1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(* $Id$ *)
open Util
open Names
open Term
open Environ
open Reduction
open Type_errors
open Typeops
let vect_lift = Array.mapi lift
let vect_lift_type = Array.mapi (fun i t -> type_app (lift i) t)
type 'a mach_flags = {
fix : bool;
nocheck : bool }
(* The typing machine without information, without universes but with
existential variables. *)
let rec execute mf env sigma cstr =
match kind_of_term cstr with
| IsMeta n ->
error "execute: found a non-instanciated goal"
| IsEvar ev ->
let ty = type_of_existential env sigma ev in
let jty = execute mf env sigma ty in
let jty = assumption_of_judgment env sigma jty in
{ uj_val = cstr; uj_type = jty }
| IsRel n ->
relative env n
| IsVar id ->
(try
make_judge cstr (snd (lookup_named id env))
with Not_found ->
error ("execute: variable " ^ (string_of_id id) ^ " not defined"))
| IsConst c ->
make_judge cstr (type_of_constant env sigma c)
| IsMutInd ind ->
make_judge cstr (type_of_inductive env sigma ind)
| IsMutConstruct cstruct ->
make_judge cstr (type_of_constructor env sigma cstruct)
| IsMutCase (ci,p,c,lf) ->
let cj = execute mf env sigma c in
let pj = execute mf env sigma p in
let lfj = execute_array mf env sigma lf in
let (j,_) = judge_of_case env sigma ci pj cj lfj in
j
| IsFix ((vn,i as vni),recdef) ->
if (not mf.fix) && array_exists (fun n -> n < 0) vn then
error "General Fixpoints not allowed";
let (_,tys,_ as recdef') = execute_fix mf env sigma recdef in
let fix = (vni,recdef') in
check_fix env sigma fix;
make_judge (mkFix fix) tys.(i)
| IsCoFix (i,recdef) ->
let (_,tys,_ as recdef') = execute_fix mf env sigma recdef in
let cofix = (i,recdef') in
check_cofix env sigma cofix;
make_judge (mkCoFix cofix) tys.(i)
| IsSort (Prop c) ->
judge_of_prop_contents c
| IsSort (Type u) ->
let (j,_) = judge_of_type u in j
| IsApp (f,args) ->
let j = execute mf env sigma f in
let jl = execute_list mf env sigma (Array.to_list args) in
let (j,_) = apply_rel_list env sigma mf.nocheck jl j in
j
| IsLambda (name,c1,c2) ->
let j = execute mf env sigma c1 in
let var = assumption_of_judgment env sigma j in
let env1 = push_rel_assum (name,var) env in
let j' = execute mf env1 sigma c2 in
let (j,_) = abs_rel env1 sigma name var j' in
j
| IsProd (name,c1,c2) ->
let j = execute mf env sigma c1 in
let varj = type_judgment env sigma j in
let env1 = push_rel_assum (name,varj.utj_val) env in
let j' = execute mf env1 sigma c2 in
let varj' = type_judgment env sigma j' in
let (j,_) = gen_rel env1 sigma name varj varj' in
j
| IsLetIn (name,c1,c2,c3) ->
let j1 = execute mf env sigma c1 in
let j2 = execute mf env sigma c2 in
let tj2 = assumption_of_judgment env sigma j2 in
let { uj_val = b; uj_type = t },_ = cast_rel env sigma j1 tj2 in
let j3 = execute mf (push_rel_def (name,b,t) env) sigma c3 in
{ uj_val = mkLetIn (name, j1.uj_val, tj2, j3.uj_val) ;
uj_type = type_app (subst1 j1.uj_val) j3.uj_type }
| IsCast (c,t) ->
let cj = execute mf env sigma c in
let tj = execute mf env sigma t in
let tj = assumption_of_judgment env sigma tj in
let j, _ = cast_rel env sigma cj tj in
j
and execute_fix mf env sigma (names,lar,vdef) =
let larj = execute_array mf env sigma lar in
let lara = Array.map (assumption_of_judgment env sigma) larj in
let ctxt =
array_map2_i (fun i na ty -> (na, type_app (lift i) ty)) names lara in
let env1 =
Array.fold_left (fun env nvar -> push_rel_assum nvar env) env ctxt in
let vdefj = execute_array mf env1 sigma vdef in
let vdefv = Array.map j_val vdefj in
let cst3 = type_fixpoint env1 sigma names lara vdefj in
(names,lara,vdefv)
and execute_array mf env sigma v =
let jl = execute_list mf env sigma (Array.to_list v) in
Array.of_list jl
and execute_list mf env sigma = function
| [] ->
[]
| c::r ->
let j = execute mf env sigma c in
let jr = execute_list mf env sigma r in
j::jr
let safe_machine env sigma constr =
let mf = { fix = false; nocheck = false } in
execute mf env sigma constr
let unsafe_machine env sigma constr =
let mf = { fix = false; nocheck = true } in
execute mf env sigma constr
(* Type of a constr *)
let type_of env sigma c =
let j = safe_machine env sigma c in
nf_betaiota (body_of_type j.uj_type)
(* The typed type of a judgment. *)
let execute_type env sigma constr =
let j = execute { fix=false; nocheck=true } env sigma constr in
assumption_of_judgment env sigma j
let execute_rec_type env sigma constr =
let j = execute { fix=false; nocheck=false } env sigma constr in
assumption_of_judgment env sigma j
|