1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
module CVars = Vars
open Pp
open CErrors
open Util
open Term
open Environ
open EConstr
open Vars
open Reductionops
open Inductive
open Inductiveops
open Typeops
open Arguments_renaming
open Pretype_errors
open Context.Rel.Declaration
let meta_type evd mv =
let ty =
try Evd.meta_ftype evd mv
with Not_found -> anomaly (str "unknown meta ?" ++ str (Nameops.string_of_meta mv) ++ str ".") in
let ty = Evd.map_fl EConstr.of_constr ty in
meta_instance evd ty
let inductive_type_knowing_parameters env sigma (ind,u) jl =
let u = Unsafe.to_instance u in
let mspec = lookup_mind_specif env ind in
let paramstyp = Array.map (fun j -> lazy (EConstr.to_constr sigma j.uj_type)) jl in
Inductive.type_of_inductive_knowing_parameters env (mspec,u) paramstyp
let e_type_judgment env evdref j =
match EConstr.kind !evdref (whd_all env !evdref j.uj_type) with
| Sort s -> {utj_val = j.uj_val; utj_type = ESorts.kind !evdref s }
| Evar ev ->
let (evd,s) = Evardefine.define_evar_as_sort env !evdref ev in
evdref := evd; { utj_val = j.uj_val; utj_type = s }
| _ -> error_not_a_type env !evdref j
let e_assumption_of_judgment env evdref j =
try (e_type_judgment env evdref j).utj_val
with Type_errors.TypeError _ | PretypeError _ ->
error_assumption env !evdref j
let e_judge_of_applied_inductive_knowing_parameters env evdref funj ind argjv =
let rec apply_rec n typ = function
| [] ->
{ uj_val = mkApp (j_val funj, Array.map j_val argjv);
uj_type =
let ar = inductive_type_knowing_parameters env !evdref ind argjv in
hnf_prod_appvect env !evdref (EConstr.of_constr ar) (Array.map j_val argjv) }
| hj::restjl ->
match EConstr.kind !evdref (whd_all env !evdref typ) with
| Prod (_,c1,c2) ->
if Evarconv.e_cumul env evdref hj.uj_type c1 then
apply_rec (n+1) (subst1 hj.uj_val c2) restjl
else
error_cant_apply_bad_type env !evdref (n, c1, hj.uj_type) funj argjv
| Evar ev ->
let (evd',t) = Evardefine.define_evar_as_product !evdref ev in
evdref := evd';
let (_,_,c2) = destProd evd' t in
apply_rec (n+1) (subst1 hj.uj_val c2) restjl
| _ ->
error_cant_apply_not_functional env !evdref funj argjv
in
apply_rec 1 funj.uj_type (Array.to_list argjv)
let e_judge_of_apply env evdref funj argjv =
let rec apply_rec n typ = function
| [] ->
{ uj_val = mkApp (j_val funj, Array.map j_val argjv);
uj_type = typ }
| hj::restjl ->
match EConstr.kind !evdref (whd_all env !evdref typ) with
| Prod (_,c1,c2) ->
if Evarconv.e_cumul env evdref hj.uj_type c1 then
apply_rec (n+1) (subst1 hj.uj_val c2) restjl
else
error_cant_apply_bad_type env !evdref (n, c1, hj.uj_type) funj argjv
| Evar ev ->
let (evd',t) = Evardefine.define_evar_as_product !evdref ev in
evdref := evd';
let (_,_,c2) = destProd evd' t in
apply_rec (n+1) (subst1 hj.uj_val c2) restjl
| _ ->
error_cant_apply_not_functional env !evdref funj argjv
in
apply_rec 1 funj.uj_type (Array.to_list argjv)
let e_check_branch_types env evdref (ind,u) cj (lfj,explft) =
if not (Int.equal (Array.length lfj) (Array.length explft)) then
error_number_branches env !evdref cj (Array.length explft);
for i = 0 to Array.length explft - 1 do
if not (Evarconv.e_cumul env evdref lfj.(i).uj_type explft.(i)) then
error_ill_formed_branch env !evdref cj.uj_val ((ind,i+1),u) lfj.(i).uj_type explft.(i)
done
let max_sort l =
if Sorts.List.mem InType l then InType else
if Sorts.List.mem InSet l then InSet else InProp
let e_is_correct_arity env evdref c pj ind specif params =
let arsign = make_arity_signature env !evdref true (make_ind_family (ind,params)) in
let allowed_sorts = elim_sorts specif in
let error () = Pretype_errors.error_elim_arity env !evdref ind allowed_sorts c pj None in
let rec srec env pt ar =
let pt' = whd_all env !evdref pt in
match EConstr.kind !evdref pt', ar with
| Prod (na1,a1,t), (LocalAssum (_,a1'))::ar' ->
if not (Evarconv.e_cumul env evdref a1 a1') then error ();
srec (push_rel (LocalAssum (na1,a1)) env) t ar'
| Sort s, [] ->
let s = ESorts.kind !evdref s in
if not (Sorts.List.mem (Sorts.family s) allowed_sorts)
then error ()
| Evar (ev,_), [] ->
let evd, s = Evd.fresh_sort_in_family env !evdref (max_sort allowed_sorts) in
evdref := Evd.define ev (Constr.mkSort s) evd
| _, (LocalDef _ as d)::ar' ->
srec (push_rel d env) (lift 1 pt') ar'
| _ ->
error ()
in
srec env pj.uj_type (List.rev arsign)
let lambda_applist_assum sigma n c l =
let rec app n subst t l =
if Int.equal n 0 then
if l == [] then substl subst t
else anomaly (Pp.str "Not enough arguments.")
else match EConstr.kind sigma t, l with
| Lambda(_,_,c), arg::l -> app (n-1) (arg::subst) c l
| LetIn(_,b,_,c), _ -> app (n-1) (substl subst b::subst) c l
| _ -> anomaly (Pp.str "Not enough lambda/let's.") in
app n [] c l
let e_type_case_branches env evdref (ind,largs) pj c =
let specif = lookup_mind_specif env (fst ind) in
let nparams = inductive_params specif in
let (params,realargs) = List.chop nparams largs in
let p = pj.uj_val in
let params = List.map EConstr.Unsafe.to_constr params in
let () = e_is_correct_arity env evdref c pj ind specif params in
let lc = build_branches_type ind specif params (EConstr.to_constr !evdref p) in
let lc = Array.map EConstr.of_constr lc in
let n = (snd specif).Declarations.mind_nrealdecls in
let ty = whd_betaiota !evdref (lambda_applist_assum !evdref (n+1) p (realargs@[c])) in
(lc, ty)
let e_judge_of_case env evdref ci pj cj lfj =
let ((ind, u), spec) =
try find_mrectype env !evdref cj.uj_type
with Not_found -> error_case_not_inductive env !evdref cj in
let indspec = ((ind, EInstance.kind !evdref u), spec) in
let _ = check_case_info env (fst indspec) ci in
let (bty,rslty) = e_type_case_branches env evdref indspec pj cj.uj_val in
e_check_branch_types env evdref (fst indspec) cj (lfj,bty);
{ uj_val = mkCase (ci, pj.uj_val, cj.uj_val, Array.map j_val lfj);
uj_type = rslty }
let check_type_fixpoint ?loc env evdref lna lar vdefj =
let lt = Array.length vdefj in
if Int.equal (Array.length lar) lt then
for i = 0 to lt-1 do
if not (Evarconv.e_cumul env evdref (vdefj.(i)).uj_type
(lift lt lar.(i))) then
error_ill_typed_rec_body ?loc env !evdref
i lna vdefj lar
done
(* FIXME: might depend on the level of actual parameters!*)
let check_allowed_sort env sigma ind c p =
let pj = Retyping.get_judgment_of env sigma p in
let ksort = Sorts.family (ESorts.kind sigma (sort_of_arity env sigma pj.uj_type)) in
let specif = Global.lookup_inductive (fst ind) in
let sorts = elim_sorts specif in
if not (List.exists ((==) ksort) sorts) then
let s = inductive_sort_family (snd specif) in
error_elim_arity env sigma ind sorts c pj
(Some(ksort,s,Type_errors.error_elim_explain ksort s))
let e_judge_of_cast env evdref cj k tj =
let expected_type = tj.utj_val in
if not (Evarconv.e_cumul env evdref cj.uj_type expected_type) then
error_actual_type_core env !evdref cj expected_type;
{ uj_val = mkCast (cj.uj_val, k, expected_type);
uj_type = expected_type }
let enrich_env env evdref =
let penv = Environ.pre_env env in
let penv' = Pre_env.({ penv with env_stratification =
{ penv.env_stratification with env_universes = Evd.universes !evdref } }) in
Environ.env_of_pre_env penv'
let check_fix env sigma pfix =
let inj c = EConstr.to_constr sigma c in
let (idx, (ids, cs, ts)) = pfix in
check_fix env (idx, (ids, Array.map inj cs, Array.map inj ts))
let check_cofix env sigma pcofix =
let inj c = EConstr.to_constr sigma c in
let (idx, (ids, cs, ts)) = pcofix in
check_cofix env (idx, (ids, Array.map inj cs, Array.map inj ts))
(* The typing machine with universes and existential variables. *)
let judge_of_prop =
{ uj_val = EConstr.mkProp;
uj_type = EConstr.mkSort Sorts.type1 }
let judge_of_set =
{ uj_val = EConstr.mkSet;
uj_type = EConstr.mkSort Sorts.type1 }
let judge_of_prop_contents = function
| Null -> judge_of_prop
| Pos -> judge_of_set
let judge_of_type u =
let uu = Univ.Universe.super u in
{ uj_val = EConstr.mkType u;
uj_type = EConstr.mkType uu }
let judge_of_relative env v =
Termops.on_judgment EConstr.of_constr (judge_of_relative env v)
let judge_of_variable env id =
Termops.on_judgment EConstr.of_constr (judge_of_variable env id)
let judge_of_projection env sigma p cj =
let pb = lookup_projection p env in
let (ind,u), args =
try find_mrectype env sigma cj.uj_type
with Not_found -> error_case_not_inductive env sigma cj
in
let u = EInstance.kind sigma u in
let ty = EConstr.of_constr (CVars.subst_instance_constr u pb.Declarations.proj_type) in
let ty = substl (cj.uj_val :: List.rev args) ty in
{uj_val = EConstr.mkProj (p,cj.uj_val);
uj_type = ty}
let judge_of_abstraction env name var j =
{ uj_val = mkLambda (name, var.utj_val, j.uj_val);
uj_type = mkProd (name, var.utj_val, j.uj_type) }
let judge_of_product env name t1 t2 =
let s = sort_of_product env t1.utj_type t2.utj_type in
{ uj_val = mkProd (name, t1.utj_val, t2.utj_val);
uj_type = mkSort s }
let judge_of_letin env name defj typj j =
{ uj_val = mkLetIn (name, defj.uj_val, typj.utj_val, j.uj_val) ;
uj_type = subst1 defj.uj_val j.uj_type }
(* cstr must be in n.f. w.r.t. evars and execute returns a judgement
where both the term and type are in n.f. *)
let rec execute env evdref cstr =
let cstr = whd_evar !evdref cstr in
match EConstr.kind !evdref cstr with
| Meta n ->
{ uj_val = cstr; uj_type = meta_type !evdref n }
| Evar ev ->
let ty = EConstr.existential_type !evdref ev in
let jty = execute env evdref ty in
let jty = e_assumption_of_judgment env evdref jty in
{ uj_val = cstr; uj_type = jty }
| Rel n ->
judge_of_relative env n
| Var id ->
judge_of_variable env id
| Const (c, u) ->
let u = EInstance.kind !evdref u in
make_judge cstr (EConstr.of_constr (rename_type_of_constant env (c, u)))
| Ind (ind, u) ->
let u = EInstance.kind !evdref u in
make_judge cstr (EConstr.of_constr (rename_type_of_inductive env (ind, u)))
| Construct (cstruct, u) ->
let u = EInstance.kind !evdref u in
make_judge cstr (EConstr.of_constr (rename_type_of_constructor env (cstruct, u)))
| Case (ci,p,c,lf) ->
let cj = execute env evdref c in
let pj = execute env evdref p in
let lfj = execute_array env evdref lf in
e_judge_of_case env evdref ci pj cj lfj
| Fix ((vn,i as vni),recdef) ->
let (_,tys,_ as recdef') = execute_recdef env evdref recdef in
let fix = (vni,recdef') in
check_fix env !evdref fix;
make_judge (mkFix fix) tys.(i)
| CoFix (i,recdef) ->
let (_,tys,_ as recdef') = execute_recdef env evdref recdef in
let cofix = (i,recdef') in
check_cofix env !evdref cofix;
make_judge (mkCoFix cofix) tys.(i)
| Sort s ->
begin match ESorts.kind !evdref s with
| Prop c ->
judge_of_prop_contents c
| Type u ->
judge_of_type u
end
| Proj (p, c) ->
let cj = execute env evdref c in
judge_of_projection env !evdref p cj
| App (f,args) ->
let jl = execute_array env evdref args in
(match EConstr.kind !evdref f with
| Ind (ind, u) when EInstance.is_empty u && Environ.template_polymorphic_ind ind env ->
let fj = execute env evdref f in
e_judge_of_applied_inductive_knowing_parameters env evdref fj (ind, u) jl
| _ ->
(* No template polymorphism *)
let fj = execute env evdref f in
e_judge_of_apply env evdref fj jl)
| Lambda (name,c1,c2) ->
let j = execute env evdref c1 in
let var = e_type_judgment env evdref j in
let env1 = push_rel (LocalAssum (name, var.utj_val)) env in
let j' = execute env1 evdref c2 in
judge_of_abstraction env1 name var j'
| Prod (name,c1,c2) ->
let j = execute env evdref c1 in
let varj = e_type_judgment env evdref j in
let env1 = push_rel (LocalAssum (name, varj.utj_val)) env in
let j' = execute env1 evdref c2 in
let varj' = e_type_judgment env1 evdref j' in
judge_of_product env name varj varj'
| LetIn (name,c1,c2,c3) ->
let j1 = execute env evdref c1 in
let j2 = execute env evdref c2 in
let j2 = e_type_judgment env evdref j2 in
let _ = e_judge_of_cast env evdref j1 DEFAULTcast j2 in
let env1 = push_rel (LocalDef (name, j1.uj_val, j2.utj_val)) env in
let j3 = execute env1 evdref c3 in
judge_of_letin env name j1 j2 j3
| Cast (c,k,t) ->
let cj = execute env evdref c in
let tj = execute env evdref t in
let tj = e_type_judgment env evdref tj in
e_judge_of_cast env evdref cj k tj
and execute_recdef env evdref (names,lar,vdef) =
let larj = execute_array env evdref lar in
let lara = Array.map (e_assumption_of_judgment env evdref) larj in
let env1 = push_rec_types (names,lara,vdef) env in
let vdefj = execute_array env1 evdref vdef in
let vdefv = Array.map j_val vdefj in
let _ = check_type_fixpoint env1 evdref names lara vdefj in
(names,lara,vdefv)
and execute_array env evdref = Array.map (execute env evdref)
let e_check env evdref c t =
let env = enrich_env env evdref in
let j = execute env evdref c in
if not (Evarconv.e_cumul env evdref j.uj_type t) then
error_actual_type_core env !evdref j t
(* Type of a constr *)
let unsafe_type_of env evd c =
let evdref = ref evd in
let env = enrich_env env evdref in
let j = execute env evdref c in
j.uj_type
(* Sort of a type *)
let e_sort_of env evdref c =
let env = enrich_env env evdref in
let j = execute env evdref c in
let a = e_type_judgment env evdref j in
a.utj_type
(* Try to solve the existential variables by typing *)
let type_of ?(refresh=false) env evd c =
let evdref = ref evd in
let env = enrich_env env evdref in
let j = execute env evdref c in
(* side-effect on evdref *)
if refresh then
Evarsolve.refresh_universes ~onlyalg:true (Some false) env !evdref j.uj_type
else !evdref, j.uj_type
let e_type_of ?(refresh=false) env evdref c =
let env = enrich_env env evdref in
let j = execute env evdref c in
(* side-effect on evdref *)
if refresh then
let evd, c = Evarsolve.refresh_universes ~onlyalg:true (Some false) env !evdref j.uj_type in
let () = evdref := evd in
c
else j.uj_type
let e_solve_evars env evdref c =
let env = enrich_env env evdref in
let c = (execute env evdref c).uj_val in
(* side-effect on evdref *)
nf_evar !evdref c
let _ = Evarconv.set_solve_evars (fun env evdref c -> e_solve_evars env evdref c)
|