1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(* $Id$ *)
open Pp
open Util
open Names
open Nameops
open Term
open Libnames
open Termops
open Declarations
open Inductive
open Environ
open Reductionops
open Closure
open Instantiate
open Cbv
open Rawterm
exception Elimconst
exception Redelimination
let set_opaque_const = Conv_oracle.set_opaque_const
let set_transparent_const sp =
let cb = Global.lookup_constant sp in
if cb.const_body <> None & cb.const_opaque then
errorlabstrm "set_transparent_const"
(str "Cannot make" ++ spc () ++
Nametab.pr_global_env Idset.empty (ConstRef sp) ++
spc () ++ str "transparent because it was declared opaque.");
Conv_oracle.set_transparent_const sp
let set_opaque_var = Conv_oracle.set_opaque_var
let set_transparent_var = Conv_oracle.set_transparent_var
let _ =
Summary.declare_summary "Transparent constants and variables"
{ Summary.freeze_function = Conv_oracle.freeze;
Summary.unfreeze_function = Conv_oracle.unfreeze;
Summary.init_function = Conv_oracle.init;
Summary.survive_module = false;
Summary.survive_section = false }
let is_evaluable env ref =
match ref with
EvalConstRef kn ->
let (ids,kns) = Conv_oracle.freeze() in
KNpred.mem kn kns &
let cb = Environ.lookup_constant kn env in
cb.const_body <> None & not cb.const_opaque
| EvalVarRef id ->
let (ids,sps) = Conv_oracle.freeze() in
Idpred.mem id ids &
let (_,value,_) = Environ.lookup_named id env in
value <> None
type evaluable_reference =
| EvalConst of constant
| EvalVar of identifier
| EvalRel of int
| EvalEvar of existential
let mkEvalRef = function
| EvalConst cst -> mkConst cst
| EvalVar id -> mkVar id
| EvalRel n -> mkRel n
| EvalEvar ev -> mkEvar ev
let isEvalRef env c = match kind_of_term c with
| Const sp -> is_evaluable env (EvalConstRef sp)
| Var id -> is_evaluable env (EvalVarRef id)
| Rel _ | Evar _ -> true
| _ -> false
let destEvalRef c = match kind_of_term c with
| Const cst -> EvalConst cst
| Var id -> EvalVar id
| Rel n -> EvalRel n
| Evar ev -> EvalEvar ev
| _ -> anomaly "Not an evaluable reference"
let reference_opt_value sigma env = function
| EvalConst cst -> constant_opt_value env cst
| EvalVar id ->
let (_,v,_) = lookup_named id env in
v
| EvalRel n ->
let (_,v,_) = lookup_rel n env in
option_app (lift n) v
| EvalEvar ev -> existential_opt_value sigma ev
exception NotEvaluable
let reference_value sigma env c =
match reference_opt_value sigma env c with
| None -> raise NotEvaluable
| Some d -> d
(************************************************************************)
(* Reduction of constant hiding fixpoints (e.g. for Simpl). The trick *)
(* is to reuse the name of the function after reduction of the fixpoint *)
type constant_evaluation =
| EliminationFix of int * (int * (int * constr) list * int)
| EliminationMutualFix of
int * evaluable_reference *
(evaluable_reference option array * (int * (int * constr) list * int))
| EliminationCases of int
| NotAnElimination
(* We use a cache registered as a global table *)
module CstOrdered =
struct
type t = constant
let compare = Pervasives.compare
end
module Cstmap = Map.Make(CstOrdered)
let eval_table = ref Cstmap.empty
type frozen = (int * constant_evaluation) Cstmap.t
let init () =
eval_table := Cstmap.empty
let freeze () =
!eval_table
let unfreeze ct =
eval_table := ct
let _ =
Summary.declare_summary "evaluation"
{ Summary.freeze_function = freeze;
Summary.unfreeze_function = unfreeze;
Summary.init_function = init;
Summary.survive_module = false;
Summary.survive_section = false }
(* Check that c is an "elimination constant"
[xn:An]..[x1:A1](<P>MutCase (Rel i) of f1..fk end g1 ..gp)
or [xn:An]..[x1:A1](Fix(f|t) (Rel i1) ..(Rel ip))
with i1..ip distinct variables not occuring in t
keep relevenant information ([i1,Ai1;..;ip,Aip],n,b)
with b = true in case of a fixpoint in order to compute
an equivalent of Fix(f|t)[xi<-ai] as
[yip:Bip]..[yi1:Bi1](F bn..b1)
== [yip:Bip]..[yi1:Bi1](Fix(f|t)[xi<-ai] (Rel 1)..(Rel p))
with bj=aj if j<>ik and bj=(Rel c) and Bic=Aic[xn..xic-1 <- an..aic-1] *)
let check_fix_reversibility labs args ((lv,i),(_,tys,bds)) =
let n = List.length labs in
let nargs = List.length args in
if nargs > n then raise Elimconst;
let nbfix = Array.length bds in
let li =
List.map
(function d -> match kind_of_term d with
| Rel k ->
if
array_for_all (noccurn k) tys
&& array_for_all (noccurn (k+nbfix)) bds
then
(k, List.nth labs (k-1))
else
raise Elimconst
| _ ->
raise Elimconst) args
in
if list_distinct (List.map fst li) then
let k = lv.(i) in
if k < nargs then
(* Such an optimisation would need eta-expansion
let p = destRel (List.nth args k) in
EliminationFix (n-p+1,(nbfix,li,n))
*)
EliminationFix (n,(nbfix,li,n))
else
EliminationFix (n-nargs+lv.(i)+1,(nbfix,li,n))
else
raise Elimconst
(* Heuristic to look if global names are associated to other
components of a mutual fixpoint *)
let invert_name labs l na0 env sigma ref = function
| Name id ->
if na0 <> Name id then
let refi = match ref with
| EvalRel _ | EvalEvar _ -> None
| EvalVar id' -> Some (EvalVar id)
| EvalConst kn ->
let (mp,dp,_) = repr_kn kn in
Some (EvalConst (make_kn mp dp (label_of_id id))) in
match refi with
| None -> None
| Some ref ->
match reference_opt_value sigma env ref with
| None -> None
| Some c ->
let labs',ccl = decompose_lam c in
let _, l' = whd_betaetalet_stack ccl in
let labs' = List.map snd labs' in
if labs' = labs & l = l' then Some ref else None
else Some ref
| Anonymous -> None (* Actually, should not occur *)
(* [compute_consteval_direct] expand all constant in a whole, but
[compute_consteval_mutual_fix] only one by one, until finding the
last one before the Fix if the latter is mutually defined *)
let compute_consteval_direct sigma env ref =
let rec srec env n labs c =
let c',l = whd_betadeltaeta_stack env sigma c in
match kind_of_term c' with
| Lambda (id,t,g) when l=[] ->
srec (push_rel (id,None,t) env) (n+1) (t::labs) g
| Fix fix ->
(try check_fix_reversibility labs l fix
with Elimconst -> NotAnElimination)
| Case (_,_,d,_) when isRel d -> EliminationCases n
| _ -> NotAnElimination
in
match reference_opt_value sigma env ref with
| None -> NotAnElimination
| Some c -> srec env 0 [] c
let compute_consteval_mutual_fix sigma env ref =
let rec srec env minarg labs ref c =
let c',l = whd_betaetalet_stack c in
let nargs = List.length l in
match kind_of_term c' with
| Lambda (na,t,g) when l=[] ->
srec (push_rel (na,None,t) env) (minarg+1) (t::labs) ref g
| Fix ((lv,i),(names,_,_) as fix) ->
(* Last known constant wrapping Fix is ref = [labs](Fix l) *)
(match compute_consteval_direct sigma env ref with
| NotAnElimination -> (*Above const was eliminable but this not!*)
NotAnElimination
| EliminationFix (minarg',infos) ->
let refs =
Array.map
(invert_name labs l names.(i) env sigma ref) names in
let new_minarg = max (minarg'+minarg-nargs) minarg' in
EliminationMutualFix (new_minarg,ref,(refs,infos))
| _ -> assert false)
| _ when isEvalRef env c' ->
(* Forget all \'s and args and do as if we had started with c' *)
let ref = destEvalRef c' in
(match reference_opt_value sigma env ref with
| None -> anomaly "Should have been trapped by compute_direct"
| Some c -> srec env (minarg-nargs) [] ref c)
| _ -> (* Should not occur *) NotAnElimination
in
match reference_opt_value sigma env ref with
| None -> (* Should not occur *) NotAnElimination
| Some c -> srec env 0 [] ref c
let compute_consteval sigma env ref =
match compute_consteval_direct sigma env ref with
| EliminationFix (_,(nbfix,_,_)) when nbfix <> 1 ->
compute_consteval_mutual_fix sigma env ref
| elim -> elim
let reference_eval sigma env = function
| EvalConst cst as ref ->
(try
Cstmap.find cst !eval_table
with Not_found -> begin
let v = compute_consteval sigma env ref in
eval_table := Cstmap.add cst v !eval_table;
v
end)
| ref -> compute_consteval sigma env ref
let rev_firstn_liftn fn ln =
let rec rfprec p res l =
if p = 0 then
res
else
match l with
| [] -> invalid_arg "Reduction.rev_firstn_liftn"
| a::rest -> rfprec (p-1) ((lift ln a)::res) rest
in
rfprec fn []
(* EliminationFix ([(yi1,Ti1);...;(yip,Tip)],n) means f is some
[y1:T1,...,yn:Tn](Fix(..) yi1 ... yip);
f is applied to largs and we need for recursive calls to build
[x1:Ti1',...,xp:Tip'](f a1..a(n-p) yi1 ... yip)
where a1...an are the n first arguments of largs and Tik' is Tik[yil=al]
To check ... *)
let make_elim_fun (names,(nbfix,lv,n)) largs =
let labs = list_firstn n (list_of_stack largs) in
let p = List.length lv in
let ylv = List.map fst lv in
let la' = list_map_i
(fun q aq ->
try (mkRel (p+1-(list_index (n-q) ylv)))
with Not_found -> aq) 0
(List.map (lift p) labs)
in
fun i ->
match names.(i) with
| None -> None
| Some ref -> Some (
(* let fi =
if nbfix = 1 then
mkEvalRef ref
else
match ref with
| EvalConst (sp,args) ->
mkConst (make_path (dirpath sp) id (kind_of_path sp),args)
| _ -> anomaly "elimination of local fixpoints not implemented"
in
*)
list_fold_left_i
(fun i c (k,a) ->
mkLambda (Name(id_of_string"x"),
substl (rev_firstn_liftn (n-k) (-i) la') a,
c))
0 (applistc (mkEvalRef ref) la') lv)
(* [f] is convertible to [Fix(recindices,bodynum),bodyvect)] make
the reduction using this extra information *)
let contract_fix_use_function f
((recindices,bodynum),(types,names,bodies as typedbodies)) =
let nbodies = Array.length recindices in
let make_Fi j = match f j with
| None -> mkFix((recindices,j),typedbodies)
| Some c -> c in
(* match List.nth names j with Name id -> f id | _ -> assert false in*)
let lbodies = list_tabulate make_Fi nbodies in
substl (List.rev lbodies) bodies.(bodynum)
let reduce_fix_use_function f whfun fix stack =
match fix_recarg fix stack with
| None -> NotReducible
| Some (recargnum,recarg) ->
let (recarg'hd,_ as recarg') =
if isRel recarg then
(* The recarg cannot be a local def, no worry about the right env *)
(recarg, empty_stack)
else
whfun (recarg, empty_stack) in
let stack' = stack_assign stack recargnum (app_stack recarg') in
(match kind_of_term recarg'hd with
| Construct _ ->
Reduced (contract_fix_use_function f fix,stack')
| _ -> NotReducible)
let contract_cofix_use_function f (bodynum,(_,names,bodies as typedbodies)) =
let nbodies = Array.length bodies in
let make_Fi j = match f j with
| None -> mkCoFix(j,typedbodies)
| Some c -> c in
(* match List.nth names j with Name id -> f id | _ -> assert false in*)
let subbodies = list_tabulate make_Fi nbodies in
substl subbodies bodies.(bodynum)
let reduce_mind_case_use_function func env mia =
match kind_of_term mia.mconstr with
| Construct(ind_sp,i as cstr_sp) ->
let real_cargs = list_skipn mia.mci.ci_npar mia.mcargs in
applist (mia.mlf.(i-1), real_cargs)
| CoFix (_,(names,_,_) as cofix) ->
let build_fix_name i =
match names.(i) with
| Name id ->
if isConst func then
let (mp,dp,_) = repr_kn (destConst func) in
let kn = make_kn mp dp (label_of_id id) in
(match constant_opt_value env kn with
| None -> None
| Some _ -> Some (mkConst kn))
else None
| Anonymous -> None in
let cofix_def = contract_cofix_use_function build_fix_name cofix in
mkCase (mia.mci, mia.mP, applist(cofix_def,mia.mcargs), mia.mlf)
| _ -> assert false
let special_red_case sigma env whfun (ci, p, c, lf) =
let rec redrec s =
let (constr, cargs) = whfun s in
if isEvalRef env constr then
let ref = destEvalRef constr in
match reference_opt_value sigma env ref with
| None -> raise Redelimination
| Some gvalue ->
if reducible_mind_case gvalue then
reduce_mind_case_use_function constr env
{mP=p; mconstr=gvalue; mcargs=list_of_stack cargs;
mci=ci; mlf=lf}
else
redrec (gvalue, cargs)
else
if reducible_mind_case constr then
reduce_mind_case
{mP=p; mconstr=constr; mcargs=list_of_stack cargs;
mci=ci; mlf=lf}
else
raise Redelimination
in
redrec (c, empty_stack)
let rec red_elim_const env sigma ref largs =
match reference_eval sigma env ref with
| EliminationCases n when stack_args_size largs >= n ->
let c = reference_value sigma env ref in
let c', lrest = whd_betadeltaeta_state env sigma (c,largs) in
(special_red_case sigma env (construct_const env sigma) (destCase c'),
lrest)
| EliminationFix (min,infos) when stack_args_size largs >=min ->
let c = reference_value sigma env ref in
let d, lrest = whd_betadeltaeta_state env sigma (c,largs) in
let f = make_elim_fun ([|Some ref|],infos) largs in
let co = construct_const env sigma in
(match reduce_fix_use_function f co (destFix d) lrest with
| NotReducible -> raise Redelimination
| Reduced (c,rest) -> (nf_beta c, rest))
| EliminationMutualFix (min,refgoal,refinfos)
when stack_args_size largs >= min ->
let rec descend ref args =
let c = reference_value sigma env ref in
if ref = refgoal then
(c,args)
else
let c', lrest = whd_betaetalet_state (c,args) in
descend (destEvalRef c') lrest in
let (_, midargs as s) = descend ref largs in
let d, lrest = whd_betadeltaeta_state env sigma s in
let f = make_elim_fun refinfos midargs in
let co = construct_const env sigma in
(match reduce_fix_use_function f co (destFix d) lrest with
| NotReducible -> raise Redelimination
| Reduced (c,rest) -> (nf_beta c, rest))
| _ -> raise Redelimination
and construct_const env sigma =
let rec hnfstack (x, stack as s) =
match kind_of_term x with
| Cast (c,_) -> hnfstack (c, stack)
| App (f,cl) -> hnfstack (f, append_stack cl stack)
| Lambda (id,t,c) ->
(match decomp_stack stack with
| None -> assert false
| Some (c',rest) ->
stacklam hnfstack [c'] c rest)
| LetIn (n,b,t,c) -> stacklam hnfstack [b] c stack
| Case (ci,p,c,lf) ->
hnfstack
(special_red_case sigma env
(construct_const env sigma) (ci,p,c,lf), stack)
| Construct _ -> s
| CoFix _ -> s
| Fix fix ->
(match reduce_fix hnfstack fix stack with
| Reduced s' -> hnfstack s'
| NotReducible -> raise Redelimination)
| _ when isEvalRef env x ->
let ref = destEvalRef x in
(try
hnfstack (red_elim_const env sigma ref stack)
with Redelimination ->
(match reference_opt_value sigma env ref with
| Some cval ->
(match kind_of_term cval with
| CoFix _ -> s
| _ -> hnfstack (cval, stack))
| None ->
raise Redelimination))
| _ -> raise Redelimination
in
hnfstack
(***********************************************************************)
(* Special Purpose Reduction Strategies *)
(* Red reduction tactic: reduction to a product *)
let internal_red_product env sigma c =
let simpfun = clos_norm_flags betaiotazeta env sigma in
let rec redrec env x =
match kind_of_term x with
| App (f,l) ->
(match kind_of_term f with
| Fix fix ->
let stack = append_stack l empty_stack in
(match fix_recarg fix stack with
| None -> raise Redelimination
| Some (recargnum,recarg) ->
let recarg' = redrec env recarg in
let stack' = stack_assign stack recargnum recarg' in
simpfun (app_stack (f,stack')))
| _ -> simpfun (appvect (redrec env f, l)))
| Cast (c,_) -> redrec env c
| Prod (x,a,b) -> mkProd (x, a, redrec (push_rel (x,None,a) env) b)
| LetIn (x,a,b,t) -> redrec env (subst1 a t)
| Case (ci,p,d,lf) -> simpfun (mkCase (ci,p,redrec env d,lf))
| _ when isEvalRef env x ->
(* TO DO: re-fold fixpoints after expansion *)
(* to get true one-step reductions *)
let ref = destEvalRef x in
(match reference_opt_value sigma env ref with
| None -> raise Redelimination
| Some c -> c)
| _ -> raise Redelimination
in redrec env c
let red_product env sigma c =
try internal_red_product env sigma c
with Redelimination -> error "Not reducible"
(* Hnf reduction tactic: *)
let hnf_constr env sigma c =
let rec redrec (x, largs as s) =
match kind_of_term x with
| Lambda (n,t,c) ->
(match decomp_stack largs with
| None -> app_stack s
| Some (a,rest) ->
stacklam redrec [a] c rest)
| LetIn (n,b,t,c) -> stacklam redrec [b] c largs
| App (f,cl) -> redrec (f, append_stack cl largs)
| Cast (c,_) -> redrec (c, largs)
| Case (ci,p,c,lf) ->
(try
redrec
(special_red_case sigma env (whd_betadeltaiota_state env sigma)
(ci, p, c, lf), largs)
with Redelimination ->
app_stack s)
| Fix fix ->
(match reduce_fix (whd_betadeltaiota_state env sigma) fix largs with
| Reduced s' -> redrec s'
| NotReducible -> app_stack s)
| _ when isEvalRef env x ->
let ref = destEvalRef x in
(try
let (c',lrest) = red_elim_const env sigma ref largs in
redrec (c', lrest)
with Redelimination ->
match reference_opt_value sigma env ref with
| Some c ->
(match kind_of_term (snd (decompose_lam c)) with
| CoFix _ | Fix _ -> app_stack (x,largs)
| _ -> redrec (c, largs))
| None -> app_stack s)
| _ -> app_stack s
in
redrec (c, empty_stack)
(* Simpl reduction tactic: same as simplify, but also reduces
elimination constants *)
let whd_nf env sigma c =
let rec nf_app (c, stack as s) =
match kind_of_term c with
| Lambda (name,c1,c2) ->
(match decomp_stack stack with
| None -> (c,empty_stack)
| Some (a1,rest) ->
stacklam nf_app [a1] c2 rest)
| LetIn (n,b,t,c) -> stacklam nf_app [b] c stack
| App (f,cl) -> nf_app (f, append_stack cl stack)
| Cast (c,_) -> nf_app (c, stack)
| Case (ci,p,d,lf) ->
(try
nf_app (special_red_case sigma env nf_app (ci,p,d,lf), stack)
with Redelimination ->
s)
| Fix fix ->
(match reduce_fix nf_app fix stack with
| Reduced s' -> nf_app s'
| NotReducible -> s)
| _ when isEvalRef env c ->
(try
nf_app (red_elim_const env sigma (destEvalRef c) stack)
with Redelimination ->
s)
| _ -> s
in
app_stack (nf_app (c, empty_stack))
let nf env sigma c = strong whd_nf env sigma c
let is_reference c =
try let r = reference_of_constr c in true with _ -> false
let is_head c t =
(is_reference c) &
match kind_of_term t with
| App (f,_) -> f = c
| _ -> false
let contextually byheadalso (locs,c) f env sigma t =
let maxocc = List.fold_right max locs 0 in
let pos = ref 1 in
let check = ref true in
let except = List.exists (fun n -> n<0) locs in
if except & (List.exists (fun n -> n>=0) locs)
then error "mixing of positive and negative occurences"
else
let rec traverse (env,c as envc) t =
if locs <> [] & (not except) & (!pos > maxocc) then t
else
if eq_constr c t or (byheadalso & is_head c t) then
let ok =
if except then not (List.mem (- !pos) locs)
else (locs = [] or List.mem !pos locs) in
incr pos;
if ok then
f env sigma t
else if byheadalso then
(* find other occurrences of c in t; TODO: ensure left-to-right *)
map_constr (traverse envc) t
else
t
else
map_constr_with_binders_left_to_right
(fun d (env,c) -> (push_rel d env,lift 1 c))
traverse envc t
in
let t' = traverse (env,c) t in
if locs <> [] & List.exists (fun o -> o >= !pos or o <= - !pos) locs then
errorlabstrm "contextually" (str "Too few occurences");
t'
(* linear bindings (following pretty-printer) of the value of name in c.
* n is the number of the next occurence of name.
* ol is the occurence list to find. *)
let rec substlin env name n ol c =
match kind_of_term c with
| Const kn when EvalConstRef kn = name ->
if List.hd ol = n then
try
(n+1, List.tl ol, constant_value env kn)
with
NotEvaluableConst _ ->
errorlabstrm "substlin"
(pr_kn kn ++ str " is not a defined constant")
else
((n+1), ol, c)
| Var id when EvalVarRef id = name ->
if List.hd ol = n then
match lookup_named id env with
| (_,Some c,_) -> (n+1, List.tl ol, c)
| _ ->
errorlabstrm "substlin"
(pr_id id ++ str " is not a defined constant")
else
((n+1), ol, c)
(* INEFFICIENT: OPTIMIZE *)
| App (c1,cl) ->
Array.fold_left
(fun (n1,ol1,c1') c2 ->
(match ol1 with
| [] -> (n1,[],applist(c1',[c2]))
| _ ->
let (n2,ol2,c2') = substlin env name n1 ol1 c2 in
(n2,ol2,applist(c1',[c2']))))
(substlin env name n ol c1) cl
| Lambda (na,c1,c2) ->
let (n1,ol1,c1') = substlin env name n ol c1 in
(match ol1 with
| [] -> (n1,[],mkLambda (na,c1',c2))
| _ ->
let (n2,ol2,c2') = substlin env name n1 ol1 c2 in
(n2,ol2,mkLambda (na,c1',c2')))
| LetIn (na,c1,t,c2) ->
let (n1,ol1,c1') = substlin env name n ol c1 in
(match ol1 with
| [] -> (n1,[],mkLetIn (na,c1',t,c2))
| _ ->
let (n2,ol2,c2') = substlin env name n1 ol1 c2 in
(n2,ol2,mkLetIn (na,c1',t,c2')))
| Prod (na,c1,c2) ->
let (n1,ol1,c1') = substlin env name n ol c1 in
(match ol1 with
| [] -> (n1,[],mkProd (na,c1',c2))
| _ ->
let (n2,ol2,c2') = substlin env name n1 ol1 c2 in
(n2,ol2,mkProd (na,c1',c2')))
| Case (ci,p,d,llf) ->
let rec substlist nn oll = function
| [] -> (nn,oll,[])
| f::lfe ->
let (nn1,oll1,f') = substlin env name nn oll f in
(match oll1 with
| [] -> (nn1,[],f'::lfe)
| _ ->
let (nn2,oll2,lfe') = substlist nn1 oll1 lfe in
(nn2,oll2,f'::lfe'))
in
let (n1,ol1,p') = substlin env name n ol p in (* ATTENTION ERREUR *)
(match ol1 with (* si P pas affiche *)
| [] -> (n1,[],mkCase (ci, p', d, llf))
| _ ->
let (n2,ol2,d') = substlin env name n1 ol1 d in
(match ol2 with
| [] -> (n2,[],mkCase (ci, p', d', llf))
| _ ->
let (n3,ol3,lf') = substlist n2 ol2 (Array.to_list llf)
in (n3,ol3,mkCase (ci, p', d', Array.of_list lf'))))
| Cast (c1,c2) ->
let (n1,ol1,c1') = substlin env name n ol c1 in
(match ol1 with
| [] -> (n1,[],mkCast (c1',c2))
| _ ->
let (n2,ol2,c2') = substlin env name n1 ol1 c2 in
(n2,ol2,mkCast (c1',c2')))
| Fix _ ->
(warning "do not consider occurrences inside fixpoints"; (n,ol,c))
| CoFix _ ->
(warning "do not consider occurrences inside cofixpoints"; (n,ol,c))
| (Rel _|Meta _|Var _|Sort _
|Evar _|Const _|Ind _|Construct _) -> (n,ol,c)
let string_of_evaluable_ref env = function
| EvalVarRef id -> string_of_id id
| EvalConstRef kn ->
string_of_qualid
(Nametab.shortest_qualid_of_global (vars_of_env env) (ConstRef kn))
let unfold env sigma name =
if is_evaluable env name then
clos_norm_flags (unfold_red name) env sigma
else
error (string_of_evaluable_ref env name^" is opaque")
(* [unfoldoccs : (readable_constraints -> (int list * section_path) -> constr -> constr)]
* Unfolds the constant name in a term c following a list of occurrences occl.
* at the occurrences of occ_list. If occ_list is empty, unfold all occurences.
* Performs a betaiota reduction after unfolding. *)
let unfoldoccs env sigma (occl,name) c =
match occl with
| [] -> unfold env sigma name c
| l ->
match substlin env name 1 (Sort.list (<) l) c with
| (_,[],uc) -> nf_betaiota uc
| (1,_,_) ->
error ((string_of_evaluable_ref env name)^" does not occur")
| _ -> error ("bad occurrence numbers of "
^(string_of_evaluable_ref env name))
(* Unfold reduction tactic: *)
let unfoldn loccname env sigma c =
List.fold_left (fun c occname -> unfoldoccs env sigma occname c) c loccname
(* Re-folding constants tactics: refold com in term c *)
let fold_one_com com env sigma c =
let rcom =
try red_product env sigma com
with Redelimination -> error "Not reducible" in
subst1 com (subst_term rcom c)
let fold_commands cl env sigma c =
List.fold_right (fun com -> fold_one_com com env sigma) (List.rev cl) c
(* call by value reduction functions *)
let cbv_norm_flags flags env sigma t =
cbv_norm (create_cbv_infos flags env) (nf_evar sigma t)
let cbv_beta = cbv_norm_flags beta empty_env Evd.empty
let cbv_betaiota = cbv_norm_flags betaiota empty_env Evd.empty
let cbv_betadeltaiota env sigma = cbv_norm_flags betadeltaiota env sigma
let compute = cbv_betadeltaiota
(* Pattern *)
(* gives [na:ta]c' such that c converts to ([na:ta]c' a), abstracting only
* the specified occurrences. *)
let abstract_scheme env sigma (locc,a) t =
let ta = Retyping.get_type_of env sigma a in
let na = named_hd env ta Anonymous in
if occur_meta ta then error "cannot find a type for the generalisation";
if occur_meta a then
mkLambda (na,ta,t)
else
mkLambda (na, ta,subst_term_occ locc a t)
let pattern_occs loccs_trm env sigma c =
let abstr_trm = List.fold_right (abstract_scheme env sigma) loccs_trm c in
applist(abstr_trm, List.map snd loccs_trm)
(* Generic reduction: reduction functions used in reduction tactics *)
type red_expr = (constr, evaluable_global_reference) red_expr_gen
open RedFlags
let make_flag_constant = function
| EvalVarRef id -> fVAR id
| EvalConstRef sp -> fCONST sp
let make_flag f =
let red = no_red in
let red = if f.rBeta then red_add red fBETA else red in
let red = if f.rIota then red_add red fIOTA else red in
let red = if f.rZeta then red_add red fZETA else red in
let red =
if f.rDelta then (* All but rConst *)
let red = red_add red fDELTA in
let red = red_add_transparent red (Conv_oracle.freeze ()) in
List.fold_right
(fun v red -> red_sub red (make_flag_constant v))
f.rConst red
else (* Only rConst *)
let red = red_add_transparent (red_add red fDELTA) all_opaque in
List.fold_right
(fun v red -> red_add red (make_flag_constant v))
f.rConst red
in red
let red_expr_tab = ref Stringmap.empty
let declare_red_expr s f =
try
let _ = Stringmap.find s !red_expr_tab in
error ("There is already a reduction expression of name "^s)
with Not_found ->
red_expr_tab := Stringmap.add s f !red_expr_tab
let reduction_of_redexp = function
| Red internal -> if internal then internal_red_product else red_product
| Hnf -> hnf_constr
| Simpl (Some lp) -> contextually true lp nf
| Simpl None -> nf
| Cbv f -> cbv_norm_flags (make_flag f)
| Lazy f -> clos_norm_flags (make_flag f)
| Unfold ubinds -> unfoldn ubinds
| Fold cl -> fold_commands cl
| Pattern lp -> pattern_occs lp
| ExtraRedExpr (s,c) -> Stringmap.find s !red_expr_tab
(* Used in several tactics. *)
exception NotStepReducible
let one_step_reduce env sigma c =
let rec redrec (x, largs as s) =
match kind_of_term x with
| Lambda (n,t,c) ->
(match decomp_stack largs with
| None -> raise NotStepReducible
| Some (a,rest) -> (subst1 a c, rest))
| App (f,cl) -> redrec (f, append_stack cl largs)
| LetIn (_,f,_,cl) -> (subst1 f cl,largs)
| Case (ci,p,c,lf) ->
(try
(special_red_case sigma env (whd_betadeltaiota_state env sigma)
(ci,p,c,lf), largs)
with Redelimination -> raise NotStepReducible)
| Fix fix ->
(match reduce_fix (whd_betadeltaiota_state env sigma) fix largs with
| Reduced s' -> s'
| NotReducible -> raise NotStepReducible)
| Cast (c,_) -> redrec (c,largs)
| _ when isEvalRef env x ->
let ref =
try destEvalRef x
with Redelimination -> raise NotStepReducible in
(try
red_elim_const env sigma ref largs
with Redelimination ->
match reference_opt_value sigma env ref with
| Some d -> d, largs
| None -> raise NotStepReducible)
| _ -> raise NotStepReducible
in
app_stack (redrec (c, empty_stack))
(* put t as t'=(x1:A1)..(xn:An)B with B an inductive definition of name name
return name, B and t' *)
let reduce_to_ind_gen allow_product env sigma t =
let rec elimrec env t l =
let c, _ = Reductionops.whd_stack t in
match kind_of_term c with
| Ind (mind,args) -> ((mind,args),it_mkProd_or_LetIn t l)
| Prod (n,ty,t') ->
if allow_product then
elimrec (push_rel (n,None,t) env) t' ((n,None,ty)::l)
else
errorlabstrm "tactics__reduce_to_mind"
(str"Not an inductive definition")
| _ ->
(try
let t' = nf_betaiota (one_step_reduce env sigma t) in
elimrec env t' l
with NotStepReducible ->
errorlabstrm "tactics__reduce_to_mind"
(str"Not an inductive product"))
in
elimrec env t []
let reduce_to_quantified_ind x = reduce_to_ind_gen true x
let reduce_to_atomic_ind x = reduce_to_ind_gen false x
let reduce_to_ref_gen allow_product env sigma ref t =
let rec elimrec env t l =
let c, _ = Reductionops.whd_stack t in
match kind_of_term c with
| Prod (n,ty,t') ->
if allow_product then
elimrec (push_rel (n,None,t) env) t' ((n,None,ty)::l)
else
errorlabstrm "Tactics.reduce_to_ref_gen"
(str"Not an induction object of atomic type")
| _ ->
try
if reference_of_constr c = ref
then it_mkProd_or_LetIn t l
else raise Not_found
with Not_found ->
try
let t' = nf_betaiota (one_step_reduce env sigma t) in
elimrec env t' l
with NotStepReducible -> raise Not_found
in
elimrec env t []
let reduce_to_quantified_ref = reduce_to_ref_gen true
let reduce_to_atomic_ref = reduce_to_ref_gen false
|