aboutsummaryrefslogtreecommitdiffhomepage
path: root/pretyping/termops.ml
blob: 7f77bcdba7148b8041abd3d7d8aa69acd5ac82c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(* $Id$ *)

open Pp
open Util
open Names
open Nameops
open Term
open Sign
open Environ
open Nametab

let print_sort = function
  | Prop Pos -> (str "Set")
  | Prop Null -> (str "Prop")
  | Type u -> (str "Type(" ++ Univ.pr_uni u ++ str ")")

let print_sort_family = function
  | InSet -> (str "Set")
  | InProp -> (str "Prop")
  | InType -> (str "Type")

let current_module = ref empty_dirpath

let set_module m = current_module := m

let new_univ = 
  let univ_gen = ref 0 in
  (fun sp ->
    incr univ_gen; 
    Univ.make_univ (!current_module,!univ_gen))

let new_sort_in_family = function 
  | InProp -> mk_Prop
  | InSet -> mk_Set
  | InType -> Type (new_univ ())



(* prod_it b [xn:Tn;..;x1:T1] = (x1:T1)..(xn:Tn)b *)
let prod_it ~init = List.fold_left (fun c (n,t)  -> mkProd (n, t, c)) init

(* lam_it b [xn:Tn;..;x1:T1] = [x1:T1]..[xn:Tn]b *)
let lam_it ~init = List.fold_left (fun c (n,t)  -> mkLambda (n, t, c)) init

(* [Rel (n+m);...;Rel(n+1)] *)
let rel_vect n m = Array.init m (fun i -> mkRel(n+m-i))

let rel_list n m = 
  let rec reln l p = 
    if p>m then l else reln (mkRel(n+p)::l) (p+1)
  in 
  reln [] 1

(* Same as [rel_list] but takes a context as argument and skips let-ins *)
let extended_rel_list n hyps =
  let rec reln l p = function
    | (_,None,_) :: hyps -> reln (mkRel (n+p) :: l) (p+1) hyps
    | (_,Some _,_) :: hyps -> reln l (p+1) hyps
    | [] -> l
  in 
  reln [] 1 hyps

let extended_rel_vect n hyps = Array.of_list (extended_rel_list n hyps)



let push_rel_assum (x,t) env = push_rel (x,None,t) env

let push_rels_assum assums =
  push_rel_context (List.map (fun (x,t) -> (x,None,t)) assums)

let push_named_rec_types (lna,typarray,_) env =
  let ctxt =
    array_map2_i
      (fun i na t ->
	 match na with
	   | Name id -> (id, None, type_app (lift i) t)
	   | Anonymous -> anomaly "Fix declarations must be named")
      lna typarray in
  Array.fold_left
    (fun e assum -> push_named assum e) env ctxt

let rec lookup_rel_id id sign = 
  let rec lookrec = function
    | (n, (Anonymous,_,_)::l) -> lookrec (n+1,l)
    | (n, (Name id',_,t)::l)  -> if id' = id then (n,t) else lookrec (n+1,l)
    | (_, [])                 -> raise Not_found
  in 
  lookrec (1,sign)

(* Constructs either [(x:t)c] or [[x=b:t]c] *)
let mkProd_or_LetIn (na,body,t) c =
  match body with
    | None -> mkProd (na, t, c)
    | Some b -> mkLetIn (na, b, t, c)

(* Constructs either [(x:t)c] or [c] where [x] is replaced by [b] *)
let mkProd_wo_LetIn (na,body,t) c =
  match body with
    | None -> mkProd (na, body_of_type t, c)
    | Some b -> subst1 b c

let it_mkProd_wo_LetIn ~init = 
  List.fold_left (fun c d -> mkProd_wo_LetIn d c) init

let it_mkProd_or_LetIn ~init = 
  List.fold_left (fun c d -> mkProd_or_LetIn d c) init

let it_mkLambda_or_LetIn ~init =
  List.fold_left (fun c d -> mkLambda_or_LetIn d c) init

let it_named_context_quantifier f ~init = 
  List.fold_left (fun c d -> f d c) init

let it_mkNamedProd_or_LetIn = it_named_context_quantifier mkNamedProd_or_LetIn
let it_mkNamedLambda_or_LetIn = it_named_context_quantifier mkNamedLambda_or_LetIn

(* *)

(* strips head casts and flattens head applications *)
let rec strip_head_cast c = match kind_of_term c with
  | App (f,cl) -> 
      let rec collapse_rec f cl2 = match kind_of_term f with
	| App (g,cl1) -> collapse_rec g (Array.append cl1 cl2)
	| Cast (c,_) -> collapse_rec c cl2
	| _ -> if cl2 = [||] then f else mkApp (f,cl2)
      in 
      collapse_rec f cl
  | Cast (c,t) -> strip_head_cast c
  | _ -> c

(* [map_constr_with_named_binders g f l c] maps [f l] on the immediate
   subterms of [c]; it carries an extra data [l] (typically a name
   list) which is processed by [g na] (which typically cons [na] to
   [l]) at each binder traversal (with name [na]); it is not recursive
   and the order with which subterms are processed is not specified *)

let map_constr_with_named_binders g f l c = match kind_of_term c with
  | (Rel _ | Meta _ | Var _   | Sort _ | Const _ | Ind _
    | Construct _) -> c
  | Cast (c,t) -> mkCast (f l c, f l t)
  | Prod (na,t,c) -> mkProd (na, f l t, f (g na l) c)
  | Lambda (na,t,c) -> mkLambda (na, f l t, f (g na l) c)
  | LetIn (na,b,t,c) -> mkLetIn (na, f l b, f l t, f (g na l) c)
  | App (c,al) -> mkApp (f l c, Array.map (f l) al)
  | Evar (e,al) -> mkEvar (e, Array.map (f l) al)
  | Case (ci,p,c,bl) -> mkCase (ci, f l p, f l c, Array.map (f l) bl)
  | Fix (ln,(lna,tl,bl)) ->
      let l' = Array.fold_left (fun l na -> g na l) l lna in
      mkFix (ln,(lna,Array.map (f l) tl,Array.map (f l') bl))
  | CoFix(ln,(lna,tl,bl)) ->
      let l' = Array.fold_left (fun l na -> g na l) l lna in
      mkCoFix (ln,(lna,Array.map (f l) tl,Array.map (f l') bl))

(* [map_constr_with_binders_left_to_right g f n c] maps [f n] on the
   immediate subterms of [c]; it carries an extra data [n] (typically
   a lift index) which is processed by [g] (which typically add 1 to
   [n]) at each binder traversal; the subterms are processed from left
   to right according to the usual representation of the constructions
   (this may matter if [f] does a side-effect); it is not recursive;
   in fact, the usual representation of the constructions is at the
   time being almost those of the ML representation (except for
   (co-)fixpoint) *)

let array_map_left f a = (* Ocaml does not guarantee Array.map is LR *)
  let l = Array.length a in (* (even if so), then we rewrite it *)
  if l = 0 then [||] else begin
    let r = Array.create l (f a.(0)) in
    for i = 1 to l - 1 do
      r.(i) <- f a.(i)
    done;
    r
  end

let array_map_left_pair f a g b =
  let l = Array.length a in
  if l = 0 then [||],[||] else begin
    let r = Array.create l (f a.(0)) in
    let s = Array.create l (g b.(0)) in
    for i = 1 to l - 1 do
      r.(i) <- f a.(i);
      s.(i) <- g b.(i)
    done;
    r, s
  end

let fold_rec_types g (lna,typarray,_) e =
  let ctxt =
    array_map2_i
      (fun i na t -> (na, None, type_app (lift i) t)) lna typarray in
  Array.fold_left
    (fun e assum -> g assum e) e ctxt


let map_constr_with_binders_left_to_right g f l c = match kind_of_term c with
  | (Rel _ | Meta _ | Var _   | Sort _ | Const _ | Ind _
    | Construct _) -> c
  | Cast (c,t) -> let c' = f l c in mkCast (c', f l t)
  | Prod (na,t,c) ->
      let t' = f l t in
      mkProd (na, t', f (g (na,None,t) l) c)
  | Lambda (na,t,c) ->
      let t' = f l t in
      mkLambda (na, t', f (g (na,None,t) l) c)
  | LetIn (na,b,t,c) ->
      let b' = f l b in
      let t' = f l t in
      let c' = f (g (na,Some b,t) l) c in
      mkLetIn (na, b', t', c')
  | App (c,[||]) -> assert false
  | App (c,al) ->
      (*Special treatment to be able to recognize partially applied subterms*)
      let a = al.(Array.length al - 1) in
      let hd = f l (mkApp (c, Array.sub al 0 (Array.length al - 1))) in
      mkApp (hd, [| f l a |])
  | Evar (e,al) -> mkEvar (e, array_map_left (f l) al)
  | Case (ci,p,c,bl) ->
      let p' = f l p in let c' = f l c in
      mkCase (ci, p', c', array_map_left (f l) bl)
  | Fix (ln,(lna,tl,bl as fx)) ->
      let l' = fold_rec_types g fx l in
      let (tl',bl') = array_map_left_pair (f l) tl (f l') bl in
      mkFix (ln,(lna,tl',bl'))
  | CoFix(ln,(lna,tl,bl as fx)) ->
      let l' = fold_rec_types g fx l in
      let (tl',bl') = array_map_left_pair (f l) tl (f l') bl in
      mkCoFix (ln,(lna,tl',bl'))

(* strong *)
let map_constr_with_full_binders g f l c = match kind_of_term c with
  | (Rel _ | Meta _ | Var _   | Sort _ | Const _ | Ind _
    | Construct _) -> c
  | Cast (c,t) -> mkCast (f l c, f l t)
  | Prod (na,t,c) -> mkProd (na, f l t, f (g (na,None,t) l) c)
  | Lambda (na,t,c) -> mkLambda (na, f l t, f (g (na,None,t) l) c)
  | LetIn (na,b,t,c) -> mkLetIn (na, f l b, f l t, f (g (na,Some b,t) l) c)
  | App (c,al) -> mkApp (f l c, Array.map (f l) al)
  | Evar (e,al) -> mkEvar (e, Array.map (f l) al)
  | Case (ci,p,c,bl) -> mkCase (ci, f l p, f l c, Array.map (f l) bl)
  | Fix (ln,(lna,tl,bl)) ->
      let l' =
        array_fold_left2 (fun l na t -> g (na,None,t) l) l lna tl in
      mkFix (ln,(lna,Array.map (f l) tl, Array.map (f l') bl))
  | CoFix(ln,(lna,tl,bl)) ->
      let l' =
        array_fold_left2 (fun l na t -> g (na,None,t) l) l lna tl in
      mkCoFix (ln,(lna,Array.map (f l) tl,Array.map (f l') bl))


(* Equality modulo let reduction *)
let rec zeta_eq_constr m n = 
  (m==n) or
  match kind_of_term m, kind_of_term n with
    | LetIn(_,v1,_,b1),_ -> zeta_eq_constr (subst1 v1 b1) n
    | _,LetIn(_,v2,_,b2) -> zeta_eq_constr m (subst1 v2 b2)
    | _ -> compare_constr zeta_eq_constr m n

(***************************)
(* occurs check functions  *)                         
(***************************)

exception Occur

let occur_meta c =
  let rec occrec c = match kind_of_term c with
    | Meta _ -> raise Occur
    | _ -> iter_constr occrec c
  in try occrec c; false with Occur -> true

let occur_existential c = 
  let rec occrec c = match kind_of_term c with
    | Evar _ -> raise Occur
    | _ -> iter_constr occrec c
  in try occrec c; false with Occur -> true

let occur_const s c = 
  let rec occur_rec c = match kind_of_term c with
    | Const sp when sp=s -> raise Occur
    | _ -> iter_constr occur_rec c
  in 
  try occur_rec c; false with Occur -> true

let occur_evar n c = 
  let rec occur_rec c = match kind_of_term c with
    | Evar (sp,_) when sp=n -> raise Occur
    | _ -> iter_constr occur_rec c
  in 
  try occur_rec c; false with Occur -> true

let occur_in_global env id constr =
  let vars = vars_of_global env constr in
  if List.mem id vars then raise Occur

let occur_var env s c = 
  let rec occur_rec c =
    occur_in_global env s c;
    iter_constr occur_rec c
  in 
  try occur_rec c; false with Occur -> true

let occur_var_in_decl env hyp (_,c,typ) =
  match c with
    | None -> occur_var env hyp (body_of_type typ)
    | Some body ->
        occur_var env hyp (body_of_type typ) ||
        occur_var env hyp body

(* Tests that t is a subterm of c *)
let occur_term t c = 
  let eq_constr_fail c = if eq_constr t c then raise Occur
  in let rec occur_rec c = eq_constr_fail c; iter_constr occur_rec c
  in try occur_rec c; false with Occur -> true

(* returns the list of free debruijn indices in a term *)

let free_rels m = 
  let rec frec depth acc c = match kind_of_term c with
    | Rel n       -> if n >= depth then Intset.add (n-depth+1) acc else acc
    | _ -> fold_constr_with_binders succ frec depth acc c
  in 
  frec 1 Intset.empty m


(* (dependent M N) is true iff M is eq_term with a subterm of N 
   M is appropriately lifted through abstractions of N *)

let dependent m t =
  let rec deprec m t =
    if zeta_eq_constr m t then
      raise Occur
    else
      iter_constr_with_binders (lift 1) deprec m t
  in 
  try deprec m t; false with Occur -> true

let pop t = lift (-1) t

(***************************)
(*  substitution functions *)                         
(***************************)

let rec subst_meta bl c = 
  match kind_of_term c with
    | Meta i -> (try List.assoc i bl with Not_found -> c)
    | _ -> map_constr (subst_meta bl) c

(* Equality modulo let reduction *)
let rec whd_locals env c =
  match kind_of_term c with
      Rel i ->
        (try
          (match lookup_rel i env with
              (_,Some v,_) -> whd_locals env (lift i v)
            | _ -> c)
         with Not_found -> c)
    | Var id ->
        (try
          (match lookup_named id env with
              (_,Some v,_) -> whd_locals env v
            | _ -> c)
         with Not_found -> c)
    | _ -> c

(* Expand de Bruijn indices bound to a value *)
let rec nf_locals env c =
  map_constr_with_full_binders push_rel nf_locals env (whd_locals env c)

(* compare terms modulo expansion of let and local variables *)
let compare_zeta env m n = zeta_eq_constr m (nf_locals env n)

(* First utilities for avoiding telescope computation for subst_term *)

let prefix_application eq_fun (e,k,c) (t : constr) = 
  let c' = collapse_appl c and t' = collapse_appl t in
  match kind_of_term c', kind_of_term t' with
    | App (f1,cl1), App (f2,cl2) ->
	let l1 = Array.length cl1
	and l2 = Array.length cl2 in
	if l1 <= l2
	   && eq_fun e c' (mkApp (f2, Array.sub cl2 0 l1)) then
	  Some (mkApp (mkRel k, Array.sub cl2 l1 (l2 - l1)))
	else 
	  None
    | _ -> None

let my_prefix_application eq_fun (e,k,c) (by_c : constr) (t : constr) = 
  let c' = collapse_appl c and t' = collapse_appl t in
  match kind_of_term c', kind_of_term t' with
    | App (f1,cl1), App (f2,cl2) ->
	let l1 = Array.length cl1
	and l2 = Array.length cl2 in
	if l1 <= l2
	   && eq_fun e c' (mkApp (f2, Array.sub cl2 0 l1)) then
	  Some (mkApp ((lift k by_c), Array.sub cl2 l1 (l2 - l1)))
	else 
	  None
    | _ -> None

(* Recognizing occurrences of a given (closed) subterm in a term for Pattern :
   [subst_term c t] substitutes [(Rel 1)] for all occurrences of (closed)
   term [c] in a term [t] *)
(*i Bizarre : si on cherche un sous terme clos, pourquoi le lifter ? i*)

let subst_term_gen eq_fun env c t = 
  let rec substrec (e,k,c as kc) t =
    match prefix_application eq_fun kc t with
      | Some x -> x
      | None ->
    (if eq_fun e c t then mkRel k
     else
       map_constr_with_full_binders
         (fun d (e,k,c) -> (push_rel d e,k+1,lift 1 c))
         substrec kc t)
  in 
  substrec (env,1,nf_locals env c) t

(* Recognizing occurrences of a given (closed) subterm in a term :
   [replace_term c1 c2 t] substitutes [c2] for all occurrences of (closed)
   term [c1] in a term [t] *)
(*i Meme remarque : a priori [c] n'est pas forcement clos i*)

let replace_term_gen eq_fun env c by_c in_t = 
  let rec substrec (e,k,c as kc) t =
    match my_prefix_application eq_fun kc by_c t with
      | Some x -> x
      | None ->
    (if eq_fun e c t then (lift k by_c) else
      map_constr_with_full_binders
	(fun d (e,k,c) -> (push_rel d e,k+1,lift 1 c))
	substrec kc t)
  in 
  substrec (env,0,nf_locals env c) in_t

let subst_term = subst_term_gen (fun _ -> eq_constr) empty_env

let replace_term = replace_term_gen (fun _ -> eq_constr) empty_env

(* Substitute only a list of locations locs, the empty list is
   interpreted as substitute all, if 0 is in the list then no
   substitution is done. The list may contain only negative occurrences
   that will not be substituted. *)

let subst_term_occ_gen env locs occ c t =
  let maxocc = List.fold_right max locs 0 in
  let pos = ref occ in
  let check = ref true in
  let except = List.exists (fun n -> n<0) locs in
  if except & (List.exists (fun n -> n>=0) locs) 
  then error "mixing of positive and negative occurences"
  else
   let rec substrec (e,k,c as kc) t =
    if (not except) & (!pos > maxocc) then t
    else
    if compare_zeta e c t then
      let r = 
	if except then 
	  if List.mem (- !pos) locs then t else (mkRel k)
	else 
	  if List.mem !pos locs then (mkRel k) else t
      in incr pos; r
    else
      map_constr_with_binders_left_to_right
	(fun d (e,k,c) -> (push_rel d e,k+1,lift 1 c))
        substrec kc t
  in
  let t' = substrec (env,1,nf_locals env c) t in
  (!pos, t')

let subst_term_occ env locs c t = 
  if locs = [] then
    subst_term_gen compare_zeta env c t
  else if List.mem 0 locs then 
    t
  else 
    let (nbocc,t') = subst_term_occ_gen env locs 1 c t in
    if List.exists (fun o -> o >= nbocc or o <= -nbocc) locs then
      errorlabstrm "subst_term_occ" (str "Too few occurences");
    t'

let subst_term_occ_decl env locs c (id,bodyopt,typ as d) =
  match bodyopt with
    | None -> (id,None,subst_term_occ env locs c typ)
    | Some body -> 
	if locs = [] then
	  (id,Some (subst_term c body),type_app (subst_term c) typ)
	else if List.mem 0 locs then 
	  d
	else 
	  let (nbocc,body') = subst_term_occ_gen env locs 1 c body in
	  let (nbocc',t') = subst_term_occ_gen env locs nbocc c typ in
	  if List.exists (fun o -> o >= nbocc' or o <= -nbocc') locs then
	    errorlabstrm "subst_term_occ_decl" (str "Too few occurences");
	  (id,Some body',t')


(* First character of a constr *)

let first_char id =
  let id = string_of_id id in
  assert (id <> "");
  String.make 1 id.[0]

let lowercase_first_char id = String.lowercase (first_char id)

let id_of_global env ref = basename (sp_of_global env ref)

let sort_hdchar = function
  | Prop(_) -> "P"
  | Type(_) -> "T"

let hdchar env c = 
  let rec hdrec k c =
    match kind_of_term c with
    | Prod (_,_,c)       -> hdrec (k+1) c
    | Lambda (_,_,c)     -> hdrec (k+1) c
    | LetIn (_,_,_,c)    -> hdrec (k+1) c
    | Cast (c,_)         -> hdrec k c
    | App (f,l)         -> hdrec k f
    | Const sp       ->
	let c = lowercase_first_char (basename sp) in
	if c = "?" then "y" else c
    | Ind ((sp,i) as x) ->
	if i=0 then 
	  lowercase_first_char (basename sp)
	else 
	  lowercase_first_char (id_of_global env (IndRef x))
    | Construct ((sp,i) as x) ->
	lowercase_first_char (id_of_global env (ConstructRef x))
    | Var id  -> lowercase_first_char id
    | Sort s -> sort_hdchar s
    | Rel n ->
	(if n<=k then "p" (* the initial term is flexible product/function *)
	 else
	   try match Environ.lookup_rel (n-k) env with
	     | (Name id,_,_)   -> lowercase_first_char id
	     | (Anonymous,_,t) -> hdrec 0 (lift (n-k) (body_of_type t))
	   with Not_found -> "y")
    | Fix ((_,i),(lna,_,_)) -> 
	let id = match lna.(i) with Name id -> id | _ -> assert false in
	lowercase_first_char id
    | CoFix (i,(lna,_,_)) -> 
	let id = match lna.(i) with Name id -> id | _ -> assert false in
	lowercase_first_char id
    | Meta _|Evar _|Case (_, _, _, _) -> "y"
  in 
  hdrec 0 c

let id_of_name_using_hdchar env a = function
  | Anonymous -> id_of_string (hdchar env a) 
  | Name id   -> id

let named_hd env a = function
  | Anonymous -> Name (id_of_string (hdchar env a)) 
  | x         -> x

let named_hd_type env a = named_hd env (body_of_type a)

let prod_name   env (n,a,b) = mkProd (named_hd_type env a n, a, b)
let lambda_name env (n,a,b) = mkLambda (named_hd_type env a n, a, b)

let prod_create   env (a,b) = mkProd (named_hd_type env a Anonymous, a, b)
let lambda_create env (a,b) =  mkLambda (named_hd_type env a Anonymous, a, b)

let name_assumption env (na,c,t) =
  match c with
    | None      -> (named_hd_type env t na, None, t)
    | Some body -> (named_hd env body na, c, t)

let name_context env hyps =
  snd
    (List.fold_left
       (fun (env,hyps) d -> 
	  let d' = name_assumption env d in (push_rel d' env, d' :: hyps))
       (env,[]) (List.rev hyps))

let mkProd_or_LetIn_name env b d = mkProd_or_LetIn (name_assumption env d) b 
let mkLambda_or_LetIn_name env b d = mkLambda_or_LetIn (name_assumption env d)b

let it_mkProd_or_LetIn_name env b hyps =
  it_mkProd_or_LetIn b (name_context env hyps)
let it_mkLambda_or_LetIn_name env b hyps =
  it_mkLambda_or_LetIn b (name_context env hyps)

(*************************)
(*   Names environments  *)
(*************************)
type names_context = name list
let add_name n nl = n::nl
let lookup_name_of_rel p names =
  try List.nth names (p-1)
  with Invalid_argument _ | Failure _ -> raise Not_found
let rec lookup_rel_of_name id names = 
  let rec lookrec n = function
    | Anonymous :: l  -> lookrec (n+1) l
    | (Name id') :: l -> if id' = id then n else lookrec (n+1) l
    | []            -> raise Not_found
  in 
  lookrec 1 names
let empty_names_context = []

let ids_of_rel_context sign =
  Sign.fold_rel_context
    (fun (na,_,_) l -> match na with Name id -> id::l | Anonymous -> l)
    sign ~init:[]
let ids_of_named_context sign =
  Sign.fold_named_context (fun (id,_,_) idl -> id::idl) sign ~init:[]

let ids_of_context env = 
  (ids_of_rel_context (rel_context env))
  @ (ids_of_named_context (named_context env))

let names_of_rel_context env =
  List.map (fun (na,_,_) -> na) (rel_context env)

(* Nouvelle version de renommage des variables (DEC 98) *)
(* This is the algorithm to display distinct bound variables 

    - Règle 1 : un nom non anonyme, même non affiché, contribue à la liste
      des noms à éviter 
    - Règle 2 : c'est la dépendance qui décide si on affiche ou pas

    Exemple : 
    si bool_ind = (P:bool->Prop)(f:(P true))(f:(P false))(b:bool)(P b), alors
    il est affiché (P:bool->Prop)(P true)->(P false)->(b:bool)(P b)
    mais f et f0 contribue à la liste des variables à éviter (en supposant 
    que les noms f et f0 ne sont pas déjà pris)
    Intérêt : noms homogènes dans un but avant et après Intro
*)

type used_idents = identifier list

let occur_rel p env id = 
  try lookup_name_of_rel p env = Name id
  with Not_found -> false (* Unbound indice : may happen in debug *)

let occur_id env nenv id0 c =
  let rec occur n c = match kind_of_term c with
    | Var id when  id=id0 -> raise Occur
    | Const sp when basename sp = id0 -> raise Occur
    | Ind ind_sp
	when basename (path_of_inductive env ind_sp) = id0 ->
        raise Occur
    | Construct cstr_sp
	when basename (path_of_constructor env cstr_sp) = id0 ->
        raise Occur
    | Rel p when p>n & occur_rel (p-n) nenv id0 -> raise Occur
    | _ -> iter_constr_with_binders succ occur n c
  in 
  try occur 1 c; false
  with Occur -> true
    | Not_found -> false (* Case when a global is not in the env *)

let next_name_not_occuring env name l env_names t =
  let rec next id =
    if List.mem id l or occur_id env env_names id t then next (lift_ident id)
    else id
  in 
  match name with
    | Name id   -> next id
    | Anonymous -> id_of_string "_"

(* On reduit une serie d'eta-redex de tete ou rien du tout  *)
(* [x1:c1;...;xn:cn]@(f;a1...an;x1;...;xn) --> @(f;a1...an) *)
(* Remplace 2 versions précédentes buggées                  *)

let rec eta_reduce_head c =
  match kind_of_term c with
    | Lambda (_,c1,c') ->
	(match kind_of_term (eta_reduce_head c') with
           | App (f,cl) ->
               let lastn = (Array.length cl) - 1 in 
               if lastn < 1 then anomaly "application without arguments"
               else
                 (match kind_of_term cl.(lastn) with
                    | Rel 1 ->
			let c' =
                          if lastn = 1 then f
			  else mkApp (f, Array.sub cl 0 lastn)
			in
			if noccurn 1 c'
                        then lift (-1) c'
                        else c
                    | _   -> c)
           | _ -> c)
    | _ -> c

(* alpha-eta conversion : ignore print names and casts *)
let eta_eq_constr =
  let rec aux t1 t2 =
    let t1 = eta_reduce_head (strip_head_cast t1)
    and t2 = eta_reduce_head (strip_head_cast t2) in
    t1=t2 or compare_constr aux t1 t2
  in aux


(* iterator on rel context *)
let process_rel_context f env =
  let sign = named_context env in
  let rels = rel_context env in
  let env0 = reset_with_named_context sign env in
  Sign.fold_rel_context f rels ~init:env0

let assums_of_rel_context sign =
  Sign.fold_rel_context
    (fun (na,c,t) l ->
      match c with
          Some _ -> l
        | None -> (na,body_of_type t)::l)
    sign ~init:[]

let lift_rel_context n sign =
  let rec liftrec k = function
    | (na,c,t)::sign ->
	(na,option_app (liftn n k) c,type_app (liftn n k) t)
	::(liftrec (k-1) sign)
    | [] -> []
  in
  liftrec (rel_context_length sign) sign

let fold_named_context_both_sides f l ~init = list_fold_right_and_left f l init

let rec mem_named_context id = function
  | (id',_,_) :: _ when id=id' -> true
  | _ :: sign -> mem_named_context id sign
  | [] -> false

let make_all_name_different env =
  let avoid = ref (ids_of_named_context (named_context env)) in
  process_rel_context
    (fun (na,c,t) newenv -> 
       let id = next_name_away na !avoid in
       avoid := id::!avoid;
       push_rel (Name id,c,t) newenv)
    env

let global_vars env ids = Idset.elements (global_vars_set env ids)

let global_vars_set_of_decl env = function
  | (_,None,t) -> global_vars_set env (body_of_type t)
  | (_,Some c,t) ->
      Idset.union (global_vars_set env (body_of_type t))
        (global_vars_set env c)

(* Remark: Anonymous var may be dependent in Evar's contexts *)
let concrete_name env l env_names n c =
  if n = Anonymous & noccurn 1 c then
    (None,l)
  else
    let fresh_id = next_name_not_occuring env n l env_names c in
    let idopt = if noccurn 1 c then None else (Some fresh_id) in
    (idopt, fresh_id::l)

let concrete_let_name env l env_names n c =
  let fresh_id = next_name_not_occuring env n l env_names c in
  (Name fresh_id, fresh_id::l)

let rec rename_bound_var env l c =
  match kind_of_term c with
  | Prod (Name s,c1,c2)  ->
      if noccurn 1 c2 then
        let env' = push_rel (Name s,None,c1) env in
	mkProd (Name s, c1, rename_bound_var env' l c2)
      else 
        let s' = next_ident_away s (global_vars env c2@l) in
        let env' = push_rel (Name s',None,c1) env in
        mkProd (Name s', c1, rename_bound_var env' (s'::l) c2)
  | Prod (Anonymous,c1,c2) ->
        let env' = push_rel (Anonymous,None,c1) env in
        mkProd (Anonymous, c1, rename_bound_var env' l c2)
  | Cast (c,t) -> mkCast (rename_bound_var env l c, t)
  | x -> c