else int n1 ++ str " to " ++ int_or_no n2) ++
str (String.plural n2 " argument") ++ str ":";
v 0 (prlist_with_sep cut (fun x -> x)
(if List.exists is_status_implicit imps
then print_one_impargs_list imps
else [str "No implicit arguments"]))])]) l)
let print_renames_list prefix l =
if List.is_empty l then [] else
[add_colon prefix ++ str "Arguments are renamed to " ++
hv 2 (prlist_with_sep pr_comma (fun x -> x) (List.map Name.print l))]
let need_expansion impl ref =
let typ, _ = Global.type_of_global_in_context (Global.env ()) ref in
let ctx = prod_assum typ in
let nprods = List.count is_local_assum ctx in
not (List.is_empty impl) && List.length impl >= nprods &&
let _,lastimpl = List.chop nprods impl in
List.exists is_status_implicit lastimpl
let print_impargs ref =
let ref = Smartlocate.smart_global ref in
let impl = implicits_of_global ref in
let has_impl = not (List.is_empty impl) in
(* Need to reduce since implicits are computed with products flattened *)
pr_infos_list
([ print_ref (need_expansion (select_impargs_size 0 impl) ref) ref;
blankline ] @
(if has_impl then print_impargs_list (mt()) impl
else [str "No implicit arguments"]))
(*********************)
(** Printing Scopes *)
let print_argument_scopes prefix = function
| [Some sc] ->
[add_colon prefix ++ str"Argument scope is [" ++ str sc ++ str"]"]
| l when not (List.for_all Option.is_empty l) ->
[add_colon prefix ++ hov 2 (str"Argument scopes are" ++ spc() ++
str "[" ++
pr_sequence (function Some sc -> str sc | None -> str "_") l ++
str "]")]
| _ -> []
(*********************)
(** Printing Opacity *)
type opacity =
| FullyOpaque
| TransparentMaybeOpacified of Conv_oracle.level
let opacity env =
function
| VarRef v when NamedDecl.is_local_def (Environ.lookup_named v env) ->
Some(TransparentMaybeOpacified
(Conv_oracle.get_strategy (Environ.oracle env) (VarKey v)))
| ConstRef cst ->
let cb = Environ.lookup_constant cst env in
(match cb.const_body with
| Undef _ -> None
| OpaqueDef _ -> Some FullyOpaque
| Def _ -> Some
(TransparentMaybeOpacified
(Conv_oracle.get_strategy (Environ.oracle env) (ConstKey cst))))
| _ -> None
let print_opacity ref =
match opacity (Global.env()) ref with
| None -> []
| Some s ->
[pr_global ref ++ str " is " ++
match s with
| FullyOpaque -> str "opaque"
| TransparentMaybeOpacified Conv_oracle.Opaque ->
str "basically transparent but considered opaque for reduction"
| TransparentMaybeOpacified lev when Conv_oracle.is_transparent lev ->
str "transparent"
| TransparentMaybeOpacified (Conv_oracle.Level n) ->
str "transparent (with expansion weight " ++ int n ++ str ")"
| TransparentMaybeOpacified Conv_oracle.Expand ->
str "transparent (with minimal expansion weight)"]
(*******************)
let print_if_is_coercion ref =
if Classops.coercion_exists ref then [pr_global ref ++ str " is a coercion"] else []
(*******************)
(* *)
let print_polymorphism ref =
let poly = Global.is_polymorphic ref in
let template_poly = Global.is_template_polymorphic ref in
if Flags.is_universe_polymorphism () || poly || template_poly then
[ pr_global ref ++ str " is " ++ str
(if poly then "universe polymorphic"
else if template_poly then
"template universe polymorphic"
else "not universe polymorphic") ]
else []
let print_type_in_type ref =
let unsafe = Global.is_type_in_type ref in
if unsafe then
[ pr_global ref ++ str " relies on an unsafe universe hierarchy"]
else []
let print_primitive_record recflag mipv = function
| Some (Some (_, ps,_)) ->
let eta = match recflag with
| Decl_kinds.CoFinite | Decl_kinds.Finite -> str" without eta conversion"
| Decl_kinds.BiFinite -> str " with eta conversion"
in
[pr_id mipv.(0).mind_typename ++ str" has primitive projections" ++ eta ++ str"."]
| _ -> []
let print_primitive ref =
match ref with
| IndRef ind ->
let mib,_ = Global.lookup_inductive ind in
print_primitive_record mib.mind_finite mib.mind_packets mib.mind_record
| _ -> []
let print_name_infos ref =
let impls = implicits_of_global ref in
let scopes = Notation.find_arguments_scope ref in
let renames =
try Arguments_renaming.arguments_names ref with Not_found -> [] in
let type_info_for_implicit =
if need_expansion (select_impargs_size 0 impls) ref then
(* Need to reduce since implicits are computed with products flattened *)
[str "Expanded type for implicit arguments";
print_ref true ref; blankline]
else
[] in
print_polymorphism ref @
print_type_in_type ref @
print_primitive ref @
type_info_for_implicit @
print_renames_list (mt()) renames @
print_impargs_list (mt()) impls @
print_argument_scopes (mt()) scopes @
print_if_is_coercion ref
let print_id_args_data test pr id l =
if List.exists test l then
pr (str "For " ++ pr_id id) l
else
[]
let print_args_data_of_inductive_ids get test pr sp mipv =
List.flatten (Array.to_list (Array.mapi
(fun i mip ->
print_id_args_data test pr mip.mind_typename (get (IndRef (sp,i))) @
List.flatten (Array.to_list (Array.mapi
(fun j idc ->
print_id_args_data test pr idc (get (ConstructRef ((sp,i),j+1))))
mip.mind_consnames)))
mipv))
let print_inductive_implicit_args =
print_args_data_of_inductive_ids
implicits_of_global (fun l -> not (List.is_empty (positions_of_implicits l)))
print_impargs_list
let print_inductive_renames =
print_args_data_of_inductive_ids
(fun r ->
try Arguments_renaming.arguments_names r with Not_found -> [])
((!=) Anonymous)
print_renames_list
let print_inductive_argument_scopes =
print_args_data_of_inductive_ids
Notation.find_arguments_scope (Option.has_some) print_argument_scopes
(*********************)
(* "Locate" commands *)
type 'a locatable_info = {
locate : qualid -> 'a option;
locate_all : qualid -> 'a list;
shortest_qualid : 'a -> qualid;
name : 'a -> Pp.t;
print : 'a -> Pp.t;
about : 'a -> Pp.t;
}
type locatable = Locatable : 'a locatable_info -> locatable
type logical_name =
| Term of global_reference
| Dir of global_dir_reference
| Syntactic of kernel_name
| ModuleType of module_path
| Other : 'a * 'a locatable_info -> logical_name
| Undefined of qualid
(** Generic table for objects that are accessible through a name. *)
let locatable_map : locatable String.Map.t ref = ref String.Map.empty
let register_locatable name f =
locatable_map := String.Map.add name (Locatable f) !locatable_map
exception ObjFound of logical_name
let locate_any_name ref =
let (loc,qid) = qualid_of_reference ref in
try Term (Nametab.locate qid)
with Not_found ->
try Syntactic (Nametab.locate_syndef qid)
with Not_found ->
try Dir (Nametab.locate_dir qid)
with Not_found ->
try ModuleType (Nametab.locate_modtype qid)
with Not_found ->
let iter _ (Locatable info) = match info.locate qid with
| None -> ()
| Some ans -> raise (ObjFound (Other (ans, info)))
in
try String.Map.iter iter !locatable_map; Undefined qid
with ObjFound obj -> obj
let pr_located_qualid = function
| Term ref ->
let ref_str = match ref with
ConstRef _ -> "Constant"
| IndRef _ -> "Inductive"
| ConstructRef _ -> "Constructor"
| VarRef _ -> "Variable" in
str ref_str ++ spc () ++ pr_path (Nametab.path_of_global ref)
| Syntactic kn ->
str "Notation" ++ spc () ++ pr_path (Nametab.path_of_syndef kn)
| Dir dir ->
let s,dir = match dir with
| DirOpenModule (dir,_) -> "Open Module", dir
| DirOpenModtype (dir,_) -> "Open Module Type", dir
| DirOpenSection (dir,_) -> "Open Section", dir
| DirModule (dir,_) -> "Module", dir
| DirClosedSection dir -> "Closed Section", dir
in
str s ++ spc () ++ pr_dirpath dir
| ModuleType mp ->
str "Module Type" ++ spc () ++ pr_path (Nametab.path_of_modtype mp)
| Other (obj, info) -> info.name obj
| Undefined qid ->
pr_qualid qid ++ spc () ++ str "not a defined object."
let canonize_ref = function
| ConstRef c ->
let kn = Constant.canonical c in
if KerName.equal (Constant.user c) kn then None
else Some (ConstRef (Constant.make1 kn))
| IndRef (ind,i) ->
let kn = MutInd.canonical ind in
if KerName.equal (MutInd.user ind) kn then None
else Some (IndRef (MutInd.make1 kn, i))
| ConstructRef ((ind,i),j) ->
let kn = MutInd.canonical ind in
if KerName.equal (MutInd.user ind) kn then None
else Some (ConstructRef ((MutInd.make1 kn, i),j))
| VarRef _ -> None
let display_alias = function
| Term r ->
begin match canonize_ref r with
| None -> mt ()
| Some r' ->
let q' = Nametab.shortest_qualid_of_global Id.Set.empty r' in
spc () ++ str "(alias of " ++ pr_qualid q' ++ str ")"
end
| _ -> mt ()
let locate_term qid =
let expand = function
| TrueGlobal ref ->
Term ref, Nametab.shortest_qualid_of_global Id.Set.empty ref
| SynDef kn ->
Syntactic kn, Nametab.shortest_qualid_of_syndef Id.Set.empty kn
in
List.map expand (Nametab.locate_extended_all qid)
let locate_module qid =
let all = Nametab.locate_extended_all_dir qid in
let map dir = match dir with
| DirModule (_, (mp, _)) -> Some (Dir dir, Nametab.shortest_qualid_of_module mp)
| DirOpenModule _ -> Some (Dir dir, qid)
| _ -> None
in
List.map_filter map all
let locate_modtype qid =
let all = Nametab.locate_extended_all_modtype qid in
let map mp = ModuleType mp, Nametab.shortest_qualid_of_modtype mp in
let modtypes = List.map map all in
(** Don't forget the opened module types: they are not part of the same name tab. *)
let all = Nametab.locate_extended_all_dir qid in
let map dir = match dir with
| DirOpenModtype _ -> Some (Dir dir, qid)
| _ -> None
in
modtypes @ List.map_filter map all
let locate_other s qid =
let Locatable info = String.Map.find s !locatable_map in
let ans = info.locate_all qid in
let map obj = (Other (obj, info), info.shortest_qualid obj) in
List.map map ans
type locatable_kind =
| LocTerm
| LocModule
| LocOther of string
| LocAny
let print_located_qualid name flags ref =
let (loc,qid) = qualid_of_reference ref in
let located = match flags with
| LocTerm -> locate_term qid
| LocModule -> locate_modtype qid @ locate_module qid
| LocOther s -> locate_other s qid
| LocAny ->
locate_term qid @
locate_modtype qid @
locate_module qid @
String.Map.fold (fun s _ accu -> locate_other s qid @ accu) !locatable_map []
in
match located with
| [] ->
let (dir,id) = repr_qualid qid in
if DirPath.is_empty dir then
str "No " ++ str name ++ str " of basename" ++ spc () ++ pr_id id
else
str "No " ++ str name ++ str " of suffix" ++ spc () ++ pr_qualid qid
| l ->
prlist_with_sep fnl
(fun (o,oqid) ->
hov 2 (pr_located_qualid o ++
(if not (qualid_eq oqid qid) then
spc() ++ str "(shorter name to refer to it in current context is "
++ pr_qualid oqid ++ str")"
else mt ()) ++
display_alias o)) l
let print_located_term ref = print_located_qualid "term" LocTerm ref
let print_located_other s ref = print_located_qualid s (LocOther s) ref
let print_located_module ref = print_located_qualid "module" LocModule ref
let print_located_qualid ref = print_located_qualid "object" LocAny ref
(******************************************)
(**** Printing declarations and judgments *)
(**** Gallina layer *****)
let gallina_print_typed_value_in_env env sigma (trm,typ) =
(pr_leconstr_env env sigma trm ++ fnl () ++
str " : " ++ pr_letype_env env sigma typ)
(* To be improved; the type should be used to provide the types in the
abstractions. This should be done recursively inside pr_lconstr, so that
the pretty-print of a proposition (P:(nat->nat)->Prop)(P [u]u)
synthesizes the type nat of the abstraction on u *)
let print_named_def name body typ =
let pbody = pr_lconstr body in
let ptyp = pr_ltype typ in
let pbody = if isCast body then surround pbody else pbody in
(str "*** [" ++ str name ++ str " " ++
hov 0 (str ":=" ++ brk (1,2) ++ pbody ++ spc () ++
str ":" ++ brk (1,2) ++ ptyp) ++
str "]")
let print_named_assum name typ =
str "*** [" ++ str name ++ str " : " ++ pr_ltype typ ++ str "]"
let gallina_print_named_decl =
let open Context.Named.Declaration in
function
| LocalAssum (id, typ) ->
print_named_assum (Id.to_string id) typ
| LocalDef (id, body, typ) ->
print_named_def (Id.to_string id) body typ
let assumptions_for_print lna =
List.fold_right (fun na env -> add_name na env) lna empty_names_context
(*********************)
(* *)
let gallina_print_inductive sp =
let env = Global.env() in
let mib = Environ.lookup_mind sp env in
let mipv = mib.mind_packets in
pr_mutual_inductive_body env sp mib ++
with_line_skip
(print_primitive_record mib.mind_finite mipv mib.mind_record @
print_inductive_renames sp mipv @
print_inductive_implicit_args sp mipv @
print_inductive_argument_scopes sp mipv)
let print_named_decl id =
gallina_print_named_decl (Global.lookup_named id) ++ fnl ()
let gallina_print_section_variable id =
print_named_decl id ++
with_line_skip (print_name_infos (VarRef id))
let print_body env evd = function
| Some c -> pr_lconstr_env env evd c
| None -> (str"<no body>")
let print_typed_body env evd (val_0,typ) =
(print_body env evd val_0 ++ fnl () ++ str " : " ++ pr_ltype_env env evd typ)
let print_instance sigma cb =
if Declareops.constant_is_polymorphic cb then
let univs = Declareops.constant_polymorphic_context cb in
let inst = Univ.AUContext.instance univs in
let univs = Univ.UContext.make (inst, Univ.AUContext.instantiate inst univs) in
pr_universe_instance sigma univs
else mt()
let print_constant with_values sep sp =
let cb = Global.lookup_constant sp in
let val_0 = Global.body_of_constant_body cb in
let typ =
match cb.const_universes with
| Monomorphic_const _ -> cb.const_type
| Polymorphic_const univs ->
let inst = Univ.AUContext.instance univs in
Vars.subst_instance_constr inst cb.const_type
in
let univs =
let otab = Global.opaque_tables () in
match cb.const_body with
| Undef _ | Def _ ->
begin
match cb.const_universes with
| Monomorphic_const ctx -> ctx
| Polymorphic_const ctx ->
let inst = Univ.AUContext.instance ctx in
Univ.UContext.make (inst, Univ.AUContext.instantiate inst ctx)
end
| OpaqueDef o ->
let body_uctxs = Opaqueproof.force_constraints otab o in
match cb.const_universes with
| Monomorphic_const ctx ->
let uctxs = Univ.ContextSet.of_context ctx in
Univ.ContextSet.to_context (Univ.ContextSet.union body_uctxs uctxs)
| Polymorphic_const ctx ->
assert(Univ.ContextSet.is_empty body_uctxs);
let inst = Univ.AUContext.instance ctx in
Univ.UContext.make (inst, Univ.AUContext.instantiate inst ctx)
in
let ctx =
Evd.evar_universe_context_of_binders
(Universes.universe_binders_of_global (ConstRef sp))
in
let env = Global.env () and sigma = Evd.from_ctx ctx in
let pr_ltype = pr_ltype_env env sigma in
hov 0 (pr_polymorphic (Declareops.constant_is_polymorphic cb) ++
match val_0 with
| None ->
str"*** [ " ++
print_basename sp ++ print_instance sigma cb ++ str " : " ++ cut () ++ pr_ltype typ ++
str" ]" ++
Printer.pr_universe_ctx sigma univs
| Some (c, ctx) ->
let c = Vars.subst_instance_constr (Univ.AUContext.instance ctx) c in
print_basename sp ++ print_instance sigma cb ++ str sep ++ cut () ++
(if with_values then print_typed_body env sigma (Some c,typ) else pr_ltype typ)++
Printer.pr_universe_ctx sigma univs)
let gallina_print_constant_with_infos sp =
print_constant true " = " sp ++
with_line_skip (print_name_infos (ConstRef sp))
let gallina_print_syntactic_def kn =
let qid = Nametab.shortest_qualid_of_syndef Id.Set.empty kn
and (vars,a) = Syntax_def.search_syntactic_definition kn in
let c = Notation_ops.glob_constr_of_notation_constr a in
hov 2
(hov 4
(str "Notation " ++ pr_qualid qid ++
prlist (fun id -> spc () ++ pr_id id) (List.map fst vars) ++
spc () ++ str ":=") ++
spc () ++
Constrextern.without_specific_symbols
[Notation.SynDefRule kn] pr_glob_constr c)
let gallina_print_leaf_entry with_values ((sp,kn as oname),lobj) =
let sep = if with_values then " = " else " : "
and tag = object_tag lobj in
match (oname,tag) with
| (_,"VARIABLE") ->
(* Outside sections, VARIABLES still exist but only with universes
constraints *)
(try Some(print_named_decl (basename sp)) with Not_found -> None)
| (_,"CONSTANT") ->
Some (print_constant with_values sep (constant_of_kn kn))
| (_,"INDUCTIVE") ->
Some (gallina_print_inductive (mind_of_kn kn))
| (_,"MODULE") ->
let (mp,_,l) = repr_kn kn in
Some (print_module with_values (MPdot (mp,l)))
| (_,"MODULE TYPE") ->
let (mp,_,l) = repr_kn kn in
Some (print_modtype (MPdot (mp,l)))
| (_,("AUTOHINT"|"GRAMMAR"|"SYNTAXCONSTANT"|"PPSYNTAX"|"TOKEN"|"CLASS"|
"COERCION"|"REQUIRE"|"END-SECTION"|"STRUCTURE")) -> None
(* To deal with forgotten cases... *)
| (_,s) -> None
let gallina_print_library_entry with_values ent =
let pr_name (sp,_) = pr_id (basename sp) in
match ent with
| (oname,Lib.Leaf lobj) ->
gallina_print_leaf_entry with_values (oname,lobj)
| (oname,Lib.OpenedSection (dir,_)) ->
Some (str " >>>>>>> Section " ++ pr_name oname)
| (oname,Lib.ClosedSection _) ->
Some (str " >>>>>>> Closed Section " ++ pr_name oname)
| (_,Lib.CompilingLibrary (dir,_)) ->
Some (str " >>>>>>> Library " ++ pr_dirpath dir)
| (oname,Lib.OpenedModule _) ->
Some (str " >>>>>>> Module " ++ pr_name oname)
| (oname,Lib.ClosedModule _) ->
Some (str " >>>>>>> Closed Module " ++ pr_name oname)
let gallina_print_context with_values =
let rec prec n = function
| h::rest when Option.is_empty n || Option.get n > 0 ->
(match gallina_print_library_entry with_values h with
| None -> prec n rest
| Some pp -> prec (Option.map ((+) (-1)) n) rest ++ pp ++ fnl ())
| _ -> mt ()
in
prec
let gallina_print_eval red_fun env sigma _ {uj_val=trm;uj_type=typ} =
let ntrm = red_fun env sigma trm in
(str " = " ++ gallina_print_typed_value_in_env env sigma (ntrm,typ))
(******************************************)
(**** Printing abstraction layer *)
let default_object_pr = {
print_inductive = gallina_print_inductive;
print_constant_with_infos = gallina_print_constant_with_infos;
print_section_variable = gallina_print_section_variable;
print_syntactic_def = gallina_print_syntactic_def;
print_module = gallina_print_module;
print_modtype = gallina_print_modtype;
print_named_decl = gallina_print_named_decl;
print_library_entry = gallina_print_library_entry;
print_context = gallina_print_context;
print_typed_value_in_env = gallina_print_typed_value_in_env;
print_eval = gallina_print_eval;
}
let object_pr = ref default_object_pr
let set_object_pr = (:=) object_pr
let print_inductive x = !object_pr.print_inductive x
let print_constant_with_infos c = !object_pr.print_constant_with_infos c
let print_section_variable c = !object_pr.print_section_variable c
let print_syntactic_def x = !object_pr.print_syntactic_def x
let print_module x = !object_pr.print_module x
let print_modtype x = !object_pr.print_modtype x
let print_named_decl x = !object_pr.print_named_decl x
let print_library_entry x = !object_pr.print_library_entry x
let print_context x = !object_pr.print_context x
let print_typed_value_in_env x = !object_pr.print_typed_value_in_env x
let print_eval x = !object_pr.print_eval x
(******************************************)
(**** Printing declarations and judgments *)
(**** Abstract layer *****)
let print_typed_value x = print_typed_value_in_env (Global.env ()) Evd.empty x
let print_judgment env sigma {uj_val=trm;uj_type=typ} =
print_typed_value_in_env env sigma (trm, typ)
let print_safe_judgment env sigma j =
let trm = Safe_typing.j_val j in
let typ = Safe_typing.j_type j in
let trm = EConstr.of_constr trm in
let typ = EConstr.of_constr typ in
print_typed_value_in_env env sigma (trm, typ)
(*********************)
(* *)
let print_full_context () = print_context true None (Lib.contents ())
let print_full_context_typ () = print_context false None (Lib.contents ())
let print_full_pure_context () =
let rec prec = function
| ((_,kn),Lib.Leaf lobj)::rest ->
let pp = match object_tag lobj with
| "CONSTANT" ->
let con = Global.constant_of_delta_kn kn in
let cb = Global.lookup_constant con in
let typ = cb.const_type in
hov 0 (
match cb.const_body with
| Undef _ ->
str "Parameter " ++
print_basename con ++ str " : " ++ cut () ++ pr_ltype typ
| OpaqueDef lc ->
str "Theorem " ++ print_basename con ++ cut () ++
str " : " ++ pr_ltype typ ++ str "." ++ fnl () ++
str "Proof " ++ pr_lconstr (Opaqueproof.force_proof (Global.opaque_tables ()) lc)
| Def c ->
str "Definition " ++ print_basename con ++ cut () ++
str " : " ++ pr_ltype typ ++ cut () ++ str " := " ++
pr_lconstr (Mod_subst.force_constr c))
++ str "." ++ fnl () ++ fnl ()
| "INDUCTIVE" ->
let mind = Global.mind_of_delta_kn kn in
let mib = Global.lookup_mind mind in
pr_mutual_inductive_body (Global.env()) mind mib ++
str "." ++ fnl () ++ fnl ()
| "MODULE" ->
(* TODO: make it reparsable *)
let (mp,_,l) = repr_kn kn in
print_module true (MPdot (mp,l)) ++ str "." ++ fnl () ++ fnl ()
| "MODULE TYPE" ->
(* TODO: make it reparsable *)
(* TODO: make it reparsable *)
let (mp,_,l) = repr_kn kn in
print_modtype (MPdot (mp,l)) ++ str "." ++ fnl () ++ fnl ()
| _ -> mt () in
prec rest ++ pp
| _::rest -> prec rest
| _ -> mt () in
prec (Lib.contents ())
(* For printing an inductive definition with
its constructors and elimination,
assume that the declaration of constructors and eliminations
follows the definition of the inductive type *)
(* This is designed to print the contents of an opened section *)
let read_sec_context r =
let loc,qid = qualid_of_reference r in
let dir =
try Nametab.locate_section qid
with Not_found ->
user_err ?loc ~hdr:"read_sec_context" (str "Unknown section.") in
let rec get_cxt in_cxt = function
| (_,Lib.OpenedSection ((dir',_),_) as hd)::rest ->
if DirPath.equal dir dir' then (hd::in_cxt) else get_cxt (hd::in_cxt) rest
| (_,Lib.ClosedSection _)::rest ->
user_err Pp.(str "Cannot print the contents of a closed section.")
(* LEM: Actually, we could if we wanted to. *)
| [] -> []
| hd::rest -> get_cxt (hd::in_cxt) rest
in
let cxt = Lib.contents () in
List.rev (get_cxt [] cxt)
let print_sec_context sec =
print_context true None (read_sec_context sec)
let print_sec_context_typ sec =
print_context false None (read_sec_context sec)
let print_any_name = function
| Term (ConstRef sp) -> print_constant_with_infos sp
| Term (IndRef (sp,_)) -> print_inductive sp
| Term (ConstructRef ((sp,_),_)) -> print_inductive sp
| Term (VarRef sp) -> print_section_variable sp
| Syntactic kn -> print_syntactic_def kn
| Dir (DirModule(dirpath,(mp,_))) -> print_module (printable_body dirpath) mp
| Dir _ -> mt ()
| ModuleType mp -> print_modtype mp
| Other (obj, info) -> info.print obj
| Undefined qid ->
try (* Var locale de but, pas var de section... donc pas d'implicits *)
let dir,str = repr_qualid qid in
if not (DirPath.is_empty dir) then raise Not_found;
str |> Global.lookup_named |> NamedDecl.set_id str |> print_named_decl
with Not_found ->
user_err
~hdr:"print_name" (pr_qualid qid ++ spc () ++ str "not a defined object.")
let print_name = function
| ByNotation (loc,(ntn,sc)) ->
print_any_name
(Term (Notation.interp_notation_as_global_reference ?loc (fun _ -> true)
ntn sc))
| AN ref ->
print_any_name (locate_any_name ref)
let print_opaque_name qid =
let env = Global.env () in
match Nametab.global qid with
| ConstRef cst ->
let cb = Global.lookup_constant cst in
if Declareops.constant_has_body cb then
print_constant_with_infos cst
else
user_err Pp.(str "Not a defined constant.")
| IndRef (sp,_) ->
print_inductive sp
| ConstructRef cstr as gr ->
let ty, ctx = Global.type_of_global_in_context env gr in
let inst = Univ.AUContext.instance ctx in
let ty = Vars.subst_instance_constr inst ty in
let ty = EConstr.of_constr ty in
let open EConstr in
print_typed_value (mkConstruct cstr, ty)
| VarRef id ->
env |> lookup_named id |> NamedDecl.set_id id |> print_named_decl
let print_about_any ?loc k =
match k with
| Term ref ->
let rb = Reductionops.ReductionBehaviour.print ref in
Dumpglob.add_glob ?loc ref;
pr_infos_list
(print_ref false ref :: blankline ::
print_name_infos ref @
(if Pp.ismt rb then [] else [rb]) @
print_opacity ref @
[hov 0 (str "Expands to: " ++ pr_located_qualid k)])
| Syntactic kn ->
let () = match Syntax_def.search_syntactic_definition kn with
| [],Notation_term.NRef ref -> Dumpglob.add_glob ?loc ref
| _ -> () in
v 0 (
print_syntactic_def kn ++ fnl () ++
hov 0 (str "Expands to: " ++ pr_located_qualid k))
| Dir _ | ModuleType _ | Undefined _ ->
hov 0 (pr_located_qualid k)
| Other (obj, info) -> hov 0 (info.about obj)
let print_about = function
| ByNotation (loc,(ntn,sc)) ->
print_about_any ?loc
(Term (Notation.interp_notation_as_global_reference ?loc (fun _ -> true)
ntn sc))
| AN ref ->
print_about_any ?loc:(loc_of_reference ref) (locate_any_name ref)
(* for debug *)
let inspect depth =
print_context false (Some depth) (Lib.contents ())
(*************************************************************************)
(* Pretty-printing functions coming from classops.ml *)
open Classops
let print_coercion_value v = pr_lconstr (get_coercion_value v)
let print_class i =
let cl,_ = class_info_from_index i in
pr_class cl
let print_path ((i,j),p) =
hov 2 (
str"[" ++ hov 0 (prlist_with_sep pr_semicolon print_coercion_value p) ++
str"] : ") ++
print_class i ++ str" >-> " ++ print_class j
let _ = Classops.install_path_printer print_path
let print_graph () =
prlist_with_sep fnl print_path (inheritance_graph())
let print_classes () =
pr_sequence pr_class (classes())
let print_coercions () =
pr_sequence print_coercion_value (coercions())
let index_of_class cl =
try
fst (class_info cl)
with Not_found ->
user_err ~hdr:"index_of_class"
(pr_class cl ++ spc() ++ str "not a defined class.")
let print_path_between cls clt =
let i = index_of_class cls in
let j = index_of_class clt in
let p =
try
lookup_path_between_class (i,j)
with Not_found ->
user_err ~hdr:"index_cl_of_id"
(str"No path between " ++ pr_class cls ++ str" and " ++ pr_class clt
++ str ".")
in
print_path ((i,j),p)
let print_canonical_projections () =
prlist_with_sep fnl
(fun ((r1,r2),o) -> pr_cs_pattern r2 ++
str " <- " ++
pr_global r1 ++ str " ( " ++ pr_lconstr o.o_DEF ++ str " )")
(canonical_projections ())
(*************************************************************************)
(*************************************************************************)
(* Pretty-printing functions for type classes *)
open Typeclasses
let pr_typeclass env t =
print_ref false t.cl_impl
let print_typeclasses () =
let env = Global.env () in
prlist_with_sep fnl (pr_typeclass env) (typeclasses ())
let pr_instance env i =
(* gallina_print_constant_with_infos i.is_impl *)
(* lighter *)
print_ref false (instance_impl i) ++
begin match hint_priority i with
| None -> mt ()
| Some i -> spc () ++ str "|" ++ spc () ++ int i
end
let print_all_instances () =
let env = Global.env () in
let inst = all_instances () in
prlist_with_sep fnl (pr_instance env) inst
let print_instances r =
let env = Global.env () in
let inst = instances r in
prlist_with_sep fnl (pr_instance env) inst
|