blob: 1d801c5a4bbda2e6661396bebea56d5d173e2dcc (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(*i $Id$ i*)
(*i*)
open Names
open Term
open Environ
open Evd
open Reductionops
open Closure
(*i*)
(*s Reduction functions associated to tactics. \label{tacred} *)
val is_evaluable : env -> evaluable_global_reference -> bool
exception Redelimination
(* Red (raise Redelimination if nothing reducible) *)
val red_product : reduction_function
(* Hnf *)
val hnf_constr : reduction_function
(* Simpl *)
val nf : reduction_function
(* Unfold *)
val unfoldn :
(int list * evaluable_global_reference) list -> reduction_function
(* Fold *)
val fold_commands : constr list -> reduction_function
(* Pattern *)
val pattern_occs : (int list * constr) list -> reduction_function
(* Rem: Lazy strategies are defined in Reduction *)
(* Call by value strategy (uses Closures) *)
val cbv_norm_flags : Closure.RedFlags.reds -> reduction_function
val cbv_beta : local_reduction_function
val cbv_betaiota : local_reduction_function
val cbv_betadeltaiota : reduction_function
val compute : reduction_function (* = [cbv_betadeltaiota] *)
(* [reduce_to_atomic_ind env sigma t] puts [t] in the form [t'=(I args)]
with [I] an inductive definition;
returns [I] and [t'] or fails with a user error *)
val reduce_to_atomic_ind : env -> evar_map -> types -> inductive * types
(* [reduce_to_quantified_ind env sigma t] puts [t] in the form
[t'=(x1:A1)..(xn:An)(I args)] with [I] an inductive definition;
returns [I] and [t'] or fails with a user error *)
val reduce_to_quantified_ind : env -> evar_map -> types -> inductive * types
open Rawterm
(*
type red_expr =
| Red of bool (* raise Redelimination if true otherwise UserError *)
| Hnf
| Simpl
| Cbv of Closure.RedFlags.reds
| Lazy of Closure.RedFlags.reds
| Unfold of (int list * evaluable_global_reference) list
| Fold of constr list
| Pattern of (int list * constr * constr) list
*)
type red_expr = (constr, evaluable_global_reference) red_expr_gen
val reduction_of_redexp : red_expr -> reduction_function
val declare_red_expr : string -> reduction_function -> unit
(* Opaque and Transparent commands. *)
val set_opaque_const : section_path -> unit
val set_transparent_const : section_path -> unit
val set_opaque_var : identifier -> unit
val set_transparent_var : identifier -> unit
|