1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id$ *)
open Pp
open Util
open Names
open Nameops
open Term
open Termops
open Sign
open Environ
open Evd
open Reduction
open Reductionops
open Rawterm
open Pattern
open Evarutil
open Pretype_errors
open Retyping
open Coercion.Default
open Recordops
(* if lname_typ is [xn,An;..;x1,A1] and l is a list of terms,
gives [x1:A1]..[xn:An]c' such that c converts to ([x1:A1]..[xn:An]c' l) *)
let abstract_scheme env c l lname_typ =
List.fold_left2
(fun t (locc,a) (na,_,ta) ->
let na = match kind_of_term a with Var id -> Name id | _ -> na in
(* [occur_meta ta] test removed for support of eelim/ecase but consequences
are unclear...
if occur_meta ta then error "cannot find a type for the generalisation"
else *) if occur_meta a then lambda_name env (na,ta,t)
else lambda_name env (na,ta,subst_term_occ locc a t))
c
(List.rev l)
lname_typ
let abstract_list_all env evd typ c l =
let ctxt,_ = splay_prod_n env ( evd) (List.length l) typ in
let l_with_all_occs = List.map (function a -> (all_occurrences,a)) l in
let p = abstract_scheme env c l_with_all_occs ctxt in
try
if is_conv_leq env ( evd) (Typing.mtype_of env evd p) typ then p
else error "abstract_list_all"
with UserError _ | Type_errors.TypeError _ ->
error_cannot_find_well_typed_abstraction env ( evd) p l
(**)
let get_type_of_with_variables env evd c =
let t = Retyping.get_type_of ~refresh:false env evd c in
Evd.universes_to_variables evd t
(* A refinement of [conv_pb]: the integers tells how many arguments
were applied in the context of the conversion problem; if the number
is non zero, steps of eta-expansion will be allowed
*)
type conv_pb_up_to_eta = Cumul | ConvUnderApp of int * int
let topconv = ConvUnderApp (0,0)
let of_conv_pb = function CONV -> topconv | CUMUL -> Cumul
let conv_pb_of = function ConvUnderApp _ -> CONV | Cumul -> CUMUL
let prod_pb = function ConvUnderApp _ -> topconv | pb -> pb
let opp_status = function
| IsSuperType -> IsSubType
| IsSubType -> IsSuperType
| ConvUpToEta _ | UserGiven as x -> x
let add_type_status (x,y) = ((x,TypeNotProcessed),(y,TypeNotProcessed))
let extract_instance_status = function
| Cumul -> add_type_status (IsSubType, IsSuperType)
| ConvUnderApp (n1,n2) -> add_type_status (ConvUpToEta n1, ConvUpToEta n2)
let rec assoc_pair x = function
[] -> raise Not_found
| (a,b,_)::l -> if compare a x = 0 then b else assoc_pair x l
let rec subst_meta_instances bl c =
match kind_of_term c with
| Meta i -> (try assoc_pair i bl with Not_found -> c)
| _ -> map_constr (subst_meta_instances bl) c
let solve_pattern_eqn_array (env,nb) f l c (sigma,metasubst,evarsubst) =
match kind_of_term f with
| Meta k ->
let c = solve_pattern_eqn env (Array.to_list l) c in
let n = Array.length l - List.length (fst (decompose_lam c)) in
let pb = (ConvUpToEta n,TypeNotProcessed) in
if noccur_between 1 nb c then
sigma,(k,lift (-nb) c,pb)::metasubst,evarsubst
else error_cannot_unify_local env sigma (mkApp (f, l),c,c)
| Evar ev ->
(* Currently unused: incompatible with eauto/eassumption backtracking *)
sigma,metasubst,(ev,solve_pattern_eqn env (Array.to_list l) c)::evarsubst
| _ -> assert false
let push d (env,n) = (push_rel_assum d env,n+1)
(*******************************)
(* Unification à l'ordre 0 de m et n: [unify_0 env sigma cv_pb m n]
renvoie deux listes:
metasubst:(int*constr)list récolte les instances des (Meta k)
evarsubst:(constr*constr)list récolte les instances des (Const "?k")
Attention : pas d'unification entre les différences instances d'une
même meta ou evar, il peut rester des doublons *)
(* Unification order: *)
(* Left to right: unifies first argument and then the other arguments *)
(*let unify_l2r x = List.rev x
(* Right to left: unifies last argument and then the other arguments *)
let unify_r2l x = x
let sort_eqns = unify_r2l
*)
type unify_flags = {
modulo_conv_on_closed_terms : Names.transparent_state option;
use_metas_eagerly : bool;
modulo_delta : Names.transparent_state;
resolve_evars : bool;
}
let default_unify_flags = {
modulo_conv_on_closed_terms = Some full_transparent_state;
use_metas_eagerly = true;
modulo_delta = full_transparent_state;
resolve_evars = false;
}
let default_no_delta_unify_flags = {
modulo_conv_on_closed_terms = Some full_transparent_state;
use_metas_eagerly = true;
modulo_delta = empty_transparent_state;
resolve_evars = false;
}
let expand_key env = function
| Some (ConstKey cst) -> constant_opt_value env cst
| Some (VarKey id) -> named_body id env
| Some (RelKey _) -> None
| None -> None
let key_of flags f =
match kind_of_term f with
| Const cst when is_transparent (ConstKey cst) &&
Cpred.mem cst (snd flags.modulo_delta) ->
Some (ConstKey cst)
| Var id when is_transparent (VarKey id) &&
Idpred.mem id (fst flags.modulo_delta) ->
Some (VarKey id)
| _ -> None
let oracle_order env cf1 cf2 =
match cf1 with
| None ->
(match cf2 with
| None -> None
| Some k2 -> Some false)
| Some k1 ->
match cf2 with
| None -> Some true
| Some k2 -> Some (Conv_oracle.oracle_order k1 k2)
let is_trans_fconv_pb pb flags env sigma m n =
match pb with
| Cumul -> is_trans_fconv CUMUL flags env sigma m n
| ConvUnderApp _ -> is_trans_fconv CONV flags env sigma m n
let unify_0_with_initial_metas (sigma,ms,es as subst) conv_at_top env cv_pb flags m n =
let trivial_unify curenv pb (sigma,metasubst,_) m n =
let subst = if flags.use_metas_eagerly then metasubst else ms in
match subst_defined_metas subst m, subst_defined_metas subst n with
| Some m1, Some n1 ->
if (match flags.modulo_conv_on_closed_terms with
Some flags ->
is_trans_fconv_pb pb flags env sigma m1 n1
| None -> false) then true else
let evd = create_evar_defs sigma in
if not (is_ground_term evd m1) || not (is_ground_term evd n1)
then false else error_cannot_unify curenv sigma (m, n)
| _ -> false in
let rec unirec_rec (curenv,nb as curenvnb) pb b ((sigma,metasubst,evarsubst) as substn) curm curn =
let cM = Evarutil.whd_castappevar sigma curm
and cN = Evarutil.whd_castappevar sigma curn in
match (kind_of_term cM,kind_of_term cN) with
| Meta k1, Meta k2 ->
let stM,stN = extract_instance_status pb in
if k1 < k2
then sigma,(k1,cN,stN)::metasubst,evarsubst
else if k1 = k2 then substn
else sigma,(k2,cM,stM)::metasubst,evarsubst
| Meta k, _ when not (dependent cM cN) ->
(* Here we check that [cN] does not contain any local variables *)
if nb = 0 then
sigma,(k,cN,snd (extract_instance_status pb))::metasubst,evarsubst
else if noccur_between 1 nb cN then
(sigma,
(k,lift (-nb) cN,snd (extract_instance_status pb))::metasubst,
evarsubst)
else error_cannot_unify_local curenv sigma (m,n,cN)
| _, Meta k when not (dependent cN cM) ->
(* Here we check that [cM] does not contain any local variables *)
if nb = 0 then
(sigma,(k,cM,fst (extract_instance_status pb))::metasubst,evarsubst)
else if noccur_between 1 nb cM
then
(sigma,(k,lift (-nb) cM,fst (extract_instance_status pb))::metasubst,
evarsubst)
else error_cannot_unify_local curenv sigma (m,n,cM)
| Evar ev, _ -> sigma,metasubst,((ev,cN)::evarsubst)
| _, Evar ev -> sigma,metasubst,((ev,cM)::evarsubst)
| Lambda (na,t1,c1), Lambda (_,t2,c2) ->
unirec_rec (push (na,t1) curenvnb) topconv true
(unirec_rec curenvnb topconv true substn t1 t2) c1 c2
| Prod (na,t1,c1), Prod (_,t2,c2) ->
unirec_rec (push (na,t1) curenvnb) (prod_pb pb) true
(unirec_rec curenvnb topconv true substn t1 t2) c1 c2
| LetIn (_,a,_,c), _ -> unirec_rec curenvnb pb b substn (subst1 a c) cN
| _, LetIn (_,a,_,c) -> unirec_rec curenvnb pb b substn cM (subst1 a c)
| Case (_,p1,c1,cl1), Case (_,p2,c2,cl2) ->
array_fold_left2 (unirec_rec curenvnb topconv true)
(unirec_rec curenvnb topconv true
(unirec_rec curenvnb topconv true substn p1 p2) c1 c2) cl1 cl2
| App (f1,l1), _ when
isMeta f1 & is_unification_pattern curenvnb f1 l1 cN &
not (dependent f1 cN) ->
solve_pattern_eqn_array curenvnb f1 l1 cN substn
| _, App (f2,l2) when
isMeta f2 & is_unification_pattern curenvnb f2 l2 cM &
not (dependent f2 cM) ->
solve_pattern_eqn_array curenvnb f2 l2 cM substn
| App (f1,l1), App (f2,l2) ->
let len1 = Array.length l1
and len2 = Array.length l2 in
(try
let (f1,l1,f2,l2) =
if len1 = len2 then (f1,l1,f2,l2)
else if len1 < len2 then
let extras,restl2 = array_chop (len2-len1) l2 in
(f1, l1, appvect (f2,extras), restl2)
else
let extras,restl1 = array_chop (len1-len2) l1 in
(appvect (f1,extras), restl1, f2, l2) in
let pb = ConvUnderApp (len1,len2) in
array_fold_left2 (unirec_rec curenvnb topconv true)
(unirec_rec curenvnb pb true substn f1 f2) l1 l2
with ex when precatchable_exception ex ->
try expand curenvnb pb b substn cM f1 l1 cN f2 l2
with ex when precatchable_exception ex ->
canonical_projections curenvnb pb b cM cN substn)
| _ ->
try canonical_projections curenvnb pb b cM cN substn
with ex when precatchable_exception ex ->
let (unif,sigma') = Evarconv.constr_unify_with_sorts sigma (conv_pb_of cv_pb) cM cN in
if unif then (sigma',metasubst,evarsubst)
else
let (f1,l1) =
match kind_of_term cM with App (f,l) -> (f,l) | _ -> (cM,[||]) in
let (f2,l2) =
match kind_of_term cN with App (f,l) -> (f,l) | _ -> (cN,[||]) in
expand curenvnb pb b substn cM f1 l1 cN f2 l2
and expand (curenv,_ as curenvnb) pb b (sigma, _, _ as substn) cM f1 l1 cN f2 l2 =
if trivial_unify curenv pb substn cM cN then substn
else
if b then
let cf1 = key_of flags f1 and cf2 = key_of flags f2 in
match oracle_order curenv cf1 cf2 with
| None -> error_cannot_unify curenv sigma (cM,cN)
| Some true ->
(match expand_key curenv cf1 with
| Some c ->
unirec_rec curenvnb pb b substn
(whd_betaiotazeta sigma (mkApp(c,l1))) cN
| None ->
(match expand_key curenv cf2 with
| Some c ->
unirec_rec curenvnb pb b substn cM
(whd_betaiotazeta sigma (mkApp(c,l2)))
| None ->
error_cannot_unify curenv sigma (cM,cN)))
| Some false ->
(match expand_key curenv cf2 with
| Some c ->
unirec_rec curenvnb pb b substn cM
(whd_betaiotazeta sigma (mkApp(c,l2)))
| None ->
(match expand_key curenv cf1 with
| Some c ->
unirec_rec curenvnb pb b substn
(whd_betaiotazeta sigma (mkApp(c,l1))) cN
| None ->
error_cannot_unify curenv sigma (cM,cN)))
else
error_cannot_unify curenv sigma (cM,cN)
and canonical_projections curenvnb pb b cM cN (sigma,_,_ as substn) =
let f1 () =
if isApp cM then
let f1l1 = decompose_app cM in
if is_open_canonical_projection sigma f1l1 then
let f2l2 = decompose_app cN in
solve_canonical_projection curenvnb pb b cM f1l1 cN f2l2 substn
else error_cannot_unify (fst curenvnb) sigma (cM,cN)
else error_cannot_unify (fst curenvnb) sigma (cM,cN)
in
if flags.modulo_conv_on_closed_terms = None then
error_cannot_unify (fst curenvnb) sigma (cM,cN)
else
try f1 () with e when precatchable_exception e ->
if isApp cN then
let f2l2 = decompose_app cN in
if is_open_canonical_projection sigma f2l2 then
let f1l1 = decompose_app cM in
solve_canonical_projection curenvnb pb b cN f2l2 cM f1l1 substn
else error_cannot_unify (fst curenvnb) sigma (cM,cN)
else error_cannot_unify (fst curenvnb) sigma (cM,cN)
and solve_canonical_projection curenvnb pb b cM f1l1 cN f2l2 (sigma,ms,es) =
let (c,bs,(params,params1),(us,us2),(ts,ts1),c1,(n,t2)) =
try Evarconv.check_conv_record f1l1 f2l2
with Not_found -> error_cannot_unify (fst curenvnb) sigma (cM,cN)
in
let (evd,ks,_) =
List.fold_left
(fun (evd,ks,m) b ->
if m=n then (evd,t2::ks, m-1) else
let mv = new_meta () in
let evd' = meta_declare mv (substl ks b) evd in
(evd', mkMeta mv :: ks, m - 1))
(sigma,[],List.length bs - 1) bs
in
let unilist2 f substn l l' =
try List.fold_left2 f substn l l'
with Invalid_argument "List.fold_left2" -> error_cannot_unify (fst curenvnb) sigma (cM,cN)
in
let substn = unilist2 (fun s u1 u -> unirec_rec curenvnb pb b s u1 (substl ks u))
(evd,ms,es) us2 us in
let substn = unilist2 (fun s u1 u -> unirec_rec curenvnb pb b s u1 (substl ks u))
substn params1 params in
let substn = unilist2 (unirec_rec curenvnb pb b) substn ts ts1 in
unirec_rec curenvnb pb b substn c1 (applist (c,(List.rev ks)))
in
if (if occur_meta m || occur_meta n then false else
if (match flags.modulo_conv_on_closed_terms with
| Some flags ->
is_trans_fconv_pb cv_pb flags env sigma m n
| None -> fst (Evarconv.constr_unify_with_sorts sigma (conv_pb_of cv_pb) m n)) then true else
if (not (is_ground_term (create_evar_defs sigma) m))
|| occur_meta_or_existential n then false else
if (match flags.modulo_conv_on_closed_terms, flags.modulo_delta with
| Some (cv_id, cv_k), (dl_id, dl_k) ->
Idpred.subset dl_id cv_id && Cpred.subset dl_k cv_k
| None,(dl_id, dl_k) ->
Idpred.is_empty dl_id && Cpred.is_empty dl_k)
then error_cannot_unify env sigma (m, n) else false)
then subst
else
unirec_rec (env,0) cv_pb conv_at_top subst m n
let unify_0 env sigma = unify_0_with_initial_metas (sigma,[],[]) true env
let left = true
let right = false
let pop k = if k=0 then 0 else k-1
let rec unify_with_eta keptside flags env sigma k1 k2 c1 c2 =
(* Reason up to limited eta-expansion: ci is allowed to start with ki lam *)
(* Question: try whd_betadeltaiota on ci if ki>0 ? *)
match kind_of_term c1, kind_of_term c2 with
| (Lambda (na,t1,c1'), Lambda (_,t2,c2')) ->
let env' = push_rel_assum (na,t1) env in
let sigma,metas,evars = unify_0 env sigma topconv flags t1 t2 in
let side,status,(sigma,metas',evars') =
unify_with_eta keptside flags env' sigma (pop k1) (pop k2) c1' c2'
in (side,status,(sigma,metas@metas',evars@evars'))
| (Lambda (na,t,c1'),_) when k2 > 0 ->
let env' = push_rel_assum (na,t) env in
let side = left in (* expansion on the right: we keep the left side *)
unify_with_eta side flags env' sigma (pop k1) (k2-1)
c1' (mkApp (lift 1 c2,[|mkRel 1|]))
| (_,Lambda (na,t,c2')) when k1 > 0 ->
let env' = push_rel_assum (na,t) env in
let side = right in (* expansion on the left: we keep the right side *)
unify_with_eta side flags env' sigma (k1-1) (pop k2)
(mkApp (lift 1 c1,[|mkRel 1|])) c2'
| _ ->
(keptside,ConvUpToEta(min k1 k2),
unify_0 env sigma topconv flags c1 c2)
(* We solved problems [?n =_pb u] (i.e. [u =_(opp pb) ?n]) and [?n =_pb' u'],
we now compute the problem on [u =? u'] and decide which of u or u' is kept
Rem: the upper constraint is lost in case u <= ?n <= u' (and symmetrically
in the case u' <= ?n <= u)
*)
let merge_instances env sigma flags st1 st2 c1 c2 =
match (opp_status st1, st2) with
| (UserGiven, ConvUpToEta n2) ->
unify_with_eta left flags env sigma 0 n2 c1 c2
| (ConvUpToEta n1, UserGiven) ->
unify_with_eta right flags env sigma n1 0 c1 c2
| (ConvUpToEta n1, ConvUpToEta n2) ->
let side = left (* arbitrary choice, but agrees with compatibility *) in
unify_with_eta side flags env sigma n1 n2 c1 c2
| ((IsSubType | ConvUpToEta _ | UserGiven as oppst1),
(IsSubType | ConvUpToEta _ | UserGiven)) ->
let res = unify_0 env sigma Cumul flags c2 c1 in
if oppst1=st2 then (* arbitrary choice *) (left, st1, res)
else if st2=IsSubType or st1=UserGiven then (left, st1, res)
else (right, st2, res)
| ((IsSuperType | ConvUpToEta _ | UserGiven as oppst1),
(IsSuperType | ConvUpToEta _ | UserGiven)) ->
let res = unify_0 env sigma Cumul flags c1 c2 in
if oppst1=st2 then (* arbitrary choice *) (left, st1, res)
else if st2=IsSuperType or st1=UserGiven then (left, st1, res)
else (right, st2, res)
| (IsSuperType,IsSubType) ->
(try (left, IsSubType, unify_0 env sigma Cumul flags c2 c1)
with _ -> (right, IsSubType, unify_0 env sigma Cumul flags c1 c2))
| (IsSubType,IsSuperType) ->
(try (left, IsSuperType, unify_0 env sigma Cumul flags c1 c2)
with _ -> (right, IsSuperType, unify_0 env sigma Cumul flags c2 c1))
(* Unification
*
* Procedure:
* (1) The function [unify mc wc M N] produces two lists:
* (a) a list of bindings Meta->RHS
* (b) a list of bindings EVAR->RHS
*
* The Meta->RHS bindings cannot themselves contain
* meta-vars, so they get applied eagerly to the other
* bindings. This may or may not close off all RHSs of
* the EVARs. For each EVAR whose RHS is closed off,
* we can just apply it, and go on. For each which
* is not closed off, we need to do a mimick step -
* in general, we have something like:
*
* ?X == (c e1 e2 ... ei[Meta(k)] ... en)
*
* so we need to do a mimick step, converting ?X
* into
*
* ?X -> (c ?z1 ... ?zn)
*
* of the proper types. Then, we can decompose the
* equation into
*
* ?z1 --> e1
* ...
* ?zi --> ei[Meta(k)]
* ...
* ?zn --> en
*
* and keep on going. Whenever we find that a R.H.S.
* is closed, we can, as before, apply the constraint
* directly. Whenever we find an equation of the form:
*
* ?z -> Meta(n)
*
* we can reverse the equation, put it into our metavar
* substitution, and keep going.
*
* The most efficient mimick possible is, for each
* Meta-var remaining in the term, to declare a
* new EVAR of the same type. This is supposedly
* determinable from the clausale form context -
* we look up the metavar, take its type there,
* and apply the metavar substitution to it, to
* close it off. But this might not always work,
* since other metavars might also need to be resolved. *)
let applyHead env evd n c =
let rec apprec n c cty evd =
if n = 0 then
(evd, c)
else
match kind_of_term (whd_betadeltaiota env ( evd) cty) with
| Prod (_,c1,c2) ->
let (evd',evar) =
Evarutil.new_evar evd env ~src:(dummy_loc,GoalEvar) c1 in
apprec (n-1) (mkApp(c,[|evar|])) (subst1 evar c2) evd'
| _ -> error "Apply_Head_Then"
in
apprec n c (Typing.type_of env ( evd) c) evd
let is_mimick_head f =
match kind_of_term f with
(Const _|Var _|Rel _|Construct _|Ind _) -> true
| _ -> false
let pose_all_metas_as_evars env evd t =
let evdref = ref evd in
let rec aux t = match kind_of_term t with
| Meta mv ->
(match Evd.meta_opt_fvalue !evdref mv with
| Some ({rebus=c},_) -> c
| None ->
let {rebus=ty;freemetas=mvs} = Evd.meta_ftype evd mv in
let ty = if mvs = Evd.Metaset.empty then ty else aux ty in
let ev = Evarutil.e_new_evar evdref env ~src:(dummy_loc,GoalEvar) ty in
evdref := meta_assign mv (ev,(ConvUpToEta 0,TypeNotProcessed)) !evdref;
ev)
| _ ->
map_constr aux t in
let c = aux t in
(* side-effect *)
(!evdref, c)
let try_to_coerce env evd c cty tycon =
let j = make_judge c cty in
let (evd',j') = inh_conv_coerce_rigid_to dummy_loc env evd j tycon in
let (evd',b) = Evarconv.consider_remaining_unif_problems env evd' in
if b then
let evd' = Evd.map_metas_fvalue (nf_evar ( evd')) evd' in
(evd',j'.uj_val)
else
error "Cannot solve unification constraints"
let w_coerce_to_type env evd c cty mvty =
let evd,mvty = pose_all_metas_as_evars env evd mvty in
let tycon = mk_tycon_type mvty in
try try_to_coerce env evd c cty tycon
with e when precatchable_exception e ->
(* inh_conv_coerce_rigid_to should have reasoned modulo reduction
but there are cases where it though it was not rigid (like in
fst (nat,nat)) and stops while it could have seen that it is rigid *)
let cty = Tacred.hnf_constr env ( evd) cty in
try_to_coerce env evd c cty tycon
let w_coerce env evd mv c =
let evd,cty = get_type_of_with_variables env evd c in
let mvty = Typing.meta_type evd mv in
w_coerce_to_type env evd c cty mvty
let unify_to_type env sigma flags c status u =
let sigma, t = get_type_of_with_variables env sigma c in
let t = Tacred.hnf_constr env sigma (nf_betaiota sigma (nf_meta sigma t)) in
let u = Tacred.hnf_constr env sigma u in
if status = IsSuperType then
unify_0 env sigma Cumul flags u t
else if status = IsSubType then
unify_0 env sigma Cumul flags t u
else
try unify_0 env sigma Cumul flags t u
with e when precatchable_exception e ->
unify_0 env sigma Cumul flags u t
let unify_type env sigma flags mv status c =
let mvty = Typing.meta_type sigma mv in
if occur_meta_or_existential mvty or is_arity env sigma mvty then
unify_to_type env sigma flags c status mvty
else (sigma,[],[])
(* Move metas that may need coercion at the end of the list of instances *)
let order_metas metas =
let rec order latemetas = function
| [] -> List.rev latemetas
| (_,_,(status,to_type) as meta)::metas ->
if to_type = CoerceToType then order (meta::latemetas) metas
else meta :: order latemetas metas
in order [] metas
(* Solve an equation ?n[x1=u1..xn=un] = t where ?n is an evar *)
let solve_simple_evar_eqn env evd ev rhs =
let evd,b = solve_simple_eqn Evarconv.evar_conv_x env evd (CONV,ev,rhs) in
if not b then error_cannot_unify env ( evd) (mkEvar ev,rhs);
let (evd,b) = Evarconv.consider_remaining_unif_problems env evd in
if not b then error "Cannot solve unification constraints";
evd
(* [w_merge env sigma b metas evars] merges common instances in metas
or in evars, possibly generating new unification problems; if [b]
is true, unification of types of metas is required *)
let w_merge env with_types flags (evd,metas,evars) =
let rec w_merge_rec evd metas evars eqns =
(* Process evars *)
match evars with
| ((evn,_ as ev),rhs)::evars' ->
if is_defined_evar evd ev then
let v = Evd.existential_value ( evd) ev in
let (evd,metas',evars'') =
unify_0 env evd topconv flags rhs v in
w_merge_rec evd (metas'@metas) (evars''@evars') eqns
else begin
let rhs' = subst_meta_instances metas rhs in
match kind_of_term rhs with
| App (f,cl) when is_mimick_head f & occur_meta rhs' ->
if occur_evar evn rhs' then
error_occur_check env ( evd) evn rhs';
let evd' = mimick_evar evd flags f (Array.length cl) evn in
w_merge_rec evd' metas evars eqns
| _ ->
w_merge_rec (solve_simple_evar_eqn env evd ev rhs')
metas evars' eqns
end
| [] ->
(* Process metas *)
match metas with
| (mv,c,(status,to_type))::metas ->
let ((evd,c),(metas'',evars'')),eqns =
if with_types & to_type <> TypeProcessed then
if to_type = CoerceToType then
(* Some coercion may have to be inserted *)
(w_coerce env evd mv c,([],[])),eqns
else
(* No coercion needed: delay the unification of types *)
((evd,c),([],[])),eqns@[(mv,status,c)]
else
((evd,c),([],[])),eqns in
if meta_defined evd mv then
let {rebus=c'},(status',_) = meta_fvalue evd mv in
let (take_left,st,(evd,metas',evars')) =
merge_instances env evd flags status' status c' c
in
let evd' =
if take_left then evd
else meta_reassign mv (c,(st,TypeProcessed)) evd
in
w_merge_rec evd' (metas'@metas@metas'') (evars'@evars'') eqns
else
let evd' = meta_assign mv (c,(status,TypeProcessed)) evd in
w_merge_rec evd' (metas@metas'') evars'' eqns
| [] ->
(* Process type eqns *)
match eqns with
| (mv,status,c)::eqns ->
let (evd,metas,evars) = unify_type env evd flags mv status c in
w_merge_rec evd metas evars eqns
| [] -> evd
and mimick_evar evd flags hdc nargs sp =
let ev = Evd.find ( evd) sp in
let sp_env = Global.env_of_context ev.evar_hyps in
let (evd', c) = applyHead sp_env evd nargs hdc in
let (evd'',mc,ec) =
unify_0 sp_env evd' Cumul flags
(Retyping.get_type_of sp_env evd' c) ev.evar_concl in
let evd''' = w_merge_rec evd'' mc ec [] in
if evd' == evd'''
then Evd.define sp c evd'''
else Evd.define sp (Evarutil.nf_evar evd''' c) evd''' in
(* merge constraints *)
w_merge_rec evd (order_metas metas) evars []
let w_unify_meta_types env ?(flags=default_unify_flags) evd =
let metas,evd = retract_coercible_metas evd in
w_merge env true flags (evd,metas,[])
(* [w_unify env evd M N]
performs a unification of M and N, generating a bunch of
unification constraints in the process. These constraints
are processed, one-by-one - they may either generate new
bindings, or, if there is already a binding, new unifications,
which themselves generate new constraints. This continues
until we get failure, or we run out of constraints.
[clenv_typed_unify M N clenv] expects in addition that expected
types of metavars are unifiable with the types of their instances *)
let check_types env flags (sigma,ms,es as subst) m n =
if isEvar_or_Meta (fst (whd_stack sigma m)) ||
isEvar_or_Meta (fst (whd_stack sigma n)) then
let sigma, mt = get_type_of_with_variables env sigma m in
let sigma, nt = get_type_of_with_variables env sigma n in
unify_0_with_initial_metas (sigma,ms,es) true env topconv flags
(nf_betaiota sigma mt) (nf_betaiota sigma nt)
else subst
let w_unify_core_0 env with_types cv_pb flags m n evd =
let (mc1,evd') = retract_coercible_metas evd in
let (sigma,ms,es) = check_types env flags (evd,mc1,[]) m n in
let subst2 =
unify_0_with_initial_metas (evd',ms,es) true env cv_pb flags m n
in
let evd = w_merge env with_types flags subst2 in
if flags.resolve_evars then
try Typeclasses.resolve_typeclasses ~onlyargs:false ~split:true ~fail:true env evd
with e when Typeclasses_errors.unsatisfiable_exception e ->
error_cannot_unify env evd (m, n)
else evd
let w_unify_0 env = w_unify_core_0 env false
let w_typed_unify env = w_unify_core_0 env true
(* takes a substitution s, an open term op and a closed term cl
try to find a subterm of cl which matches op, if op is just a Meta
FAIL because we cannot find a binding *)
let iter_fail f a =
let n = Array.length a in
let rec ffail i =
if i = n then error "iter_fail"
else
try f a.(i)
with ex when precatchable_exception ex -> ffail (i+1)
in ffail 0
(* Tries to find an instance of term [cl] in term [op].
Unifies [cl] to every subterm of [op] until it finds a match.
Fails if no match is found *)
let w_unify_to_subterm env ?(flags=default_unify_flags) (op,cl) evd =
let rec matchrec cl =
let cl = strip_outer_cast cl in
(try
if closed0 cl
then w_typed_unify env topconv flags op cl evd,cl
else error "Bound 1"
with ex when precatchable_exception ex ->
(match kind_of_term cl with
| App (f,args) ->
let n = Array.length args in
assert (n>0);
let c1 = mkApp (f,Array.sub args 0 (n-1)) in
let c2 = args.(n-1) in
(try
matchrec c1
with ex when precatchable_exception ex ->
matchrec c2)
| Case(_,_,c,lf) -> (* does not search in the predicate *)
(try
matchrec c
with ex when precatchable_exception ex ->
iter_fail matchrec lf)
| LetIn(_,c1,_,c2) ->
(try
matchrec c1
with ex when precatchable_exception ex ->
matchrec c2)
| Fix(_,(_,types,terms)) ->
(try
iter_fail matchrec types
with ex when precatchable_exception ex ->
iter_fail matchrec terms)
| CoFix(_,(_,types,terms)) ->
(try
iter_fail matchrec types
with ex when precatchable_exception ex ->
iter_fail matchrec terms)
| Prod (_,t,c) ->
(try
matchrec t
with ex when precatchable_exception ex ->
matchrec c)
| Lambda (_,t,c) ->
(try
matchrec t
with ex when precatchable_exception ex ->
matchrec c)
| _ -> error "Match_subterm"))
in
try matchrec cl
with ex when precatchable_exception ex ->
raise (PretypeError (env,NoOccurrenceFound (op, None)))
let w_unify_to_subterm_list env flags allow_K oplist t evd =
List.fold_right
(fun op (evd,l) ->
if isMeta op then
if allow_K then (evd,op::l)
else error "Unify_to_subterm_list"
else if occur_meta_or_existential op then
let (evd',cl) =
try
(* This is up to delta for subterms w/o metas ... *)
w_unify_to_subterm env ~flags (strip_outer_cast op,t) evd
with PretypeError (env,NoOccurrenceFound _) when allow_K -> (evd,op)
in
if not allow_K && (* ensure we found a different instance *)
List.exists (fun op -> eq_constr op cl) l
then error "Unify_to_subterm_list"
else (evd',cl::l)
else if allow_K or dependent op t then
(evd,op::l)
else
(* This is not up to delta ... *)
raise (PretypeError (env,NoOccurrenceFound (op, None))))
oplist
(evd,[])
let secondOrderAbstraction env flags allow_K typ (p, oplist) evd =
(* Remove delta when looking for a subterm *)
let flags = { flags with modulo_delta = (fst flags.modulo_delta, Cpred.empty) } in
let (evd',cllist) =
w_unify_to_subterm_list env flags allow_K oplist typ evd in
let typp = Typing.meta_type evd' p in
let pred = abstract_list_all env evd' typp typ cllist in
w_merge env false flags (evd',[p,pred,(ConvUpToEta 0,TypeProcessed)],[])
let w_unify2 env flags allow_K cv_pb ty1 ty2 evd =
let c1, oplist1 = whd_stack ( evd) ty1 in
let c2, oplist2 = whd_stack ( evd) ty2 in
match kind_of_term c1, kind_of_term c2 with
| Meta p1, _ ->
(* Find the predicate *)
let evd' =
secondOrderAbstraction env flags allow_K ty2 (p1,oplist1) evd in
(* Resume first order unification *)
w_unify_0 env cv_pb flags (nf_meta evd' ty1) ty2 evd'
| _, Meta p2 ->
(* Find the predicate *)
let evd' =
secondOrderAbstraction env flags allow_K ty1 (p2, oplist2) evd in
(* Resume first order unification *)
w_unify_0 env cv_pb flags ty1 (nf_meta evd' ty2) evd'
| _ -> error "w_unify2"
(* The unique unification algorithm works like this: If the pattern is
flexible, and the goal has a lambda-abstraction at the head, then
we do a first-order unification.
If the pattern is not flexible, then we do a first-order
unification, too.
If the pattern is flexible, and the goal doesn't have a
lambda-abstraction head, then we second-order unification. *)
(* We decide here if first-order or second-order unif is used for Apply *)
(* We apply a term of type (ai:Ai)C and try to solve a goal C' *)
(* The type C is in clenv.templtyp.rebus with a lot of Meta to solve *)
(* 3-4-99 [HH] New fo/so choice heuristic :
In case we have to unify (Meta(1) args) with ([x:A]t args')
we first try second-order unification and if it fails first-order.
Before, second-order was used if the type of Meta(1) and [x:A]t was
convertible and first-order otherwise. But if failed if e.g. the type of
Meta(1) had meta-variables in it. *)
let w_unify allow_K env cv_pb ?(flags=default_unify_flags) ty1 ty2 evd =
let cv_pb = of_conv_pb cv_pb in
let hd1,l1 = whd_stack ( evd) ty1 in
let hd2,l2 = whd_stack ( evd) ty2 in
match kind_of_term hd1, l1<>[], kind_of_term hd2, l2<>[] with
(* Pattern case *)
| (Meta _, true, Lambda _, _ | Lambda _, _, Meta _, true)
when List.length l1 = List.length l2 ->
(try
w_typed_unify env cv_pb flags ty1 ty2 evd
with ex when precatchable_exception ex ->
try
w_unify2 env flags allow_K cv_pb ty1 ty2 evd
with PretypeError (env,NoOccurrenceFound _) as e -> raise e)
(* Second order case *)
| (Meta _, true, _, _ | _, _, Meta _, true) ->
(try
w_unify2 env flags allow_K cv_pb ty1 ty2 evd
with PretypeError (env,NoOccurrenceFound _) as e -> raise e
| ex when precatchable_exception ex ->
try
w_typed_unify env cv_pb flags ty1 ty2 evd
with ex' when precatchable_exception ex' ->
raise ex)
(* General case: try first order *)
| _ -> w_typed_unify env cv_pb flags ty1 ty2 evd
|