1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i*)
open Errors
open Util
open Term
open Sign
open Names
open Libnames
open Mod_subst
open Pp (* debug *)
(*i*)
(* Representation/approximation of terms to use in the dnet:
*
* - no meta or evar (use ['a pattern] for that)
*
* - [Rel]s and [Sort]s are not taken into account (that's why we need
* a second pass of linear filterin on the results - it's not a perfect
* term indexing structure)
* - Foralls and LetIns are represented by a context DCtx (a list of
* generalization, similar to rel_context, and coded with DCons and
* DNil). This allows for matching under an unfinished context
*)
module DTerm =
struct
type 't t =
| DRel
| DSort
| DRef of global_reference
| DCtx of 't * 't (* (binding list, subterm) = Prods and LetIns *)
| DLambda of 't * 't
| DApp of 't * 't (* binary app *)
| DCase of case_info * 't * 't * 't array
| DFix of int array * int * 't array * 't array
| DCoFix of int * 't array * 't array
(* special constructors only inside the left-hand side of DCtx or
DApp. Used to encode lists of foralls/letins/apps as contexts *)
| DCons of ('t * 't option) * 't
| DNil
type dconstr = dconstr t
(* debug *)
let rec pr_dconstr f : 'a t -> std_ppcmds = function
| DRel -> str "*"
| DSort -> str "Sort"
| DRef _ -> str "Ref"
| DCtx (ctx,t) -> f ctx ++ spc() ++ str "|-" ++ spc () ++ f t
| DLambda (t1,t2) -> str "fun"++ spc() ++ f t1 ++ spc() ++ str"->" ++ spc() ++ f t2
| DApp (t1,t2) -> f t1 ++ spc() ++ f t2
| DCase (_,t1,t2,ta) -> str "case"
| DFix _ -> str "fix"
| DCoFix _ -> str "cofix"
| DCons ((t,dopt),tl) -> f t ++ (match dopt with
Some t' -> str ":=" ++ f t'
| None -> str "") ++ spc() ++ str "::" ++ spc() ++ f tl
| DNil -> str "[]"
(*
* Functional iterators for the t datatype
* a.k.a boring and error-prone boilerplate code
*)
let map f = function
| (DRel | DSort | DNil | DRef _) as c -> c
| DCtx (ctx,c) -> DCtx (f ctx, f c)
| DLambda (t,c) -> DLambda (f t, f c)
| DApp (t,u) -> DApp (f t,f u)
| DCase (ci,p,c,bl) -> DCase (ci, f p, f c, Array.map f bl)
| DFix (ia,i,ta,ca) ->
DFix (ia,i,Array.map f ta,Array.map f ca)
| DCoFix(i,ta,ca) ->
DCoFix (i,Array.map f ta,Array.map f ca)
| DCons ((t,topt),u) -> DCons ((f t,Option.map f topt), f u)
let compare x y =
let make_name n =
match n with
| DRef(ConstRef con) ->
DRef(ConstRef(constant_of_kn(canonical_con con)))
| DRef(IndRef (kn,i)) ->
DRef(IndRef(mind_of_kn(canonical_mind kn),i))
| DRef(ConstructRef ((kn,i),j ))->
DRef(ConstructRef((mind_of_kn(canonical_mind kn),i),j))
| k -> k in
Pervasives.compare (make_name x) (make_name y)
let fold f acc = function
| (DRel | DNil | DSort | DRef _) -> acc
| DCtx (ctx,c) -> f (f acc ctx) c
| DLambda (t,c) -> f (f acc t) c
| DApp (t,u) -> f (f acc t) u
| DCase (ci,p,c,bl) -> Array.fold_left f (f (f acc p) c) bl
| DFix (ia,i,ta,ca) ->
Array.fold_left f (Array.fold_left f acc ta) ca
| DCoFix(i,ta,ca) ->
Array.fold_left f (Array.fold_left f acc ta) ca
| DCons ((t,topt),u) -> f (Option.fold_left f (f acc t) topt) u
let choose f = function
| (DRel | DSort | DNil | DRef _) -> invalid_arg "choose"
| DCtx (ctx,c) -> f ctx
| DLambda (t,c) -> f t
| DApp (t,u) -> f u
| DCase (ci,p,c,bl) -> f c
| DFix (ia,i,ta,ca) -> f ta.(0)
| DCoFix (i,ta,ca) -> f ta.(0)
| DCons ((t,topt),u) -> f u
let fold2 (f:'a -> 'b -> 'c -> 'a) (acc:'a) (c1:'b t) (c2:'c t) : 'a =
let head w = map (fun _ -> ()) w in
if compare (head c1) (head c2) <> 0
then invalid_arg "fold2:compare" else
match c1,c2 with
| (DRel, DRel | DNil, DNil | DSort, DSort | DRef _, DRef _) -> acc
| (DCtx (c1,t1), DCtx (c2,t2)
| DApp (c1,t1), DApp (c2,t2)
| DLambda (c1,t1), DLambda (c2,t2)) -> f (f acc c1 c2) t1 t2
| DCase (ci,p1,c1,bl1),DCase (_,p2,c2,bl2) ->
array_fold_left2 f (f (f acc p1 p2) c1 c2) bl1 bl2
| DFix (ia,i,ta1,ca1), DFix (_,_,ta2,ca2) ->
array_fold_left2 f (array_fold_left2 f acc ta1 ta2) ca1 ca2
| DCoFix(i,ta1,ca1), DCoFix(_,ta2,ca2) ->
array_fold_left2 f (array_fold_left2 f acc ta1 ta2) ca1 ca2
| DCons ((t1,topt1),u1), DCons ((t2,topt2),u2) ->
f (Option.fold_left2 f (f acc t1 t2) topt1 topt2) u1 u2
| _ -> assert false
let map2 (f:'a -> 'b -> 'c) (c1:'a t) (c2:'b t) : 'c t =
let head w = map (fun _ -> ()) w in
if compare (head c1) (head c2) <> 0
then invalid_arg "map2_t:compare" else
match c1,c2 with
| (DRel, DRel | DSort, DSort | DNil, DNil | DRef _, DRef _) as cc ->
let (c,_) = cc in c
| DCtx (c1,t1), DCtx (c2,t2) -> DCtx (f c1 c2, f t1 t2)
| DLambda (t1,c1), DLambda (t2,c2) -> DLambda (f t1 t2, f c1 c2)
| DApp (t1,u1), DApp (t2,u2) -> DApp (f t1 t2,f u1 u2)
| DCase (ci,p1,c1,bl1), DCase (_,p2,c2,bl2) ->
DCase (ci, f p1 p2, f c1 c2, array_map2 f bl1 bl2)
| DFix (ia,i,ta1,ca1), DFix (_,_,ta2,ca2) ->
DFix (ia,i,array_map2 f ta1 ta2,array_map2 f ca1 ca2)
| DCoFix (i,ta1,ca1), DCoFix (_,ta2,ca2) ->
DCoFix (i,array_map2 f ta1 ta2,array_map2 f ca1 ca2)
| DCons ((t1,topt1),u1), DCons ((t2,topt2),u2) ->
DCons ((f t1 t2,Option.lift2 f topt1 topt2), f u1 u2)
| _ -> assert false
let terminal = function
| (DRel | DSort | DNil | DRef _) -> true
| _ -> false
end
(*
* Terms discrimination nets
* Uses the general dnet datatype on DTerm.t
* (here you can restart reading)
*)
(*
* Construction of the module
*)
module type IDENT =
sig
type t
val compare : t -> t -> int
val subst : substitution -> t -> t
val constr_of : t -> constr
end
module type OPT =
sig
val reduce : constr -> constr
val direction : bool
end
module Make =
functor (Ident : IDENT) ->
functor (Opt : OPT) ->
struct
module TDnet : Dnet.S with type ident=Ident.t
and type 'a structure = 'a DTerm.t
and type meta = metavariable
= Dnet.Make(DTerm)(Ident)
(struct
type t = metavariable
let compare = Pervasives.compare
end)
type t = TDnet.t
type ident = TDnet.ident
type 'a pattern = 'a TDnet.pattern
type term_pattern = term_pattern DTerm.t pattern
type idset = TDnet.Idset.t
type result = ident * (constr*existential_key) * Termops.subst
open DTerm
open TDnet
let rec pat_of_constr c : term_pattern =
match kind_of_term c with
| Rel _ -> Term DRel
| Sort _ -> Term DSort
| Var i -> Term (DRef (VarRef i))
| Const c -> Term (DRef (ConstRef c))
| Ind i -> Term (DRef (IndRef i))
| Construct c -> Term (DRef (ConstructRef c))
| Term.Meta _ -> assert false
| Evar (i,_) -> Meta i
| Case (ci,c1,c2,ca) ->
Term(DCase(ci,pat_of_constr c1,pat_of_constr c2,Array.map pat_of_constr ca))
| Fix ((ia,i),(_,ta,ca)) ->
Term(DFix(ia,i,Array.map pat_of_constr ta, Array.map pat_of_constr ca))
| CoFix (i,(_,ta,ca)) ->
Term(DCoFix(i,Array.map pat_of_constr ta,Array.map pat_of_constr ca))
| Cast (c,_,_) -> pat_of_constr c
| Lambda (_,t,c) -> Term(DLambda (pat_of_constr t, pat_of_constr c))
| (Prod (_,_,_) | LetIn(_,_,_,_)) ->
let (ctx,c) = ctx_of_constr (Term DNil) c in Term (DCtx (ctx,c))
| App (f,ca) ->
Array.fold_left (fun c a -> Term (DApp (c,a)))
(pat_of_constr f) (Array.map pat_of_constr ca)
and ctx_of_constr ctx c : term_pattern * term_pattern =
match kind_of_term c with
| Prod (_,t,c) -> ctx_of_constr (Term(DCons((pat_of_constr t,None),ctx))) c
| LetIn(_,d,t,c) -> ctx_of_constr (Term(DCons((pat_of_constr t, Some (pat_of_constr d)),ctx))) c
| _ -> ctx,pat_of_constr c
let empty_ctx : term_pattern -> term_pattern = function
| Meta _ as c -> c
| Term (DCtx(_,_)) as c -> c
| c -> Term (DCtx (Term DNil, c))
(*
* Basic primitives
*)
let empty = TDnet.empty
let subst s t =
let sleaf id = Ident.subst s id in
let snode = function
| DTerm.DRef gr -> DTerm.DRef (fst (subst_global s gr))
| n -> n in
TDnet.map sleaf snode t
let union = TDnet.union
let add (c:constr) (id:Ident.t) (dn:t) =
let c = Opt.reduce c in
let c = empty_ctx (pat_of_constr c) in
TDnet.add dn c id
let new_meta_no =
let ctr = ref 0 in
fun () -> decr ctr; !ctr
let new_meta_no = Evarutil.new_untyped_evar
let neutral_meta = new_meta_no()
let new_meta () = Meta (new_meta_no())
let new_evar () = mkEvar(new_meta_no(),[||])
let rec remove_cap : term_pattern -> term_pattern = function
| Term (DCons (t,u)) -> Term (DCons (t,remove_cap u))
| Term DNil -> new_meta()
| Meta _ as m -> m
| _ -> assert false
let under_prod : term_pattern -> term_pattern = function
| Term (DCtx (t,u)) -> Term (DCtx (remove_cap t,u))
| Meta m -> Term (DCtx(new_meta(), Meta m))
| _ -> assert false
let init = let e = new_meta_no() in (mkEvar (e,[||]),e)
let rec e_subst_evar i (t:unit->constr) c =
match kind_of_term c with
| Evar (j,_) when i=j -> t()
| _ -> map_constr (e_subst_evar i t) c
let subst_evar i c = e_subst_evar i (fun _ -> c)
(* debug *)
let rec pr_term_pattern p =
(fun pr_t -> function
| Term t -> pr_t t
| Meta m -> str"["++Pp.int (Obj.magic m)++str"]"
) (pr_dconstr pr_term_pattern) p
let search_pat cpat dpat dn (up,plug) =
let whole_c = subst_evar plug cpat up in
(* if we are at the root, add an empty context *)
let dpat = if isEvar_or_Meta up then under_prod (empty_ctx dpat) else dpat in
TDnet.Idset.fold
(fun id acc ->
let c_id = Opt.reduce (Ident.constr_of id) in
let (ctx,wc) =
try Termops.align_prod_letin whole_c c_id
with Invalid_argument _ -> [],c_id in
let up = it_mkProd_or_LetIn up ctx in
let wc,whole_c = if Opt.direction then whole_c,wc else wc,whole_c in
try (id,(up,plug),Termops.filtering ctx Reduction.CUMUL wc whole_c)::acc
with Termops.CannotFilter -> (* msgnl(str"recon "++Termops.print_constr_env (Global.env()) wc); *) acc
) (TDnet.find_match dpat dn) []
let fold_pattern_neutral f =
fold_pattern (fun acc (mset,m,dn) -> if m=neutral_meta then acc else f m dn acc)
let fold_pattern_nonlin f =
let defined = ref Gmap.empty in
fold_pattern_neutral
( fun m dn acc ->
let dn = try TDnet.inter dn (Gmap.find m !defined) with Not_found -> dn in
defined := Gmap.add m dn !defined;
f m dn acc )
let fold_pattern_up f acc dpat cpat dn (up,plug) =
fold_pattern_nonlin
( fun m dn acc ->
f dn (subst_evar plug (e_subst_evar neutral_meta new_evar cpat) up, m) acc
) acc dpat dn
let possibly_under pat k dn (up,plug) =
let rec aux fst dn (up,plug) acc =
let cpat = pat() in
let dpat = pat_of_constr cpat in
let dpat = if fst then under_prod (empty_ctx dpat) else dpat in
(k dn (up,plug)) @
snd (fold_pattern_up (aux false) acc dpat cpat dn (up,plug)) in
aux true dn (up,plug) []
let eq_pat eq () = mkApp(eq,[|mkEvar(neutral_meta,[||]);new_evar();new_evar()|])
let app_pat () = mkApp(new_evar(),[|mkEvar(neutral_meta,[||])|])
(*
* High-level primitives describing specific search problems
*)
let search_pattern dn pat =
let pat = Opt.reduce pat in
search_pat pat (empty_ctx (pat_of_constr pat)) dn init
let search_concl dn pat =
let pat = Opt.reduce pat in
search_pat pat (under_prod (empty_ctx (pat_of_constr pat))) dn init
let search_eq_concl dn eq pat =
let pat = Opt.reduce pat in
let eq_pat = eq_pat eq () in
let eq_dpat = under_prod (empty_ctx (pat_of_constr eq_pat)) in
snd (fold_pattern_up
(fun dn up acc ->
search_pat pat (pat_of_constr pat) dn up @ acc
) [] eq_dpat eq_pat dn init)
let search_head_concl dn pat =
let pat = Opt.reduce pat in
possibly_under app_pat (search_pat pat (pat_of_constr pat)) dn init
let find_all dn = Idset.elements (TDnet.find_all dn)
let map f dn = TDnet.map f (fun x -> x) dn
end
module type S =
sig
type t
type ident
type result = ident * (constr*existential_key) * Termops.subst
val empty : t
val add : constr -> ident -> t -> t
val union : t -> t -> t
val subst : substitution -> t -> t
val search_pattern : t -> constr -> result list
val search_concl : t -> constr -> result list
val search_head_concl : t -> constr -> result list
val search_eq_concl : t -> constr -> constr -> result list
val find_all : t -> ident list
val map : (ident -> ident) -> t -> t
end
|