1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Pp
open Errors
open Util
open Names
open Nameops
open Term
open Vars
open Context
open Environ
open Locus
(* Sorts and sort family *)
let print_sort = function
| Prop Pos -> (str "Set")
| Prop Null -> (str "Prop")
| Type u -> (str "Type(" ++ Univ.Universe.pr u ++ str ")")
let pr_sort_family = function
| InSet -> (str "Set")
| InProp -> (str "Prop")
| InType -> (str "Type")
let pr_name = function
| Name id -> pr_id id
| Anonymous -> str "_"
let pr_con sp = str(string_of_con sp)
let pr_fix pr_constr ((t,i),(lna,tl,bl)) =
let fixl = Array.mapi (fun i na -> (na,t.(i),tl.(i),bl.(i))) lna in
hov 1
(str"fix " ++ int i ++ spc() ++ str"{" ++
v 0 (prlist_with_sep spc (fun (na,i,ty,bd) ->
pr_name na ++ str"/" ++ int i ++ str":" ++ pr_constr ty ++
cut() ++ str":=" ++ pr_constr bd) (Array.to_list fixl)) ++
str"}")
let pr_puniverses p u =
if Univ.Instance.is_empty u then p
else p ++ str"(*" ++ Univ.Instance.pr u ++ str"*)"
let rec pr_constr c = match kind_of_term c with
| Rel n -> str "#"++int n
| Meta n -> str "Meta(" ++ int n ++ str ")"
| Var id -> pr_id id
| Sort s -> print_sort s
| Cast (c,_, t) -> hov 1
(str"(" ++ pr_constr c ++ cut() ++
str":" ++ pr_constr t ++ str")")
| Prod (Name(id),t,c) -> hov 1
(str"forall " ++ pr_id id ++ str":" ++ pr_constr t ++ str"," ++
spc() ++ pr_constr c)
| Prod (Anonymous,t,c) -> hov 0
(str"(" ++ pr_constr t ++ str " ->" ++ spc() ++
pr_constr c ++ str")")
| Lambda (na,t,c) -> hov 1
(str"fun " ++ pr_name na ++ str":" ++
pr_constr t ++ str" =>" ++ spc() ++ pr_constr c)
| LetIn (na,b,t,c) -> hov 0
(str"let " ++ pr_name na ++ str":=" ++ pr_constr b ++
str":" ++ brk(1,2) ++ pr_constr t ++ cut() ++
pr_constr c)
| App (c,l) -> hov 1
(str"(" ++ pr_constr c ++ spc() ++
prlist_with_sep spc pr_constr (Array.to_list l) ++ str")")
| Evar (e,l) -> hov 1
(str"Evar#" ++ int (Evar.repr e) ++ str"{" ++
prlist_with_sep spc pr_constr (Array.to_list l) ++str"}")
| Const (c,u) -> str"Cst(" ++ pr_puniverses (pr_con c) u ++ str")"
| Ind ((sp,i),u) -> str"Ind(" ++ pr_puniverses (pr_mind sp ++ str"," ++ int i) u ++ str")"
| Construct (((sp,i),j),u) ->
str"Constr(" ++ pr_puniverses (pr_mind sp ++ str"," ++ int i ++ str"," ++ int j) u ++ str")"
| Proj (p,c) -> str"Proj(" ++ pr_con p ++ str"," ++ pr_constr c ++ str")"
| Case (ci,p,c,bl) -> v 0
(hv 0 (str"<"++pr_constr p++str">"++ cut() ++ str"Case " ++
pr_constr c ++ str"of") ++ cut() ++
prlist_with_sep (fun _ -> brk(1,2)) pr_constr (Array.to_list bl) ++
cut() ++ str"end")
| Fix f -> pr_fix pr_constr f
| CoFix(i,(lna,tl,bl)) ->
let fixl = Array.mapi (fun i na -> (na,tl.(i),bl.(i))) lna in
hov 1
(str"cofix " ++ int i ++ spc() ++ str"{" ++
v 0 (prlist_with_sep spc (fun (na,ty,bd) ->
pr_name na ++ str":" ++ pr_constr ty ++
cut() ++ str":=" ++ pr_constr bd) (Array.to_list fixl)) ++
str"}")
let term_printer = ref (fun _ -> pr_constr)
let print_constr_env t = !term_printer t
let print_constr t = !term_printer (Global.env()) t
let set_print_constr f = term_printer := f
let pr_var_decl env (id,c,typ) =
let pbody = match c with
| None -> (mt ())
| Some c ->
(* Force evaluation *)
let pb = print_constr_env env c in
(str" := " ++ pb ++ cut () ) in
let pt = print_constr_env env typ in
let ptyp = (str" : " ++ pt) in
(pr_id id ++ hov 0 (pbody ++ ptyp))
let pr_rel_decl env (na,c,typ) =
let pbody = match c with
| None -> mt ()
| Some c ->
(* Force evaluation *)
let pb = print_constr_env env c in
(str":=" ++ spc () ++ pb ++ spc ()) in
let ptyp = print_constr_env env typ in
match na with
| Anonymous -> hov 0 (str"<>" ++ spc () ++ pbody ++ str":" ++ spc () ++ ptyp)
| Name id -> hov 0 (pr_id id ++ spc () ++ pbody ++ str":" ++ spc () ++ ptyp)
let print_named_context env =
hv 0 (fold_named_context
(fun env d pps ->
pps ++ ws 2 ++ pr_var_decl env d)
env ~init:(mt ()))
let print_rel_context env =
hv 0 (fold_rel_context
(fun env d pps -> pps ++ ws 2 ++ pr_rel_decl env d)
env ~init:(mt ()))
let print_env env =
let sign_env =
fold_named_context
(fun env d pps ->
let pidt = pr_var_decl env d in
(pps ++ fnl () ++ pidt))
env ~init:(mt ())
in
let db_env =
fold_rel_context
(fun env d pps ->
let pnat = pr_rel_decl env d in (pps ++ fnl () ++ pnat))
env ~init:(mt ())
in
(sign_env ++ db_env)
(* [Rel (n+m);...;Rel(n+1)] *)
let rel_vect n m = Array.init m (fun i -> mkRel(n+m-i))
let rel_list n m =
let rec reln l p =
if p>m then l else reln (mkRel(n+p)::l) (p+1)
in
reln [] 1
(* Same as [rel_list] but takes a context as argument and skips let-ins *)
let extended_rel_list n hyps =
let rec reln l p = function
| (_,None,_) :: hyps -> reln (mkRel (n+p) :: l) (p+1) hyps
| (_,Some _,_) :: hyps -> reln l (p+1) hyps
| [] -> l
in
reln [] 1 hyps
let extended_rel_vect n hyps = Array.of_list (extended_rel_list n hyps)
let push_rel_assum (x,t) env = push_rel (x,None,t) env
let push_rels_assum assums =
push_rel_context (List.map (fun (x,t) -> (x,None,t)) assums)
let push_named_rec_types (lna,typarray,_) env =
let ctxt =
Array.map2_i
(fun i na t ->
match na with
| Name id -> (id, None, lift i t)
| Anonymous -> anomaly (Pp.str "Fix declarations must be named"))
lna typarray in
Array.fold_left
(fun e assum -> push_named assum e) env ctxt
let lookup_rel_id id sign =
let rec lookrec n = function
| [] -> raise Not_found
| (Anonymous, _, _) :: l -> lookrec (n + 1) l
| (Name id', b, t) :: l ->
if Names.Id.equal id' id then (n, b, t) else lookrec (n + 1) l
in
lookrec 1 sign
(* Constructs either [forall x:t, c] or [let x:=b:t in c] *)
let mkProd_or_LetIn (na,body,t) c =
match body with
| None -> mkProd (na, t, c)
| Some b -> mkLetIn (na, b, t, c)
(* Constructs either [forall x:t, c] or [c] in which [x] is replaced by [b] *)
let mkProd_wo_LetIn (na,body,t) c =
match body with
| None -> mkProd (na, t, c)
| Some b -> subst1 b c
let it_mkProd init = List.fold_left (fun c (n,t) -> mkProd (n, t, c)) init
let it_mkLambda init = List.fold_left (fun c (n,t) -> mkLambda (n, t, c)) init
let it_named_context_quantifier f ~init =
List.fold_left (fun c d -> f d c) init
let it_mkProd_or_LetIn init = it_named_context_quantifier mkProd_or_LetIn ~init
let it_mkProd_wo_LetIn init = it_named_context_quantifier mkProd_wo_LetIn ~init
let it_mkLambda_or_LetIn init = it_named_context_quantifier mkLambda_or_LetIn ~init
let it_mkNamedProd_or_LetIn init = it_named_context_quantifier mkNamedProd_or_LetIn ~init
let it_mkNamedProd_wo_LetIn init = it_named_context_quantifier mkNamedProd_wo_LetIn ~init
let it_mkNamedLambda_or_LetIn init = it_named_context_quantifier mkNamedLambda_or_LetIn ~init
(* *)
(* strips head casts and flattens head applications *)
let rec strip_head_cast c = match kind_of_term c with
| App (f,cl) ->
let rec collapse_rec f cl2 = match kind_of_term f with
| App (g,cl1) -> collapse_rec g (Array.append cl1 cl2)
| Cast (c,_,_) -> collapse_rec c cl2
| _ -> if Int.equal (Array.length cl2) 0 then f else mkApp (f,cl2)
in
collapse_rec f cl
| Cast (c,_,_) -> strip_head_cast c
| _ -> c
let rec drop_extra_implicit_args c = match kind_of_term c with
(* Removed trailing extra implicit arguments, what improves compatibility
for constants with recently added maximal implicit arguments *)
| App (f,args) when isEvar (Array.last args) ->
drop_extra_implicit_args
(mkApp (f,fst (Array.chop (Array.length args - 1) args)))
| _ -> c
(* Get the last arg of an application *)
let last_arg c = match kind_of_term c with
| App (f,cl) -> Array.last cl
| _ -> anomaly (Pp.str "last_arg")
(* Get the last arg of an application *)
let decompose_app_vect c =
match kind_of_term c with
| App (f,cl) -> (f, cl)
| _ -> (c,[||])
let adjust_app_list_size f1 l1 f2 l2 =
let len1 = List.length l1 and len2 = List.length l2 in
if Int.equal len1 len2 then (f1,l1,f2,l2)
else if len1 < len2 then
let extras,restl2 = List.chop (len2-len1) l2 in
(f1, l1, applist (f2,extras), restl2)
else
let extras,restl1 = List.chop (len1-len2) l1 in
(applist (f1,extras), restl1, f2, l2)
let adjust_app_array_size f1 l1 f2 l2 =
let len1 = Array.length l1 and len2 = Array.length l2 in
if Int.equal len1 len2 then (f1,l1,f2,l2)
else if len1 < len2 then
let extras,restl2 = Array.chop (len2-len1) l2 in
(f1, l1, appvect (f2,extras), restl2)
else
let extras,restl1 = Array.chop (len1-len2) l1 in
(appvect (f1,extras), restl1, f2, l2)
(* [map_constr_with_named_binders g f l c] maps [f l] on the immediate
subterms of [c]; it carries an extra data [l] (typically a name
list) which is processed by [g na] (which typically cons [na] to
[l]) at each binder traversal (with name [na]); it is not recursive
and the order with which subterms are processed is not specified *)
let map_constr_with_named_binders g f l c = match kind_of_term c with
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _
| Construct _) -> c
| Cast (c,k,t) -> mkCast (f l c, k, f l t)
| Prod (na,t,c) -> mkProd (na, f l t, f (g na l) c)
| Lambda (na,t,c) -> mkLambda (na, f l t, f (g na l) c)
| LetIn (na,b,t,c) -> mkLetIn (na, f l b, f l t, f (g na l) c)
| App (c,al) -> mkApp (f l c, Array.map (f l) al)
| Proj (p,c) -> mkProj (p, f l c)
| Evar (e,al) -> mkEvar (e, Array.map (f l) al)
| Case (ci,p,c,bl) -> mkCase (ci, f l p, f l c, Array.map (f l) bl)
| Fix (ln,(lna,tl,bl)) ->
let l' = Array.fold_left (fun l na -> g na l) l lna in
mkFix (ln,(lna,Array.map (f l) tl,Array.map (f l') bl))
| CoFix(ln,(lna,tl,bl)) ->
let l' = Array.fold_left (fun l na -> g na l) l lna in
mkCoFix (ln,(lna,Array.map (f l) tl,Array.map (f l') bl))
(* [map_constr_with_binders_left_to_right g f n c] maps [f n] on the
immediate subterms of [c]; it carries an extra data [n] (typically
a lift index) which is processed by [g] (which typically add 1 to
[n]) at each binder traversal; the subterms are processed from left
to right according to the usual representation of the constructions
(this may matter if [f] does a side-effect); it is not recursive;
in fact, the usual representation of the constructions is at the
time being almost those of the ML representation (except for
(co-)fixpoint) *)
let fold_rec_types g (lna,typarray,_) e =
let ctxt = Array.map2_i (fun i na t -> (na, None, lift i t)) lna typarray in
Array.fold_left (fun e assum -> g assum e) e ctxt
let map_left2 f a g b =
let l = Array.length a in
if Int.equal l 0 then [||], [||] else begin
let r = Array.make l (f a.(0)) in
let s = Array.make l (g b.(0)) in
for i = 1 to l - 1 do
r.(i) <- f a.(i);
s.(i) <- g b.(i)
done;
r, s
end
let map_constr_with_binders_left_to_right g f l c = match kind_of_term c with
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _
| Construct _) -> c
| Cast (c,k,t) -> let c' = f l c in mkCast (c',k,f l t)
| Prod (na,t,c) ->
let t' = f l t in
mkProd (na, t', f (g (na,None,t) l) c)
| Lambda (na,t,c) ->
let t' = f l t in
mkLambda (na, t', f (g (na,None,t) l) c)
| LetIn (na,b,t,c) ->
let b' = f l b in
let t' = f l t in
let c' = f (g (na,Some b,t) l) c in
mkLetIn (na, b', t', c')
| App (c,[||]) -> assert false
| App (c,al) ->
(*Special treatment to be able to recognize partially applied subterms*)
let a = al.(Array.length al - 1) in
let hd = f l (mkApp (c, Array.sub al 0 (Array.length al - 1))) in
mkApp (hd, [| f l a |])
| Proj (p,c) ->
mkProj (p, f l c)
| Evar (e,al) -> mkEvar (e, Array.map_left (f l) al)
| Case (ci,p,c,bl) ->
(* In v8 concrete syntax, predicate is after the term to match! *)
let c' = f l c in
let p' = f l p in
mkCase (ci, p', c', Array.map_left (f l) bl)
| Fix (ln,(lna,tl,bl as fx)) ->
let l' = fold_rec_types g fx l in
let (tl', bl') = map_left2 (f l) tl (f l') bl in
mkFix (ln,(lna,tl',bl'))
| CoFix(ln,(lna,tl,bl as fx)) ->
let l' = fold_rec_types g fx l in
let (tl', bl') = map_left2 (f l) tl (f l') bl in
mkCoFix (ln,(lna,tl',bl'))
(* strong *)
let map_constr_with_full_binders g f l cstr = match kind_of_term cstr with
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _
| Construct _) -> cstr
| Cast (c,k, t) ->
let c' = f l c in
let t' = f l t in
if c==c' && t==t' then cstr else mkCast (c', k, t')
| Prod (na,t,c) ->
let t' = f l t in
let c' = f (g (na,None,t) l) c in
if t==t' && c==c' then cstr else mkProd (na, t', c')
| Lambda (na,t,c) ->
let t' = f l t in
let c' = f (g (na,None,t) l) c in
if t==t' && c==c' then cstr else mkLambda (na, t', c')
| LetIn (na,b,t,c) ->
let b' = f l b in
let t' = f l t in
let c' = f (g (na,Some b,t) l) c in
if b==b' && t==t' && c==c' then cstr else mkLetIn (na, b', t', c')
| App (c,al) ->
let c' = f l c in
let al' = Array.map (f l) al in
if c==c' && Array.for_all2 (==) al al' then cstr else mkApp (c', al')
| Proj (p,c) ->
let c' = f l c in
if c' == c then cstr else mkProj (p, c')
| Evar (e,al) ->
let al' = Array.map (f l) al in
if Array.for_all2 (==) al al' then cstr else mkEvar (e, al')
| Case (ci,p,c,bl) ->
let p' = f l p in
let c' = f l c in
let bl' = Array.map (f l) bl in
if p==p' && c==c' && Array.for_all2 (==) bl bl' then cstr else
mkCase (ci, p', c', bl')
| Fix (ln,(lna,tl,bl)) ->
let tl' = Array.map (f l) tl in
let l' =
Array.fold_left2 (fun l na t -> g (na,None,t) l) l lna tl in
let bl' = Array.map (f l') bl in
if Array.for_all2 (==) tl tl' && Array.for_all2 (==) bl bl'
then cstr
else mkFix (ln,(lna,tl',bl'))
| CoFix(ln,(lna,tl,bl)) ->
let tl' = Array.map (f l) tl in
let l' =
Array.fold_left2 (fun l na t -> g (na,None,t) l) l lna tl in
let bl' = Array.map (f l') bl in
if Array.for_all2 (==) tl tl' && Array.for_all2 (==) bl bl'
then cstr
else mkCoFix (ln,(lna,tl',bl'))
(* [fold_constr_with_binders g f n acc c] folds [f n] on the immediate
subterms of [c] starting from [acc] and proceeding from left to
right according to the usual representation of the constructions as
[fold_constr] but it carries an extra data [n] (typically a lift
index) which is processed by [g] (which typically add 1 to [n]) at
each binder traversal; it is not recursive *)
let fold_constr_with_binders g f n acc c = match kind_of_term c with
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _
| Construct _) -> acc
| Cast (c,_, t) -> f n (f n acc c) t
| Prod (_,t,c) -> f (g n) (f n acc t) c
| Lambda (_,t,c) -> f (g n) (f n acc t) c
| LetIn (_,b,t,c) -> f (g n) (f n (f n acc b) t) c
| App (c,l) -> Array.fold_left (f n) (f n acc c) l
| Proj (p,c) -> f n acc c
| Evar (_,l) -> Array.fold_left (f n) acc l
| Case (_,p,c,bl) -> Array.fold_left (f n) (f n (f n acc p) c) bl
| Fix (_,(lna,tl,bl)) ->
let n' = iterate g (Array.length tl) n in
let fd = Array.map2 (fun t b -> (t,b)) tl bl in
Array.fold_left (fun acc (t,b) -> f n' (f n acc t) b) acc fd
| CoFix (_,(lna,tl,bl)) ->
let n' = iterate g (Array.length tl) n in
let fd = Array.map2 (fun t b -> (t,b)) tl bl in
Array.fold_left (fun acc (t,b) -> f n' (f n acc t) b) acc fd
(* [iter_constr_with_full_binders g f acc c] iters [f acc] on the immediate
subterms of [c]; it carries an extra data [acc] which is processed by [g] at
each binder traversal; it is not recursive and the order with which
subterms are processed is not specified *)
let iter_constr_with_full_binders g f l c = match kind_of_term c with
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _
| Construct _) -> ()
| Cast (c,_, t) -> f l c; f l t
| Prod (na,t,c) -> f l t; f (g (na,None,t) l) c
| Lambda (na,t,c) -> f l t; f (g (na,None,t) l) c
| LetIn (na,b,t,c) -> f l b; f l t; f (g (na,Some b,t) l) c
| App (c,args) -> f l c; Array.iter (f l) args
| Proj (p,c) -> f l c
| Evar (_,args) -> Array.iter (f l) args
| Case (_,p,c,bl) -> f l p; f l c; Array.iter (f l) bl
| Fix (_,(lna,tl,bl)) ->
let l' = Array.fold_left2 (fun l na t -> g (na,None,t) l) l lna tl in
Array.iter (f l) tl;
Array.iter (f l') bl
| CoFix (_,(lna,tl,bl)) ->
let l' = Array.fold_left2 (fun l na t -> g (na,None,t) l) l lna tl in
Array.iter (f l) tl;
Array.iter (f l') bl
(***************************)
(* occurs check functions *)
(***************************)
exception Occur
let occur_meta c =
let rec occrec c = match kind_of_term c with
| Meta _ -> raise Occur
| _ -> iter_constr occrec c
in try occrec c; false with Occur -> true
let occur_existential c =
let rec occrec c = match kind_of_term c with
| Evar _ -> raise Occur
| _ -> iter_constr occrec c
in try occrec c; false with Occur -> true
let occur_meta_or_existential c =
let rec occrec c = match kind_of_term c with
| Evar _ -> raise Occur
| Meta _ -> raise Occur
| _ -> iter_constr occrec c
in try occrec c; false with Occur -> true
let occur_evar n c =
let rec occur_rec c = match kind_of_term c with
| Evar (sp,_) when Evar.equal sp n -> raise Occur
| _ -> iter_constr occur_rec c
in
try occur_rec c; false with Occur -> true
let occur_in_global env id constr =
let vars = vars_of_global env constr in
if Id.Set.mem id vars then raise Occur
let occur_var env id c =
let rec occur_rec c =
match kind_of_term c with
| Var _ | Const _ | Ind _ | Construct _ -> occur_in_global env id c
| _ -> iter_constr occur_rec c
in
try occur_rec c; false with Occur -> true
let occur_var_in_decl env hyp (_,c,typ) =
match c with
| None -> occur_var env hyp typ
| Some body ->
occur_var env hyp typ ||
occur_var env hyp body
(* returns the list of free debruijn indices in a term *)
let free_rels m =
let rec frec depth acc c = match kind_of_term c with
| Rel n -> if n >= depth then Int.Set.add (n-depth+1) acc else acc
| _ -> fold_constr_with_binders succ frec depth acc c
in
frec 1 Int.Set.empty m
(* collects all metavar occurences, in left-to-right order, preserving
* repetitions and all. *)
let collect_metas c =
let rec collrec acc c =
match kind_of_term c with
| Meta mv -> List.add_set Int.equal mv acc
| _ -> fold_constr collrec acc c
in
List.rev (collrec [] c)
(* collects all vars; warning: this is only visible vars, not dependencies in
all section variables; for the latter, use global_vars_set *)
let collect_vars c =
let rec aux vars c = match kind_of_term c with
| Var id -> Id.Set.add id vars
| _ -> fold_constr aux vars c in
aux Id.Set.empty c
(* Tests whether [m] is a subterm of [t]:
[m] is appropriately lifted through abstractions of [t] *)
let dependent_main noevar univs m t =
let eqc x y = if univs then fst (Universes.eq_constr_universes x y) else eq_constr_nounivs x y in
let rec deprec m t =
if eqc m t then
raise Occur
else
match kind_of_term m, kind_of_term t with
| App (fm,lm), App (ft,lt) when Array.length lm < Array.length lt ->
deprec m (mkApp (ft,Array.sub lt 0 (Array.length lm)));
CArray.Fun1.iter deprec m
(Array.sub lt
(Array.length lm) ((Array.length lt) - (Array.length lm)))
| _, Cast (c,_,_) when noevar && isMeta c -> ()
| _, Evar _ when noevar -> ()
| _ -> iter_constr_with_binders (fun c -> lift 1 c) deprec m t
in
try deprec m t; false with Occur -> true
let dependent = dependent_main false false
let dependent_no_evar = dependent_main true false
let dependent_univs = dependent_main false true
let dependent_univs_no_evar = dependent_main true true
let dependent_in_decl a (_,c,t) =
match c with
| None -> dependent a t
| Some body -> dependent a body || dependent a t
let count_occurrences m t =
let n = ref 0 in
let rec countrec m t =
if eq_constr m t then
incr n
else
match kind_of_term m, kind_of_term t with
| App (fm,lm), App (ft,lt) when Array.length lm < Array.length lt ->
countrec m (mkApp (ft,Array.sub lt 0 (Array.length lm)));
Array.iter (countrec m)
(Array.sub lt
(Array.length lm) ((Array.length lt) - (Array.length lm)))
| _, Cast (c,_,_) when isMeta c -> ()
| _, Evar _ -> ()
| _ -> iter_constr_with_binders (lift 1) countrec m t
in
countrec m t;
!n
(* Synonymous *)
let occur_term = dependent
let pop t = lift (-1) t
(***************************)
(* bindings functions *)
(***************************)
type meta_type_map = (metavariable * types) list
type meta_value_map = (metavariable * constr) list
let rec subst_meta bl c =
match kind_of_term c with
| Meta i -> (try Int.List.assoc i bl with Not_found -> c)
| _ -> map_constr (subst_meta bl) c
(* First utilities for avoiding telescope computation for subst_term *)
let prefix_application eq_fun (k,c) (t : constr) =
let c' = collapse_appl c and t' = collapse_appl t in
match kind_of_term c', kind_of_term t' with
| App (f1,cl1), App (f2,cl2) ->
let l1 = Array.length cl1
and l2 = Array.length cl2 in
if l1 <= l2
&& eq_fun c' (mkApp (f2, Array.sub cl2 0 l1)) then
Some (mkApp (mkRel k, Array.sub cl2 l1 (l2 - l1)))
else
None
| _ -> None
let my_prefix_application eq_fun (k,c) (by_c : constr) (t : constr) =
let c' = collapse_appl c and t' = collapse_appl t in
match kind_of_term c', kind_of_term t' with
| App (f1,cl1), App (f2,cl2) ->
let l1 = Array.length cl1
and l2 = Array.length cl2 in
if l1 <= l2
&& eq_fun c' (mkApp (f2, Array.sub cl2 0 l1)) then
Some (mkApp ((lift k by_c), Array.sub cl2 l1 (l2 - l1)))
else
None
| _ -> None
(* Recognizing occurrences of a given subterm in a term: [subst_term c t]
substitutes [(Rel 1)] for all occurrences of term [c] in a term [t];
works if [c] has rels *)
let subst_term_gen eq_fun c t =
let rec substrec (k,c as kc) t =
match prefix_application eq_fun kc t with
| Some x -> x
| None ->
if eq_fun c t then mkRel k
else
map_constr_with_binders (fun (k,c) -> (k+1,lift 1 c)) substrec kc t
in
substrec (1,c) t
let subst_term = subst_term_gen eq_constr
(* Recognizing occurrences of a given subterm in a term :
[replace_term c1 c2 t] substitutes [c2] for all occurrences of
term [c1] in a term [t]; works if [c1] and [c2] have rels *)
let replace_term_gen eq_fun c by_c in_t =
let rec substrec (k,c as kc) t =
match my_prefix_application eq_fun kc by_c t with
| Some x -> x
| None ->
(if eq_fun c t then (lift k by_c) else
map_constr_with_binders (fun (k,c) -> (k+1,lift 1 c))
substrec kc t)
in
substrec (0,c) in_t
let replace_term = replace_term_gen eq_constr
let vars_of_env env =
let s =
Context.fold_named_context (fun (id,_,_) s -> Id.Set.add id s)
(named_context env) ~init:Id.Set.empty in
Context.fold_rel_context
(fun (na,_,_) s -> match na with Name id -> Id.Set.add id s | _ -> s)
(rel_context env) ~init:s
let add_vname vars = function
Name id -> Id.Set.add id vars
| _ -> vars
(*************************)
(* Names environments *)
(*************************)
type names_context = Name.t list
let add_name n nl = n::nl
let lookup_name_of_rel p names =
try List.nth names (p-1)
with Invalid_argument _ | Failure _ -> raise Not_found
let lookup_rel_of_name id names =
let rec lookrec n = function
| Anonymous :: l -> lookrec (n+1) l
| (Name id') :: l -> if Id.equal id' id then n else lookrec (n+1) l
| [] -> raise Not_found
in
lookrec 1 names
let empty_names_context = []
let ids_of_rel_context sign =
Context.fold_rel_context
(fun (na,_,_) l -> match na with Name id -> id::l | Anonymous -> l)
sign ~init:[]
let ids_of_named_context sign =
Context.fold_named_context (fun (id,_,_) idl -> id::idl) sign ~init:[]
let ids_of_context env =
(ids_of_rel_context (rel_context env))
@ (ids_of_named_context (named_context env))
let names_of_rel_context env =
List.map (fun (na,_,_) -> na) (rel_context env)
let is_section_variable id =
try let _ = Global.lookup_named id in true
with Not_found -> false
let isGlobalRef c =
match kind_of_term c with
| Const _ | Ind _ | Construct _ | Var _ -> true
| _ -> false
let is_template_polymorphic env f =
match kind_of_term f with
| Ind ind -> Environ.template_polymorphic_pind ind env
| Const c -> Environ.template_polymorphic_pconstant c env
| _ -> false
let base_sort_cmp pb s0 s1 =
match (s0,s1) with
| (Prop c1, Prop c2) -> c1 == Null || c2 == Pos (* Prop <= Set *)
| (Prop c1, Type u) -> pb == Reduction.CUMUL
| (Type u1, Type u2) -> true
| _ -> false
(* eq_constr extended with universe erasure *)
let compare_constr_univ f cv_pb t1 t2 =
match kind_of_term t1, kind_of_term t2 with
Sort s1, Sort s2 -> base_sort_cmp cv_pb s1 s2
| Prod (_,t1,c1), Prod (_,t2,c2) ->
f Reduction.CONV t1 t2 && f cv_pb c1 c2
| _ -> compare_constr (fun t1 t2 -> f Reduction.CONV t1 t2) t1 t2
let rec constr_cmp cv_pb t1 t2 = compare_constr_univ constr_cmp cv_pb t1 t2
let eq_constr t1 t2 = constr_cmp Reduction.CONV t1 t2
(* App(c,[t1,...tn]) -> ([c,t1,...,tn-1],tn)
App(c,[||]) -> ([],c) *)
let split_app c = match kind_of_term c with
App(c,l) ->
let len = Array.length l in
if Int.equal len 0 then ([],c) else
let last = Array.get l (len-1) in
let prev = Array.sub l 0 (len-1) in
c::(Array.to_list prev), last
| _ -> assert false
type subst = (rel_context*constr) Evar.Map.t
exception CannotFilter
let filtering env cv_pb c1 c2 =
let evm = ref Evar.Map.empty in
let define cv_pb e1 ev c1 =
try let (e2,c2) = Evar.Map.find ev !evm in
let shift = List.length e1 - List.length e2 in
if constr_cmp cv_pb c1 (lift shift c2) then () else raise CannotFilter
with Not_found ->
evm := Evar.Map.add ev (e1,c1) !evm
in
let rec aux env cv_pb c1 c2 =
match kind_of_term c1, kind_of_term c2 with
| App _, App _ ->
let ((p1,l1),(p2,l2)) = (split_app c1),(split_app c2) in
let () = aux env cv_pb l1 l2 in
begin match p1, p2 with
| [], [] -> ()
| (h1 :: p1), (h2 :: p2) ->
aux env cv_pb (applistc h1 p1) (applistc h2 p2)
| _ -> assert false
end
| Prod (n,t1,c1), Prod (_,t2,c2) ->
aux env cv_pb t1 t2;
aux ((n,None,t1)::env) cv_pb c1 c2
| _, Evar (ev,_) -> define cv_pb env ev c1
| Evar (ev,_), _ -> define cv_pb env ev c2
| _ ->
if compare_constr_univ
(fun pb c1 c2 -> aux env pb c1 c2; true) cv_pb c1 c2 then ()
else raise CannotFilter
(* TODO: le reste des binders *)
in
aux env cv_pb c1 c2; !evm
let decompose_prod_letin : constr -> int * rel_context * constr =
let rec prodec_rec i l c = match kind_of_term c with
| Prod (n,t,c) -> prodec_rec (succ i) ((n,None,t)::l) c
| LetIn (n,d,t,c) -> prodec_rec (succ i) ((n,Some d,t)::l) c
| Cast (c,_,_) -> prodec_rec i l c
| _ -> i,l,c in
prodec_rec 0 []
let align_prod_letin c a : rel_context * constr =
let (lc,_,_) = decompose_prod_letin c in
let (la,l,a) = decompose_prod_letin a in
if not (la >= lc) then invalid_arg "align_prod_letin";
let (l1,l2) = Util.List.chop lc l in
l2,it_mkProd_or_LetIn a l1
(* On reduit une serie d'eta-redex de tete ou rien du tout *)
(* [x1:c1;...;xn:cn]@(f;a1...an;x1;...;xn) --> @(f;a1...an) *)
(* Remplace 2 versions précédentes buggées *)
let rec eta_reduce_head c =
match kind_of_term c with
| Lambda (_,c1,c') ->
(match kind_of_term (eta_reduce_head c') with
| App (f,cl) ->
let lastn = (Array.length cl) - 1 in
if lastn < 0 then anomaly (Pp.str "application without arguments")
else
(match kind_of_term cl.(lastn) with
| Rel 1 ->
let c' =
if Int.equal lastn 0 then f
else mkApp (f, Array.sub cl 0 lastn)
in
if noccurn 1 c'
then lift (-1) c'
else c
| _ -> c)
| _ -> c)
| _ -> c
(* iterator on rel context *)
let process_rel_context f env =
let sign = named_context_val env in
let rels = rel_context env in
let env0 = reset_with_named_context sign env in
Context.fold_rel_context f rels ~init:env0
let assums_of_rel_context sign =
Context.fold_rel_context
(fun (na,c,t) l ->
match c with
Some _ -> l
| None -> (na, t)::l)
sign ~init:[]
let map_rel_context_in_env f env sign =
let rec aux env acc = function
| d::sign ->
aux (push_rel d env) (map_rel_declaration (f env) d :: acc) sign
| [] ->
acc
in
aux env [] (List.rev sign)
let map_rel_context_with_binders f sign =
let rec aux k = function
| d::sign -> map_rel_declaration (f k) d :: aux (k-1) sign
| [] -> []
in
aux (rel_context_length sign) sign
let substl_rel_context l =
map_rel_context_with_binders (fun k -> substnl l (k-1))
let lift_rel_context n =
map_rel_context_with_binders (liftn n)
let smash_rel_context sign =
let rec aux acc = function
| [] -> acc
| (_,None,_ as d) :: l -> aux (d::acc) l
| (_,Some b,_) :: l ->
(* Quadratic in the number of let but there are probably a few of them *)
aux (List.rev (substl_rel_context [b] (List.rev acc))) l
in List.rev (aux [] sign)
let adjust_subst_to_rel_context sign l =
let rec aux subst sign l =
match sign, l with
| (_,None,_)::sign', a::args' -> aux (a::subst) sign' args'
| (_,Some c,_)::sign', args' ->
aux (substl (List.rev subst) c :: subst) sign' args'
| [], [] -> List.rev subst
| _ -> anomaly (Pp.str "Instance and signature do not match")
in aux [] (List.rev sign) l
let fold_named_context_both_sides f l ~init = List.fold_right_and_left f l init
let rec mem_named_context id = function
| (id',_,_) :: _ when Id.equal id id' -> true
| _ :: sign -> mem_named_context id sign
| [] -> false
let clear_named_body id env =
let aux _ = function
| (id',Some c,t) when Id.equal id id' -> push_named (id,None,t)
| d -> push_named d in
fold_named_context aux env ~init:(reset_context env)
let global_vars env ids = Id.Set.elements (global_vars_set env ids)
let global_vars_set_of_decl env = function
| (_,None,t) -> global_vars_set env t
| (_,Some c,t) ->
Id.Set.union (global_vars_set env t)
(global_vars_set env c)
let dependency_closure env sign hyps =
if Id.Set.is_empty hyps then [] else
let (_,lh) =
Context.fold_named_context_reverse
(fun (hs,hl) (x,_,_ as d) ->
if Id.Set.mem x hs then
(Id.Set.union (global_vars_set_of_decl env d) (Id.Set.remove x hs),
x::hl)
else (hs,hl))
~init:(hyps,[])
sign in
List.rev lh
(* Combinators on judgments *)
let on_judgment f j = { uj_val = f j.uj_val; uj_type = f j.uj_type }
let on_judgment_value f j = { j with uj_val = f j.uj_val }
let on_judgment_type f j = { j with uj_type = f j.uj_type }
(* Cut a context ctx in 2 parts (ctx1,ctx2) with ctx1 containing k
variables; skips let-in's *)
let context_chop k ctx =
let rec chop_aux acc = function
| (0, l2) -> (List.rev acc, l2)
| (n, ((_,Some _,_ as h)::t)) -> chop_aux (h::acc) (n, t)
| (n, (h::t)) -> chop_aux (h::acc) (pred n, t)
| (_, []) -> anomaly (Pp.str "context_chop")
in chop_aux [] (k,ctx)
(* Do not skip let-in's *)
let env_rel_context_chop k env =
let rels = rel_context env in
let ctx1,ctx2 = List.chop k rels in
push_rel_context ctx2 (reset_with_named_context (named_context_val env) env),
ctx1
(*******************************************)
(* Functions to deal with impossible cases *)
(*******************************************)
let impossible_default_case = ref None
let set_impossible_default_clause c = impossible_default_case := Some c
let coq_unit_judge =
let na1 = Name (Id.of_string "A") in
let na2 = Name (Id.of_string "H") in
fun () ->
match !impossible_default_case with
| Some fn ->
let (id,type_of_id), ctx = fn () in
make_judge id type_of_id, ctx
| None ->
(* In case the constants id/ID are not defined *)
make_judge (mkLambda (na1,mkProp,mkLambda(na2,mkRel 1,mkRel 1)))
(mkProd (na1,mkProp,mkArrow (mkRel 1) (mkRel 2))),
Univ.ContextSet.empty
|