1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Util
open Names
open Declarations
open Term
open Constr
open Vars
open Environ
open Inductive
open Reduction
open Vmvalues
open Vm
open Context.Rel.Declaration
module RelDecl = Context.Rel.Declaration
module NamedDecl = Context.Named.Declaration
(*******************************************)
(* Calcul de la forme normal d'un terme *)
(*******************************************)
let crazy_type = mkSet
let decompose_prod env t =
let (name,dom,codom as res) = destProd (whd_all env t) in
match name with
| Anonymous -> (Name (Id.of_string "x"), dom, codom)
| Name _ -> res
exception Find_at of int
(* rend le numero du constructeur correspondant au tag [tag],
[cst] = true si c'est un constructeur constant *)
let invert_tag cst tag reloc_tbl =
try
for j = 0 to Array.length reloc_tbl - 1 do
let tagj,arity = reloc_tbl.(j) in
let no_arity = Int.equal arity 0 in
if Int.equal tag tagj && (cst && no_arity || not (cst || no_arity)) then
raise (Find_at j)
else ()
done;raise Not_found
with Find_at j -> (j+1)
(* Argggg, ces constructeurs de ... qui commencent a 1*)
let find_rectype_a env c =
let (t, l) = decompose_appvect (whd_all env c) in
match kind t with
| Ind ind -> (ind, l)
| _ -> assert false
(* Instantiate inductives and parameters in constructor type *)
let type_constructor mind mib u typ params =
let s = ind_subst mind mib u in
let ctyp = substl s typ in
let ctyp = subst_instance_constr u ctyp in
let ndecls = Context.Rel.length mib.mind_params_ctxt in
if Int.equal ndecls 0 then ctyp
else
let _,ctyp = decompose_prod_n_assum ndecls ctyp in
substl (List.rev (adjust_subst_to_rel_context mib.mind_params_ctxt (Array.to_list params)))
ctyp
let construct_of_constr const env tag typ =
let ((mind,_ as ind), u) as indu, allargs = find_rectype_a env typ in
(* spiwack : here be a branch for specific decompilation handled by retroknowledge *)
try
if const then
((retroknowledge Retroknowledge.get_vm_decompile_constant_info env (mkIndU indu) tag),
typ) (*spiwack: this may need to be changed in case there are parameters in the
type which may cause a constant value to have an arity.
(type_constructor seems to be all about parameters actually)
but it shouldn't really matter since constant values don't use
their ctyp in the rest of the code.*)
else
raise Not_found (* No retroknowledge function (yet) for block decompilation *)
with Not_found ->
let mib,mip = lookup_mind_specif env ind in
let nparams = mib.mind_nparams in
let i = invert_tag const tag mip.mind_reloc_tbl in
let params = Array.sub allargs 0 nparams in
let ctyp = type_constructor mind mib u (mip.mind_nf_lc.(i-1)) params in
(mkApp(mkConstructUi(indu,i), params), ctyp)
let construct_of_constr_const env tag typ =
fst (construct_of_constr true env tag typ)
let construct_of_constr_block = construct_of_constr false
let type_of_ind env (ind, u) =
type_of_inductive env (Inductive.lookup_mind_specif env ind, u)
let build_branches_type env sigma (mind,_ as _ind) mib mip u params dep p =
let rtbl = mip.mind_reloc_tbl in
(* [build_one_branch i cty] construit le type de la ieme branche (commence
a 0) et les lambda correspondant aux realargs *)
let build_one_branch i cty =
let typi = type_constructor mind mib u cty params in
let decl,indapp = Reductionops.splay_prod env sigma (EConstr.of_constr typi) in
let decl = List.map (on_snd EConstr.Unsafe.to_constr) decl in
let indapp = EConstr.Unsafe.to_constr indapp in
let decl_with_letin,_ = decompose_prod_assum typi in
let ((ind,u),cargs) = find_rectype_a env indapp in
let nparams = Array.length params in
let carity = snd (rtbl.(i)) in
let crealargs = Array.sub cargs nparams (Array.length cargs - nparams) in
let codom =
let ndecl = List.length decl in
let papp = mkApp(lift ndecl p,crealargs) in
if dep then
let cstr = ith_constructor_of_inductive ind (i+1) in
let relargs = Array.init carity (fun i -> mkRel (carity-i)) in
let params = Array.map (lift ndecl) params in
let dep_cstr = mkApp(mkApp(mkConstructU (cstr,u),params),relargs) in
mkApp(papp,[|dep_cstr|])
else papp
in
decl, decl_with_letin, codom
in Array.mapi build_one_branch mip.mind_nf_lc
let build_case_type dep p realargs c =
if dep then mkApp(mkApp(p, realargs), [|c|])
else mkApp(p, realargs)
(* La fonction de normalisation *)
let rec nf_val env sigma v t = nf_whd env sigma (Vmvalues.whd_val v) t
and nf_vtype env sigma v = nf_val env sigma v crazy_type
and nf_whd env sigma whd typ =
match whd with
| Vprod p ->
let dom = nf_vtype env sigma (dom p) in
let name = Name (Id.of_string "x") in
let vc = reduce_fun (nb_rel env) (codom p) in
let codom = nf_vtype (push_rel (LocalAssum (name,dom)) env) sigma vc in
mkProd(name,dom,codom)
| Vfun f -> nf_fun env sigma f typ
| Vfix(f,None) -> nf_fix env sigma f
| Vfix(f,Some vargs) -> fst (nf_fix_app env sigma f vargs)
| Vcofix(cf,_,None) -> nf_cofix env sigma cf
| Vcofix(cf,_,Some vargs) ->
let cfd = nf_cofix env sigma cf in
let i,(_,ta,_) = destCoFix cfd in
let t = ta.(i) in
let _, args = nf_args env sigma vargs t in
mkApp(cfd,args)
| Vconstr_const n ->
construct_of_constr_const env n typ
| Vconstr_block b ->
let tag = btag b in
let (tag,ofs) =
if tag = Cbytecodes.last_variant_tag then
match whd_val (bfield b 0) with
| Vconstr_const tag -> (tag+Cbytecodes.last_variant_tag, 1)
| _ -> assert false
else (tag, 0) in
let capp,ctyp = construct_of_constr_block env tag typ in
let args = nf_bargs env sigma b ofs ctyp in
mkApp(capp,args)
| Vatom_stk(Aid idkey, stk) ->
constr_type_of_idkey env sigma idkey stk
| Vatom_stk(Aind ((mi,i) as ind), stk) ->
let mib = Environ.lookup_mind mi env in
let nb_univs =
Univ.AUContext.size (Declareops.inductive_polymorphic_context mib)
in
let mk u =
let pind = (ind, u) in (mkIndU pind, type_of_ind env pind)
in
nf_univ_args ~nb_univs mk env sigma stk
| Vatom_stk(Asort s, stk) ->
assert (List.is_empty stk); mkSort s
| Vuniv_level lvl ->
assert false
and nf_univ_args ~nb_univs mk env sigma stk =
let u =
if Int.equal nb_univs 0 then Univ.Instance.empty
else match stk with
| Zapp args :: _ ->
let inst =
Array.init nb_univs (fun i -> uni_lvl_val (arg args i))
in
Univ.Instance.of_array inst
| _ -> assert false
in
let (t,ty) = mk u in
nf_stk ~from:nb_univs env sigma t ty stk
and constr_type_of_idkey env sigma (idkey : Vars.id_key) stk =
match idkey with
| ConstKey cst ->
let cbody = Environ.lookup_constant cst env in
let nb_univs =
Univ.AUContext.size (Declareops.constant_polymorphic_context cbody)
in
let mk u =
let pcst = (cst, u) in (mkConstU pcst, Typeops.type_of_constant_in env pcst)
in
nf_univ_args ~nb_univs mk env sigma stk
| VarKey id ->
let ty = NamedDecl.get_type (lookup_named id env) in
nf_stk env sigma (mkVar id) ty stk
| RelKey i ->
let n = (nb_rel env - i) in
let ty = RelDecl.get_type (lookup_rel n env) in
nf_stk env sigma (mkRel n) (lift n ty) stk
and nf_stk ?from:(from=0) env sigma c t stk =
match stk with
| [] -> c
| Zapp vargs :: stk ->
if nargs vargs >= from then
let t, args = nf_args ~from:from env sigma vargs t in
nf_stk env sigma (mkApp(c,args)) t stk
else
let rest = from - nargs vargs in
nf_stk ~from:rest env sigma c t stk
| Zfix (f,vargs) :: stk ->
assert (from = 0) ;
let fa, typ = nf_fix_app env sigma f vargs in
let _,_,codom = decompose_prod env typ in
nf_stk env sigma (mkApp(fa,[|c|])) (subst1 c codom) stk
| Zswitch sw :: stk ->
assert (from = 0) ;
let ((mind,_ as ind), u), allargs = find_rectype_a env t in
let (mib,mip) = Inductive.lookup_mind_specif env ind in
let nparams = mib.mind_nparams in
let params,realargs = Util.Array.chop nparams allargs in
let nparamdecls = Context.Rel.length (Inductive.inductive_paramdecls (mib,u)) in
let pT =
hnf_prod_applist_assum env nparamdecls (type_of_ind env (ind,u)) (Array.to_list params) in
let pT = whd_all env pT in
let dep, p = nf_predicate env sigma (ind,u) mip params (type_of_switch sw) pT in
(* Calcul du type des branches *)
let btypes = build_branches_type env sigma ind mib mip u params dep p in
(* calcul des branches *)
let bsw = branch_of_switch (nb_rel env) sw in
let mkbranch i (n,v) =
let decl,decl_with_letin,codom = btypes.(i) in
let b = nf_val (Termops.push_rels_assum decl env) sigma v codom in
Termops.it_mkLambda_or_LetIn_from_no_LetIn b decl_with_letin
in
let branchs = Array.mapi mkbranch bsw in
let tcase = build_case_type dep p realargs c in
let ci = sw.sw_annot.Cbytecodes.ci in
nf_stk env sigma (mkCase(ci, p, c, branchs)) tcase stk
| Zproj p :: stk ->
assert (from = 0) ;
let p' = Projection.make p true in
let ty = Inductiveops.type_of_projection_knowing_arg env sigma p' (EConstr.of_constr c) (EConstr.of_constr t) in
nf_stk env sigma (mkProj(p',c)) ty stk
and nf_predicate env sigma ind mip params v pT =
match whd_val v, kind pT with
| Vfun f, Prod _ ->
let k = nb_rel env in
let vb = reduce_fun k f in
let name,dom,codom = decompose_prod env pT in
let dep,body =
nf_predicate (push_rel (LocalAssum (name,dom)) env) sigma ind mip params vb codom in
dep, mkLambda(name,dom,body)
| Vfun f, _ ->
let k = nb_rel env in
let vb = reduce_fun k f in
let name = Name (Id.of_string "c") in
let n = mip.mind_nrealargs in
let rargs = Array.init n (fun i -> mkRel (n-i)) in
let params = if Int.equal n 0 then params else Array.map (lift n) params in
let dom = mkApp(mkIndU ind,Array.append params rargs) in
let body = nf_vtype (push_rel (LocalAssum (name,dom)) env) sigma vb in
true, mkLambda(name,dom,body)
| _, _ -> false, nf_val env sigma v crazy_type
and nf_args env sigma vargs ?from:(f=0) t =
let t = ref t in
let len = nargs vargs - f in
let args =
Array.init len
(fun i ->
let _,dom,codom = decompose_prod env !t in
let c = nf_val env sigma (arg vargs (f+i)) dom in
t := subst1 c codom; c) in
!t,args
and nf_bargs env sigma b ofs t =
let t = ref t in
let len = bsize b - ofs in
let args =
Array.init len
(fun i ->
let _,dom,codom = decompose_prod env !t in
let c = nf_val env sigma (bfield b (i+ofs)) dom in
t := subst1 c codom; c) in
args
and nf_fun env sigma f typ =
let k = nb_rel env in
let vb = reduce_fun k f in
let name,dom,codom =
try decompose_prod env typ
with DestKO ->
(* 27/2/13: Turned this into an anomaly *)
CErrors.anomaly
(Pp.strbrk "Returned a functional value in a type not recognized as a product type.")
in
let body = nf_val (push_rel (LocalAssum (name,dom)) env) sigma vb codom in
mkLambda(name,dom,body)
and nf_fix env sigma f =
let init = current_fix f in
let rec_args = rec_args f in
let k = nb_rel env in
let vb, vt = reduce_fix k f in
let ndef = Array.length vt in
let ft = Array.map (fun v -> nf_val env sigma v crazy_type) vt in
let name = Array.init ndef (fun _ -> (Name (Id.of_string "Ffix"))) in
(* Third argument of the tuple is ignored by push_rec_types *)
let env = push_rec_types (name,ft,ft) env in
(* We lift here because the types of arguments (in tt) will be evaluated
in an environment where the fixpoints have been pushed *)
let norm_vb v t = nf_fun env sigma v (lift ndef t) in
let fb = Util.Array.map2 norm_vb vb ft in
mkFix ((rec_args,init),(name,ft,fb))
and nf_fix_app env sigma f vargs =
let fd = nf_fix env sigma f in
let (_,i),(_,ta,_) = destFix fd in
let t = ta.(i) in
let t, args = nf_args env sigma vargs t in
mkApp(fd,args),t
and nf_cofix env sigma cf =
let init = current_cofix cf in
let k = nb_rel env in
let vb,vt = reduce_cofix k cf in
let ndef = Array.length vt in
let cft = Array.map (fun v -> nf_val env sigma v crazy_type) vt in
let name = Array.init ndef (fun _ -> (Name (Id.of_string "Fcofix"))) in
let env = push_rec_types (name,cft,cft) env in
let cfb = Util.Array.map2 (fun v t -> nf_val env sigma v t) vb cft in
mkCoFix (init,(name,cft,cfb))
let cbv_vm env sigma c t =
if Termops.occur_meta_or_existential sigma c then
CErrors.user_err Pp.(str "vm_compute does not support existential variables.");
(** This evar-normalizes terms beforehand *)
let c = EConstr.to_constr sigma c in
let t = EConstr.to_constr sigma t in
let v = Vconv.val_of_constr env c in
EConstr.of_constr (nf_val env sigma v t)
let vm_infer_conv ?(pb=Reduction.CUMUL) env sigma t1 t2 =
Reductionops.infer_conv_gen (fun pb ~l2r sigma ts -> Vconv.vm_conv_gen pb)
~catch_incon:true ~pb env sigma t1 t2
let _ = if Coq_config.bytecode_compiler then Reductionops.set_vm_infer_conv vm_infer_conv
|