aboutsummaryrefslogtreecommitdiffhomepage
path: root/pretyping/tacred.ml
blob: a0fe84ee6ecead016186f91a251f0a511b7b1dbe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352

(* $Id$ *)

open Pp
open Util
open Names
open Generic
open Term
open Inductive
open Environ
open Reduction
open Instantiate
open Redinfo

exception Elimconst
exception Redelimination

let rev_firstn_liftn fn ln = 
  let rec rfprec p res l = 
    if p = 0 then 
      res 
    else
      match l with
        | [] -> invalid_arg "Reduction.rev_firstn_liftn"
        | a::rest -> rfprec (p-1) ((lift ln a)::res) rest
  in 
  rfprec fn []

(*  EliminationFix ([(yi1,Ti1);...;(yip,Tip)],n) means f is some
   [y1:T1,...,yn:Tn](Fix(..) yi1 ... yip);
   f is applied to largs and we need for recursive calls to build
   [x1:Ti1',...,xp:Tip'](f a1..a(n-p) yi1 ... yip) 
   where a1...an are the n first arguments of largs and Tik' is Tik[yil=al]
   To check ... *)

let make_elim_fun f lv n largs =
  let (sp,args) = destConst f in
  let labs,_ = list_chop n largs in
  let p = List.length lv in
  let ylv = List.map fst lv in
  let la' = list_map_i 
	      (fun q aq ->
		 try (Rel (p+1-(list_index (n-q) ylv))) 
		 with Not_found -> aq) 0
              (List.map (lift p) labs) 
  in 
  fun id -> 
    let fi = DOPN(Const(make_path (dirpath sp) id (kind_of_path sp)),args) in
    list_fold_left_i 
      (fun i c (k,a) -> 
	 DOP2(Lambda,(substl (rev_firstn_liftn (n-k) (-i) la') a),
              DLAM(Name(id_of_string"x"),c))) 0 (applistc fi la') lv

(* [f] is convertible to [DOPN(Fix(recindices,bodynum),bodyvect)] make 
   the reduction using this extra information *)

let contract_fix_use_function f
  ((recindices,bodynum),(types,names,bodies as typedbodies)) =
  let nbodies = Array.length recindices in
  let make_Fi j =
    match List.nth names j with Name id -> f id | _ -> assert false in
  let lbodies = list_tabulate make_Fi nbodies in
  substl (List.rev lbodies) bodies.(bodynum)

let reduce_fix_use_function f whfun fix stack =
  let dfix = destFix fix in
  match fix_recarg dfix stack with
    | None -> (false,(fix,stack))
    | Some (recargnum,recarg) ->
        let (recarg'hd,_ as recarg')= whfun recarg [] in
        let stack' = list_assign stack recargnum (applist recarg') in
	(match recarg'hd with
           | DOPN(MutConstruct _,_) ->
	       (true,(contract_fix_use_function f dfix,stack'))
	   | _ -> (false,(fix,stack')))

let contract_cofix_use_function f (bodynum,(_,names,bodies as typedbodies)) =
  let nbodies = Array.length bodies in
  let make_Fi j =
    match List.nth names j with Name id -> f id | _ -> assert false in
  let subbodies = list_tabulate make_Fi nbodies in
  substl subbodies bodies.(bodynum)

let reduce_mind_case_use_function env f mia =
  match mia.mconstr with 
    | DOPN(MutConstruct(ind_sp,i as cstr_sp),args) ->
	let ncargs = (fst mia.mci).(i-1) in
	let real_cargs = list_lastn ncargs mia.mcargs in
	applist (mia.mlf.(i-1),real_cargs)
    | DOPN(CoFix _,_) as cofix ->
	let cofix_def = contract_cofix_use_function f (destCoFix cofix) in
	mkMutCaseA mia.mci mia.mP (applist(cofix_def,mia.mcargs)) mia.mlf
    | _ -> assert false
	  
let special_red_case env whfun p c ci lf  =
  let rec redrec c l = 
    let (constr,cargs) = whfun c l in 
    match constr with 
      | DOPN(Const sp,args) as g -> 
          if evaluable_constant env g then
            let gvalue = constant_value env g in
            if reducible_mind_case gvalue then
	      let build_fix_name id =
		DOPN(Const(make_path (dirpath sp) id (kind_of_path sp)),args)
	      in reduce_mind_case_use_function env build_fix_name
                   {mP=p; mconstr=gvalue; mcargs=cargs; mci=ci; mlf=lf}
            else 
	      redrec gvalue cargs
          else 
	    raise Redelimination
      | _ ->
          if reducible_mind_case constr then
            reduce_mind_case
	      {mP=p; mconstr=constr; mcargs=cargs; mci=ci; mlf=lf}
          else 
	    raise Redelimination
  in 
  redrec c []

let rec red_elim_const env sigma k largs =
  if not (evaluable_constant env k) then raise Redelimination;
  let (sp, args) = destConst k in
  let elim_style = constant_eval sp in
  match elim_style with
    | EliminationCases n when List.length largs >= n -> begin
	let c = constant_value env k in
	match whd_betadeltaeta_stack env sigma c largs with
	  | (DOPN(MutCase _,_) as mc,lrest) ->
              let (ci,p,c,lf) = destCase mc in
              (special_red_case env (construct_const env sigma) p c ci lf,
	       lrest)
	  | _ -> assert false
      end
    | EliminationFix (lv,n) when List.length largs >= n -> begin
	let c = constant_value env k in
	match whd_betadeltaeta_stack env sigma c largs with
	  | (DOPN(Fix _,_) as fix,lrest) -> 
	      let f id = make_elim_fun k lv n largs id in
              let (b,(c,rest)) = 
		reduce_fix_use_function f (construct_const env sigma) fix lrest
              in 
	      if b then (nf_beta env sigma c, rest) else raise Redelimination
	  | _ -> assert false
      end
    | _ -> raise Redelimination

and construct_const env sigma c stack = 
  let rec hnfstack x stack =
    match x with
      | (DOPN(Const _,_)) as k  ->
          (try
             let (c',lrest) = red_elim_const env sigma k stack in 
	     hnfstack c' lrest
           with Redelimination ->
             if evaluable_constant env k then 
	       let cval = constant_value env k in
	       (match cval with
                  | DOPN (CoFix _,_) -> (k,stack)
                  | _ -> hnfstack cval stack) 
             else 
	       raise Redelimination)
      | (DOPN(Abst _,_) as a) ->
          if evaluable_abst env a then 
	    hnfstack (abst_value env a) stack
          else 
	    raise Redelimination
      | DOP2(Cast,c,_) -> hnfstack c stack
      | DOPN(AppL,cl) -> hnfstack (array_hd cl) (array_app_tl cl stack)
      | DOP2(Lambda,_,DLAM(_,c)) ->
          (match stack with 
             | [] -> assert false
             | c'::rest -> stacklam hnfstack [c'] c rest)
      | DOPN(MutCase _,_) as c_0 ->
          let (ci,p,c,lf) = destCase c_0 in
          hnfstack 
	    (special_red_case env (construct_const env sigma) p c ci lf) 
	    stack
      | DOPN(MutConstruct _,_) as c_0 -> c_0,stack
      | DOPN(CoFix _,_) as c_0 -> c_0,stack
      | DOPN(Fix (_) ,_) as fix -> 
          let (reduced,(fix,stack')) = reduce_fix hnfstack fix stack in 
	  if reduced then hnfstack fix stack' else raise Redelimination
      | _ -> raise Redelimination
  in 
  hnfstack c stack

(* Hnf reduction tactic: *)

let hnf_constr env sigma c = 
  let rec redrec x largs =
    match x with
      | DOP2(Lambda,t,DLAM(n,c)) ->
          (match largs with
             | []      -> applist(x,largs)
             | a::rest -> stacklam redrec [a] c rest)
      | DOPN(AppL,cl)   -> redrec (array_hd cl) (array_app_tl cl largs)
      | DOPN(Const _,_) ->
          (try
             let (c',lrest) = red_elim_const env sigma x largs in 
	     redrec c' lrest
           with Redelimination ->
             if evaluable_constant env x then
               let c = constant_value env x in
	       (match c with 
                  | DOPN(CoFix _,_) -> applist(x,largs)
		  | _ ->  redrec c largs)
             else 
	       applist(x,largs))
      | DOPN(Abst _,_) ->
          if evaluable_abst env x then 
	    redrec (abst_value env x) largs
          else 
	    applist(x,largs)
      | DOP2(Cast,c,_) -> redrec c largs
      | DOPN(MutCase _,_) ->
          let (ci,p,c,lf) = destCase x in
          (try
             redrec 
	       (special_red_case env (whd_betadeltaiota_stack env sigma) 
		  p c ci lf) largs
           with Redelimination -> 
	     applist(x,largs))
      | (DOPN(Fix _,_)) ->
          let (reduced,(fix,stack)) = 
            reduce_fix (whd_betadeltaiota_stack env sigma) x largs
          in 
	  if reduced then redrec fix stack else applist(x,largs)
      | _ -> applist(x,largs)
  in 
  redrec c []

(* Simpl reduction tactic: same as simplify, but also reduces
   elimination constants *)

let whd_nf env sigma c = 
  let rec nf_app c stack =
    match c with
      | DOP2(Lambda,c1,DLAM(name,c2))    ->
          (match stack with
             | [] -> (c,[])
             | a1::rest -> stacklam nf_app [a1] c2 rest)
      | DOPN(AppL,cl) -> nf_app (array_hd cl) (array_app_tl cl stack)
      | DOP2(Cast,c,_) -> nf_app c stack
      | DOPN(Const _,_) ->
          (try
             let (c',lrest) = red_elim_const env sigma c stack in 
	     nf_app c' lrest
           with Redelimination -> 
	     (c,stack))
      | DOPN(MutCase _,_) ->
          let (ci,p,d,lf) = destCase c in
          (try
             nf_app (special_red_case env nf_app p d ci lf) stack
           with Redelimination -> 
	     (c,stack))
      | DOPN(Fix _,_) ->
          let (reduced,(fix,rest)) = reduce_fix nf_app c stack in 
	  if reduced then nf_app fix rest else (fix,stack)
      | _ -> (c,stack)
  in 
  applist (nf_app c [])

let nf env sigma c = strong whd_nf env sigma c

(* Generic reduction: reduction functions used in reduction tactics *)

type red_expr =
  | Red
  | Hnf
  | Simpl
  | Cbv of Closure.flags
  | Lazy of Closure.flags
  | Unfold of (int list * section_path) list
  | Fold of constr list
  | Pattern of (int list * constr * constr) list

let reduction_of_redexp = function
  | Red -> red_product
  | Hnf -> hnf_constr
  | Simpl -> nf
  | Cbv f -> cbv_norm_flags f
  | Lazy f -> clos_norm_flags f
  | Unfold ubinds -> unfoldn ubinds
  | Fold cl -> fold_commands cl
  | Pattern lp -> pattern_occs lp

(* Used in several tactics. *)

let one_step_reduce env sigma = 
  let rec redrec largs x =
    match x with
      | DOP2(Lambda,t,DLAM(n,c))  ->
          (match largs with
             | []      -> error "Not reducible 1"
             | a::rest -> applistc (subst1 a c) rest)
      | DOPN(AppL,cl) -> redrec (array_app_tl cl largs) (array_hd cl)
      | DOPN(Const _,_) ->
          (try
             let (c',l) = red_elim_const env sigma x largs in applistc c' l
           with Redelimination ->
             if evaluable_constant env x then
               applistc (constant_value env x) largs
             else error "Not reductible 1")
      | DOPN(Abst _,_) ->
          if evaluable_abst env x then applistc (abst_value env x) largs
          else error "Not reducible 0"
      | DOPN(MutCase _,_) ->
          let (ci,p,c,lf) = destCase x in
          (try
	     applistc 
	       (special_red_case env (whd_betadeltaiota_stack env sigma) 
		  p c ci lf) largs 
           with Redelimination -> error "Not reducible 2")
      | DOPN(Fix _,_) ->
          let (reduced,(fix,stack)) = 
	    reduce_fix (whd_betadeltaiota_stack env sigma) x largs
          in 
	  if reduced then applistc fix stack else error "Not reducible 3"
      | DOP2(Cast,c,_) -> redrec largs c
      | _ -> error "Not reducible 3"
  in 
  redrec []

(* put t as t'=(x1:A1)..(xn:An)B with B an inductive definition of name name
   return name, B and t' *)

let reduce_to_mind env sigma t = 
  let rec elimrec t l = 
    match whd_castapp_stack t [] with
      | (DOPN(MutInd mind,args),_) -> ((mind,args),t,prod_it t l)
      | (DOPN(Const _,_),_) -> 
          (try 
	     let t' = nf_betaiota env sigma (one_step_reduce env sigma t) in 
	     elimrec t' l
           with UserError _ -> errorlabstrm "tactics__reduce_to_mind"
               [< 'sTR"Not an inductive product : it is a constant." >])
      | (DOPN(MutCase _,_),_) ->
          (try 
	     let t' = nf_betaiota env sigma (one_step_reduce env sigma t) in 
	     elimrec t' l
           with UserError _ -> errorlabstrm "tactics__reduce_to_mind"
               [< 'sTR"Not an inductive product:"; 'sPC;
		  'sTR"it is a case analysis term" >])
      | (DOP2(Cast,c,_),[]) -> elimrec c l
      | (DOP2(Prod,ty,DLAM(n,t')),[]) -> elimrec t' ((n,ty)::l)
      | _ -> error "Not an inductive product"
 in 
 elimrec t []

let reduce_to_ind env sigma t =
  let ((ind_sp,_),redt,c) = reduce_to_mind env sigma t in 
  (Declare.path_of_inductive_path ind_sp, redt, c)