aboutsummaryrefslogtreecommitdiffhomepage
path: root/pretyping/unification.ml
blob: 3ef17778a9eae6da64c5a66a0a7c6c29f0baddc7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* $Id$ *)

open Pp
open Util
open Names
open Nameops
open Term
open Termops
open Sign
open Environ
open Evd
open Reduction
open Reductionops
open Rawterm
open Pattern
open Evarutil
open Pretype_errors
open Retyping

(* if lname_typ is [xn,An;..;x1,A1] and l is a list of terms,
   gives [x1:A1]..[xn:An]c' such that c converts to ([x1:A1]..[xn:An]c' l) *)

let abstract_scheme env c l lname_typ =
  List.fold_left2 
    (fun t (locc,a) (na,_,ta) ->
       let na = match kind_of_term a with Var id -> Name id | _ -> na in
(* [occur_meta ta] test removed for support of eelim/ecase but consequences
   are unclear...
       if occur_meta ta then error "cannot find a type for the generalisation"
       else *) if occur_meta a then lambda_name env (na,ta,t)
       else lambda_name env (na,ta,subst_term_occ locc a t))
    c
    (List.rev l)
    lname_typ

let abstract_list_all env evd typ c l =
  let ctxt,_ = decomp_n_prod env (evars_of evd) (List.length l) typ in
  let p = abstract_scheme env c (List.map (function a -> [],a) l) ctxt in 
  try 
    if is_conv_leq env (evars_of evd) (Typing.mtype_of env evd p) typ then p
    else error "abstract_list_all"
  with UserError _ ->
    raise (PretypeError (env,CannotGeneralize typ))

(**)

(* A refinement of [conv_pb]: the integers tells how many arguments
   were applied in the context of the conversion problem; if the number
   is non zero, steps of eta-expansion will be allowed
*)

type conv_pb_up_to_eta = Cumul | ConvUnderApp of int * int

let topconv = ConvUnderApp (0,0)
let of_conv_pb = function CONV -> topconv | CUMUL -> Cumul
let conv_pb_of = function ConvUnderApp _ -> CONV | Cumul -> CUMUL
let prod_pb = function ConvUnderApp _ -> topconv | pb -> pb

let opp_status = function
  | IsSuperType -> IsSubType
  | IsSubType -> IsSuperType
  | ConvUpToEta _ | UserGiven as x -> x

let add_type_status (x,y) = ((x,TypeNotProcessed),(y,TypeNotProcessed))

let extract_instance_status = function
  | Cumul -> add_type_status (IsSubType, IsSuperType)
  | ConvUnderApp (n1,n2) -> add_type_status (ConvUpToEta n1, ConvUpToEta n2)

let rec assoc_pair x = function
    [] -> raise Not_found
  | (a,b,_)::l -> if compare a x = 0 then b else assoc_pair x l

let rec subst_meta_instances bl c =
  match kind_of_term c with
    | Meta i -> (try assoc_pair i bl with Not_found -> c)
    | _ -> map_constr (subst_meta_instances bl) c

let solve_pattern_eqn_array env f l c (metasubst,evarsubst) =
  match kind_of_term f with
    | Meta k -> 
	let c = solve_pattern_eqn env (Array.to_list l) c in
	let n = Array.length l - List.length (fst (decompose_lam c)) in
	let pb = (ConvUpToEta n,TypeNotProcessed) in
	(k,c,pb)::metasubst,evarsubst
    | Evar ev ->
      (* Currently unused: incompatible with eauto/eassumption backtracking *)
	metasubst,(ev,solve_pattern_eqn env (Array.to_list l) c)::evarsubst
    | _ -> assert false

let expand_constant env predcst c = 
  let (ids,csts) = Conv_oracle.freeze() in
  match kind_of_term c with
  | Const cst when Cpred.mem cst csts && Cpred.mem cst predcst -> constant_opt_value env cst
  | Var id when Idpred.mem id ids -> named_body id env
  | _ -> None

(*******************************)

(* Unification à l'ordre 0 de m et n: [unify_0 env sigma cv_pb m n]
   renvoie deux listes:

   metasubst:(int*constr)list    récolte les instances des (Meta k)
   evarsubst:(constr*constr)list récolte les instances des (Const "?k")

   Attention : pas d'unification entre les différences instances d'une
   même meta ou evar, il peut rester des doublons *)

(* Unification order: *)
(* Left to right: unifies first argument and then the other arguments *)
(*let unify_l2r x = List.rev x
(* Right to left: unifies last argument and then the other arguments *)
let unify_r2l x = x

let sort_eqns = unify_r2l
*)

type unify_flags = { 
  modulo_conv_on_closed_terms : bool; 
  use_metas_eagerly : bool;
  modulo_delta : Cpred.t;
}

let default_unify_flags = {
  modulo_conv_on_closed_terms = true;
  use_metas_eagerly = true;
  modulo_delta = Cpred.full;
}

let default_no_delta_unify_flags = {
  modulo_conv_on_closed_terms = true;
  use_metas_eagerly = true;
  modulo_delta = Cpred.empty;
}

let unify_0_with_initial_metas metas conv_at_top env sigma cv_pb flags m n =
  let nb = nb_rel env in
  let trivial_unify pb (metasubst,_) m n =
    match subst_defined_metas metas m with
    | Some m ->
	if flags.modulo_conv_on_closed_terms 
	then is_fconv (conv_pb_of pb) env sigma m n
	else eq_constr m n
    | _ -> false in
  let rec unirec_rec curenv pb b ((metasubst,evarsubst) as substn) curm curn =
    let cM = Evarutil.whd_castappevar sigma curm
    and cN = Evarutil.whd_castappevar sigma curn in 
      match (kind_of_term cM,kind_of_term cN) with
	| Meta k1, Meta k2 ->
	    let stM,stN = extract_instance_status pb in
	    if k1 < k2 
	    then (k1,cN,stN)::metasubst,evarsubst
	    else if k1 = k2 then substn
	    else (k2,cM,stM)::metasubst,evarsubst
	| Meta k, _    -> 
	    (* Here we check that [cN] does not contain any local variables *)
	    if (closedn nb cN)
	    then (k,cN,snd (extract_instance_status pb))::metasubst,evarsubst
	    else error_cannot_unify_local curenv sigma (m,n,cN)
	| _, Meta k    -> 
	    (* Here we check that [cM] does not contain any local variables *)
	    if (closedn nb cM)
	    then (k,cM,fst (extract_instance_status pb))::metasubst,evarsubst
	    else error_cannot_unify_local curenv sigma (m,n,cM)
	| Evar ev, _ -> metasubst,((ev,cN)::evarsubst)
	| _, Evar ev -> metasubst,((ev,cM)::evarsubst)
	| Lambda (na,t1,c1), Lambda (_,t2,c2) ->
	    unirec_rec (push_rel_assum (na,t1) curenv) topconv true
	      (unirec_rec curenv topconv true substn t1 t2) c1 c2
	| Prod (na,t1,c1), Prod (_,t2,c2) ->
	    unirec_rec (push_rel_assum (na,t1) curenv) (prod_pb pb) true
	      (unirec_rec curenv topconv true substn t1 t2) c1 c2
	| LetIn (_,a,_,c), _ -> unirec_rec curenv pb b substn (subst1 a c) cN
	| _, LetIn (_,a,_,c) -> unirec_rec curenv pb b substn cM (subst1 a c)
	    
	| Case (_,p1,c1,cl1), Case (_,p2,c2,cl2) ->
            array_fold_left2 (unirec_rec curenv topconv true)
	      (unirec_rec curenv topconv true
		  (unirec_rec curenv topconv true substn p1 p2) c1 c2) cl1 cl2

	| App (f1,l1), _ when
	    isMeta f1 & is_unification_pattern f1 l1 & not (dependent f1 cN) ->
	      solve_pattern_eqn_array curenv f1 l1 cN substn

	| _, App (f2,l2) when
	    isMeta f2 & is_unification_pattern f2 l2 & not (dependent f2 cM) ->
	      solve_pattern_eqn_array curenv f2 l2 cM substn

	| App (f1,l1), App (f2,l2) ->
	      let len1 = Array.length l1
	      and len2 = Array.length l2 in
	      (try
		  let (f1,l1,f2,l2) =
		    if len1 = len2 then (f1,l1,f2,l2)
		    else if len1 < len2 then
		      let extras,restl2 = array_chop (len2-len1) l2 in 
		      (f1, l1, appvect (f2,extras), restl2)
		    else 
		      let extras,restl1 = array_chop (len1-len2) l1 in 
		      (appvect (f1,extras), restl1, f2, l2) in
		  let pb = ConvUnderApp (len1,len2) in
		  array_fold_left2 (unirec_rec curenv topconv true)
		    (unirec_rec curenv pb true substn f1 f2) l1 l2
		  with ex when precatchable_exception ex ->
		    expand curenv pb b substn cM f1 l1 cN f2 l2)

	| _ -> 
	    let (f1,l1) = 
	      match kind_of_term cM with App (f,l) -> (f,l) | _ -> (cM,[||]) in
	    let (f2,l2) =
	      match kind_of_term cN with App (f,l) -> (f,l) | _ -> (cN,[||]) in
	    expand curenv pb b substn cM f1 l1 cN f2 l2

  and expand curenv pb b substn cM f1 l1 cN f2 l2 =
    if trivial_unify pb substn cM cN then substn
    else if b & not (Cpred.is_empty flags.modulo_delta) then
      match expand_constant curenv flags.modulo_delta f1 with
      | Some c ->
	  unirec_rec curenv pb b substn (whd_betaiotazeta (mkApp(c,l1))) cN
      | None ->
      match expand_constant curenv flags.modulo_delta f2 with
      | Some c ->
	  unirec_rec curenv pb b substn cM (whd_betaiotazeta (mkApp(c,l2)))
      | None ->
      error_cannot_unify env sigma (cM,cN)
    else
      error_cannot_unify env sigma (cM,cN)

  in
    if (not(occur_meta m)) &&
      (if flags.modulo_conv_on_closed_terms
       then is_fconv (conv_pb_of cv_pb) env sigma m n
       else eq_constr m n)
    then 
      (metas,[])
    else 
      unirec_rec env cv_pb conv_at_top (metas,[]) m n

let unify_0 = unify_0_with_initial_metas [] true

let left = true
let right = false

let pop k = if k=0 then 0 else k-1

let rec unify_with_eta keptside flags env sigma k1 k2 c1 c2 =
  (* Reason up to limited eta-expansion: ci is allowed to start with ki lam *)
  (* Question: try whd_betadeltaiota on ci if ki>0 ? *)
  match kind_of_term c1, kind_of_term c2 with
  | (Lambda (na,t1,c1'), Lambda (_,t2,c2')) ->
      let env' = push_rel_assum (na,t1) env in
      let metas,evars = unify_0 env sigma topconv flags t1 t2 in
      let side,status,(metas',evars') =
	unify_with_eta keptside flags env' sigma (pop k1) (pop k2) c1' c2'
      in (side,status,(metas@metas',evars@evars'))
  | (Lambda (na,t,c1'),_) when k2 > 0 ->
      let env' = push_rel_assum (na,t) env in
      let side = left in (* expansion on the right: we keep the left side *)
      unify_with_eta side flags env' sigma (pop k1) (k2-1) 
	c1' (mkApp (lift 1 c2,[|mkRel 1|]))
  | (_,Lambda (na,t,c2')) when k1 > 0 ->
      let env' = push_rel_assum (na,t) env in
      let side = right in (* expansion on the left: we keep the right side *)
      unify_with_eta side flags env' sigma (k1-1) (pop k2) 
	(mkApp (lift 1 c1,[|mkRel 1|])) c2'
  | _ ->
      (keptside,ConvUpToEta(min k1 k2),
       unify_0 env sigma topconv flags c1 c2)

(* We solved problems [?n =_pb u] (i.e. [u =_(opp pb) ?n]) and [?n =_pb' u'],
   we now compute the problem on [u =? u'] and decide which of u or u' is kept

   Rem: the upper constraint is lost in case u <= ?n <= u' (and symmetrically
   in the case u' <= ?n <= u)
 *)

let merge_instances env sigma flags st1 st2 c1 c2 =
  match (opp_status st1, st2) with
  | (UserGiven, ConvUpToEta n2) ->
      unify_with_eta left flags env sigma 0 n2 c1 c2
  | (ConvUpToEta n1, UserGiven) ->
      unify_with_eta right flags env sigma n1 0 c1 c2
  | (ConvUpToEta n1, ConvUpToEta n2) ->
      let side = left (* arbitrary choice, but agrees with compatibility *) in
      unify_with_eta side flags env sigma n1 n2 c1 c2
  | ((IsSubType | ConvUpToEta _ | UserGiven as oppst1),
     (IsSubType | ConvUpToEta _ | UserGiven)) ->
      let res = unify_0 env sigma Cumul flags c2 c1 in
      if oppst1=st2 then (* arbitrary choice *) (left, st1, res)
      else if st2=IsSubType or st1=UserGiven then (left, st1, res)
      else (right, st2, res)
  | ((IsSuperType | ConvUpToEta _ | UserGiven as oppst1),
     (IsSuperType | ConvUpToEta _ | UserGiven)) ->
      let res = unify_0 env sigma Cumul flags c1 c2 in
      if oppst1=st2 then (* arbitrary choice *) (left, st1, res)
      else if st2=IsSuperType or st1=UserGiven then (left, st1, res)
      else (right, st2, res)
  | (IsSuperType,IsSubType) ->
      (try (left, IsSubType, unify_0 env sigma Cumul flags c2 c1)
       with _ -> (right, IsSubType, unify_0 env sigma Cumul flags c1 c2))
  | (IsSubType,IsSuperType) ->
      (try (left, IsSuperType, unify_0 env sigma Cumul flags c1 c2)
       with _ -> (right, IsSuperType, unify_0 env sigma Cumul flags c2 c1))

(* Unification
 *
 * Procedure:
 * (1) The function [unify mc wc M N] produces two lists:
 *     (a) a list of bindings Meta->RHS
 *     (b) a list of bindings EVAR->RHS
 *
 * The Meta->RHS bindings cannot themselves contain
 * meta-vars, so they get applied eagerly to the other
 * bindings.  This may or may not close off all RHSs of
 * the EVARs.  For each EVAR whose RHS is closed off,
 * we can just apply it, and go on.  For each which
 * is not closed off, we need to do a mimick step -
 * in general, we have something like:
 *
 *      ?X == (c e1 e2 ... ei[Meta(k)] ... en)
 *
 * so we need to do a mimick step, converting ?X
 * into
 *
 *      ?X -> (c ?z1 ... ?zn)
 *
 * of the proper types.  Then, we can decompose the
 * equation into
 *
 *      ?z1 --> e1
 *          ...
 *      ?zi --> ei[Meta(k)]
 *          ...
 *      ?zn --> en
 *
 * and keep on going.  Whenever we find that a R.H.S.
 * is closed, we can, as before, apply the constraint
 * directly.  Whenever we find an equation of the form:
 *
 *      ?z -> Meta(n)
 *
 * we can reverse the equation, put it into our metavar
 * substitution, and keep going.
 *
 * The most efficient mimick possible is, for each
 * Meta-var remaining in the term, to declare a
 * new EVAR of the same type.  This is supposedly
 * determinable from the clausale form context -
 * we look up the metavar, take its type there,
 * and apply the metavar substitution to it, to
 * close it off.  But this might not always work,
 * since other metavars might also need to be resolved. *)

let applyHead env evd n c  = 
  let rec apprec n c cty evd =
    if n = 0 then 
      (evd, c)
    else 
      match kind_of_term (whd_betadeltaiota env (evars_of evd) cty) with
        | Prod (_,c1,c2) ->
            let (evd',evar) = 
	      Evarutil.new_evar evd env ~src:(dummy_loc,GoalEvar) c1 in
	    apprec (n-1) (mkApp(c,[|evar|])) (subst1 evar c2) evd'
	| _ -> error "Apply_Head_Then"
  in 
  apprec n c (Typing.type_of env (evars_of evd) c) evd

let is_mimick_head f =
  match kind_of_term f with
      (Const _|Var _|Rel _|Construct _|Ind _) -> true
    | _ -> false

let w_coerce env c ctyp target evd =
  try
    let j = make_judge c ctyp in
    let tycon = mk_tycon_type target in
    let (evd',j') = Coercion.Default.inh_conv_coerce_to dummy_loc env evd j tycon in
    (evd',j'.uj_val)
  with e when precatchable_exception e ->
    evd,c

let unify_to_type env evd flags c u =
  let sigma = evars_of evd in
  let c = refresh_universes c in
  let t = get_type_of_with_meta env sigma (metas_of evd) c in
  let t = Tacred.hnf_constr env sigma (nf_betaiota (nf_meta evd t)) in
  let u = Tacred.hnf_constr env sigma u in
  try unify_0 env sigma Cumul flags t u
  with e when precatchable_exception e -> ([],[])

let coerce_to_type env evd c u =
  let c = refresh_universes c in
  let t = get_type_of_with_meta env (evars_of evd) (metas_of evd) c in
  w_coerce env c t u evd

let unify_or_coerce_type env evd flags mv c =
  let mvty = Typing.meta_type evd mv in
  (* nf_betaiota was before in type_of - useful to reduce
     types like (x:A)([x]P u) *)
  if occur_meta mvty then
    (evd,c),unify_to_type env evd flags c mvty
  else
    coerce_to_type env evd c mvty,([],[])

let unify_type env evd flags mv c =
  let mvty = Typing.meta_type evd mv in
  if occur_meta mvty then
    unify_to_type env evd flags c mvty
  else ([],[])

(* Move metas that may need coercion at the end of the list of instances *)

let order_metas metas =
  let rec order latemetas = function
  | [] -> List.rev latemetas
  | (_,_,(status,to_type) as meta)::metas ->
      if to_type = CoerceToType then order (meta::latemetas) metas
      else meta :: order latemetas metas
  in order [] metas

(* Solve an equation ?n[x1=u1..xn=un] = t where ?n is an evar *)

let solve_simple_evar_eqn env evd ev rhs =
  let evd,b = solve_simple_eqn Evarconv.evar_conv_x env evd (CONV,ev,rhs) in
  if b & snd (extract_all_conv_pbs evd) = [] then evd
  else error_cannot_unify env (evars_of evd) (mkEvar ev,rhs)

(* [w_merge env sigma b metas evars] merges common instances in metas
   or in evars, possibly generating new unification problems; if [b]
   is true, unification of types of metas is required *)

let w_merge env with_types flags metas evars evd =
  let rec w_merge_rec evd metas evars eqns =

    (* Process evars *)
    match evars with
    | ((evn,_ as ev),rhs)::evars' ->
    	if is_defined_evar evd ev then
	  let v = Evd.existential_value (evars_of evd) ev in
	  let (metas',evars'') =
	    unify_0 env (evars_of evd) topconv flags rhs v in
	  w_merge_rec evd (metas'@metas) (evars''@evars') eqns
    	else begin
          let rhs' = subst_meta_instances metas rhs in
          match kind_of_term rhs with
	  | App (f,cl) when is_mimick_head f & occur_meta rhs' ->
	      if occur_evar evn rhs' then
                error_occur_check env (evars_of evd) evn rhs';
	      let evd' = mimick_evar evd flags f (Array.length cl) evn in
	      w_merge_rec evd' metas evars eqns
          | _ ->
	      w_merge_rec (solve_simple_evar_eqn env evd ev rhs') 
	        metas evars' eqns
	  end
    | [] -> 

    (* Process metas *)
    match metas with
    | (mv,c,(status,to_type))::metas ->
        let ((evd,c),(metas'',evars'')),eqns =
	  if with_types & to_type <> TypeProcessed then
	    if to_type = CoerceToType then
              (* Some coercion may have to be inserted *)
	      (unify_or_coerce_type env evd flags mv c,[])
	    else
              (* No coercion needed: delay the unification of types *)
	      ((evd,c),([],[])),(mv,c)::eqns
	  else 
	    ((evd,c),([],[])),eqns in
    	if meta_defined evd mv then
	  let {rebus=c'},(status',_) = meta_fvalue evd mv in
          let (take_left,st,(metas',evars')) =
	    merge_instances env (evars_of evd) flags status' status c' c
	  in
	  let evd' = 
            if take_left then evd 
            else meta_reassign mv (c,(st,TypeProcessed)) evd 
	  in
          w_merge_rec evd' (metas'@metas@metas'') (evars'@evars'') eqns
    	else
	  let evd' = meta_assign mv (c,(status,TypeProcessed)) evd in
	  w_merge_rec evd' (metas@metas'') evars'' eqns
    | [] -> 

    (* Process type eqns *)
    match eqns with
    | (mv,c)::eqns ->
        let (metas,evars) = unify_type env evd flags mv c in 
        w_merge_rec evd metas evars eqns
    | [] -> evd
		
  and mimick_evar evd flags hdc nargs sp =
    let ev = Evd.find (evars_of evd) sp in
    let sp_env = Global.env_of_context ev.evar_hyps in
    let (evd', c) = applyHead sp_env evd nargs hdc in
    let (mc,ec) =
      unify_0 sp_env (evars_of evd') Cumul flags
        (Retyping.get_type_of sp_env (evars_of evd') c) ev.evar_concl in
    let evd'' = w_merge_rec evd' mc ec [] in
    if (evars_of evd') == (evars_of evd'')
    then Evd.evar_define sp c evd''
    else Evd.evar_define sp (Evarutil.nf_evar (evars_of evd'') c) evd'' in

  (* merge constraints *)
  w_merge_rec evd (order_metas metas) evars []

let w_unify_meta_types env ?(flags=default_unify_flags) evd =
  let metas,evd = retract_coercible_metas evd in
  w_merge env true flags metas [] evd

(* [w_unify env evd M N]
   performs a unification of M and N, generating a bunch of
   unification constraints in the process.  These constraints
   are processed, one-by-one - they may either generate new
   bindings, or, if there is already a binding, new unifications,
   which themselves generate new constraints.  This continues
   until we get failure, or we run out of constraints.
   [clenv_typed_unify M N clenv] expects in addition that expected
   types of metavars are unifiable with the types of their instances    *)

let w_unify_core_0 env with_types cv_pb flags m n evd =
  let (mc1,evd') = retract_coercible_metas evd in
  let (mc2,ec) = 
    unify_0_with_initial_metas mc1 true env (evars_of evd') cv_pb flags m n
  in 
  w_merge env with_types flags mc2 ec evd'

let w_unify_0 env = w_unify_core_0 env false
let w_typed_unify env = w_unify_core_0 env true


(* takes a substitution s, an open term op and a closed term cl
   try to find a subterm of cl which matches op, if op is just a Meta
   FAIL because we cannot find a binding *)

let iter_fail f a =
  let n = Array.length a in 
  let rec ffail i =
    if i = n then error "iter_fail" 
    else
      try f a.(i) 
      with ex when precatchable_exception ex -> ffail (i+1)
  in ffail 0

(* Tries to find an instance of term [cl] in term [op].
   Unifies [cl] to every subterm of [op] until it finds a match.
   Fails if no match is found *)
let w_unify_to_subterm env ?(flags=default_unify_flags) (op,cl) evd =
  let rec matchrec cl =
    let cl = strip_outer_cast cl in
    (try 
       if closed0 cl 
       then w_unify_0 env topconv flags op cl evd,cl
       else error "Bound 1"
     with ex when precatchable_exception ex ->
       (match kind_of_term cl with 
	  | App (f,args) ->
	      let n = Array.length args in
	      assert (n>0);
	      let c1 = mkApp (f,Array.sub args 0 (n-1)) in
	      let c2 = args.(n-1) in
	      (try 
		 matchrec c1
	       with ex when precatchable_exception ex -> 
		 matchrec c2)
          | Case(_,_,c,lf) -> (* does not search in the predicate *)
	       (try 
		 matchrec c
	       with ex when precatchable_exception ex -> 
		 iter_fail matchrec lf)
	  | LetIn(_,c1,_,c2) -> 
	       (try 
		 matchrec c1
	       with ex when precatchable_exception ex -> 
		 matchrec c2)

	  | Fix(_,(_,types,terms)) -> 
	       (try 
		 iter_fail matchrec types
	       with ex when precatchable_exception ex -> 
		 iter_fail matchrec terms)
	
	  | CoFix(_,(_,types,terms)) -> 
	       (try 
		 iter_fail matchrec types
	       with ex when precatchable_exception ex -> 
		 iter_fail matchrec terms)

          | Prod (_,t,c) ->
	      (try 
		 matchrec t 
	       with ex when precatchable_exception ex -> 
		 matchrec c)
          | Lambda (_,t,c) ->
	      (try 
		 matchrec t 
	       with ex when precatchable_exception ex -> 
		 matchrec c)
          | _ -> error "Match_subterm")) 
  in 
  try matchrec cl
  with ex when precatchable_exception ex ->
    raise (PretypeError (env,NoOccurrenceFound op))

let w_unify_to_subterm_list env flags allow_K oplist t evd = 
  List.fold_right 
    (fun op (evd,l) ->
      if isMeta op then
	if allow_K then (evd,op::l)
	else error "Match_subterm"
      else if occur_meta op then
        let (evd',cl) =
          try 
	    (* This is up to delta for subterms w/o metas ... *)
	    w_unify_to_subterm env ~flags (strip_outer_cast op,t) evd
          with PretypeError (env,NoOccurrenceFound _) when allow_K -> (evd,op)
        in 
	(evd',cl::l)
      else if allow_K or dependent op t then
	(evd,op::l)
      else
	(* This is not up to delta ... *)
	raise (PretypeError (env,NoOccurrenceFound op)))
    oplist 
    (evd,[])

let secondOrderAbstraction env flags allow_K typ (p, oplist) evd =
  let (evd',cllist) =
    w_unify_to_subterm_list env flags allow_K oplist typ evd in
  let typp = Typing.meta_type evd' p in
  let pred = abstract_list_all env evd' typp typ cllist in
  w_unify_0 env topconv flags (mkMeta p) pred evd'

let w_unify2 env flags allow_K cv_pb ty1 ty2 evd =
  let c1, oplist1 = whd_stack ty1 in
  let c2, oplist2 = whd_stack ty2 in
  match kind_of_term c1, kind_of_term c2 with
    | Meta p1, _ ->
        (* Find the predicate *)
	let evd' =
          secondOrderAbstraction env flags allow_K ty2 (p1,oplist1) evd in 
        (* Resume first order unification *)
	w_unify_0 env cv_pb flags (nf_meta evd' ty1) ty2 evd'
    | _, Meta p2 ->
        (* Find the predicate *)
	let evd' =
          secondOrderAbstraction env flags allow_K ty1 (p2, oplist2) evd in 
        (* Resume first order unification *)
	w_unify_0 env cv_pb flags ty1 (nf_meta evd' ty2) evd'
    | _ -> error "w_unify2"


(* The unique unification algorithm works like this: If the pattern is
   flexible, and the goal has a lambda-abstraction at the head, then
   we do a first-order unification.

   If the pattern is not flexible, then we do a first-order
   unification, too.

   If the pattern is flexible, and the goal doesn't have a
   lambda-abstraction head, then we second-order unification. *)

(* We decide here if first-order or second-order unif is used for Apply *)
(* We apply a term of type (ai:Ai)C and try to solve a goal C'          *)
(* The type C is in clenv.templtyp.rebus with a lot of Meta to solve    *)

(* 3-4-99 [HH] New fo/so choice heuristic :
   In case we have to unify (Meta(1) args) with ([x:A]t args')
   we first try second-order unification and if it fails first-order.
   Before, second-order was used if the type of Meta(1) and [x:A]t was
   convertible and first-order otherwise. But if failed if e.g. the type of
   Meta(1) had meta-variables in it. *)
let w_unify allow_K env cv_pb ?(flags=default_unify_flags) ty1 ty2 evd =
  let cv_pb = of_conv_pb cv_pb in
  let hd1,l1 = whd_stack ty1 in
  let hd2,l2 = whd_stack ty2 in
    match kind_of_term hd1, l1<>[], kind_of_term hd2, l2<>[] with
      (* Pattern case *)
      | (Meta _, true, Lambda _, _ | Lambda _, _, Meta _, true)
	  when List.length l1 = List.length l2 ->
	  (try 
	      w_typed_unify env cv_pb flags ty1 ty2 evd
	    with ex when precatchable_exception ex -> 
	      try 
		w_unify2 env flags allow_K cv_pb ty1 ty2 evd
	      with PretypeError (env,NoOccurrenceFound c) as e -> raise e
		| ex when precatchable_exception ex -> 
		    error "Cannot solve a second-order unification problem")
	    
      (* Second order case *)
      | (Meta _, true, _, _ | _, _, Meta _, true) -> 
	  (try 
	      w_unify2 env flags allow_K cv_pb ty1 ty2 evd
	    with PretypeError (env,NoOccurrenceFound c) as e -> raise e
	      | ex when precatchable_exception ex -> 
		  try 
		    w_typed_unify env cv_pb flags ty1 ty2 evd
		  with ex when precatchable_exception ex -> 
		    error "Cannot solve a second-order unification problem")
	    
      (* General case: try first order *)
      | _ -> w_typed_unify env cv_pb flags ty1 ty2 evd