1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Pp
open CErrors
open Util
open Term
open Inductive
open Inductiveops
open Names
open Reductionops
open Environ
open Termops
open EConstr
open Vars
open Arguments_renaming
open Context.Rel.Declaration
module RelDecl = Context.Rel.Declaration
module NamedDecl = Context.Named.Declaration
type retype_error =
| NotASort
| NotAnArity
| NotAType
| BadVariable of Id.t
| BadMeta of int
| BadRecursiveType
| NonFunctionalConstruction
let print_retype_error = function
| NotASort -> str "Not a sort"
| NotAnArity -> str "Not an arity"
| NotAType -> str "Not a type (1)"
| BadVariable id -> str "variable " ++ Id.print id ++ str " unbound"
| BadMeta n -> str "unknown meta " ++ int n
| BadRecursiveType -> str "Bad recursive type"
| NonFunctionalConstruction -> str "Non-functional construction"
exception RetypeError of retype_error
let retype_error re = raise (RetypeError re)
let anomaly_on_error f x =
try f x
with RetypeError e -> anomaly ~label:"retyping" (print_retype_error e ++ str ".")
let get_type_from_constraints env sigma t =
if isEvar sigma (fst (decompose_app_vect sigma t)) then
match
List.map_filter (fun (pbty,env,t1,t2) ->
if is_fconv Reduction.CONV env sigma t (EConstr.of_constr t1) then Some t2
else if is_fconv Reduction.CONV env sigma t (EConstr.of_constr t2) then Some t1
else None)
(snd (Evd.extract_all_conv_pbs sigma))
with
| t::l -> t
| _ -> raise Not_found
else raise Not_found
let rec subst_type env sigma typ = function
| [] -> typ
| h::rest ->
match EConstr.kind sigma (whd_all env sigma typ) with
| Prod (na,c1,c2) -> subst_type env sigma (subst1 h c2) rest
| _ -> retype_error NonFunctionalConstruction
(* If ft is the type of f which itself is applied to args, *)
(* [sort_of_atomic_type] computes ft[args] which has to be a sort *)
let sort_of_atomic_type env sigma ft args =
let rec concl_of_arity env n ar args =
match EConstr.kind sigma (whd_all env sigma ar), args with
| Prod (na, t, b), h::l -> concl_of_arity (push_rel (LocalDef (na, lift n h, t)) env) (n + 1) b l
| Sort s, [] -> ESorts.kind sigma s
| _ -> retype_error NotASort
in concl_of_arity env 0 ft (Array.to_list args)
let type_of_var env id =
try NamedDecl.get_type (lookup_named id env)
with Not_found -> retype_error (BadVariable id)
let decomp_sort env sigma t =
match EConstr.kind sigma (whd_all env sigma t) with
| Sort s -> ESorts.kind sigma s
| _ -> retype_error NotASort
let destSort sigma s = ESorts.kind sigma (destSort sigma s)
let retype ?(polyprop=true) sigma =
let rec type_of env cstr =
match EConstr.kind sigma cstr with
| Meta n ->
(try strip_outer_cast sigma (EConstr.of_constr (Evd.meta_ftype sigma n).Evd.rebus)
with Not_found -> retype_error (BadMeta n))
| Rel n ->
let ty = RelDecl.get_type (lookup_rel n env) in
lift n ty
| Var id -> type_of_var env id
| Const (cst, u) -> EConstr.of_constr (rename_type_of_constant env (cst, EInstance.kind sigma u))
| Evar ev -> existential_type sigma ev
| Ind (ind, u) -> EConstr.of_constr (rename_type_of_inductive env (ind, EInstance.kind sigma u))
| Construct (cstr, u) -> EConstr.of_constr (rename_type_of_constructor env (cstr, EInstance.kind sigma u))
| Case (_,p,c,lf) ->
let Inductiveops.IndType(indf,realargs) =
let t = type_of env c in
try Inductiveops.find_rectype env sigma t
with Not_found ->
try
let t = EConstr.of_constr (get_type_from_constraints env sigma t) in
Inductiveops.find_rectype env sigma t
with Not_found -> retype_error BadRecursiveType
in
let n = inductive_nrealdecls_env env (fst (fst (dest_ind_family indf))) in
let t = betazetaevar_applist sigma n p realargs in
(match EConstr.kind sigma (whd_all env sigma (type_of env t)) with
| Prod _ -> whd_beta sigma (applist (t, [c]))
| _ -> t)
| Lambda (name,c1,c2) ->
mkProd (name, c1, type_of (push_rel (LocalAssum (name,c1)) env) c2)
| LetIn (name,b,c1,c2) ->
subst1 b (type_of (push_rel (LocalDef (name,b,c1)) env) c2)
| Fix ((_,i),(_,tys,_)) -> tys.(i)
| CoFix (i,(_,tys,_)) -> tys.(i)
| App(f,args) when is_template_polymorphic env sigma f ->
let t = type_of_global_reference_knowing_parameters env f args in
strip_outer_cast sigma (subst_type env sigma t (Array.to_list args))
| App(f,args) ->
strip_outer_cast sigma
(subst_type env sigma (type_of env f) (Array.to_list args))
| Proj (p,c) ->
let ty = type_of env c in
EConstr.of_constr (try
Inductiveops.type_of_projection_knowing_arg env sigma p c ty
with Invalid_argument _ -> retype_error BadRecursiveType)
| Cast (c,_, t) -> t
| Sort _ | Prod _ -> mkSort (sort_of env cstr)
and sort_of env t =
match EConstr.kind sigma t with
| Cast (c,_, s) when isSort sigma s -> destSort sigma s
| Sort s ->
begin match ESorts.kind sigma s with
| Prop _ -> type1_sort
| Type u -> Type (Univ.super u)
end
| Prod (name,t,c2) ->
(match (sort_of env t, sort_of (push_rel (LocalAssum (name,t)) env) c2) with
| _, (Prop Null as s) -> s
| Prop _, (Prop Pos as s) -> s
| Type _, (Prop Pos as s) when is_impredicative_set env -> s
| Type u1, Prop Pos -> Type (Univ.sup u1 Univ.type0_univ)
| Prop Pos, (Type u2) -> Type (Univ.sup Univ.type0_univ u2)
| Prop Null, (Type _ as s) -> s
| Type u1, Type u2 -> Type (Univ.sup u1 u2))
| App(f,args) when is_template_polymorphic env sigma f ->
let t = type_of_global_reference_knowing_parameters env f args in
sort_of_atomic_type env sigma t args
| App(f,args) -> sort_of_atomic_type env sigma (type_of env f) args
| Lambda _ | Fix _ | Construct _ -> retype_error NotAType
| _ -> decomp_sort env sigma (type_of env t)
and sort_family_of env t =
match EConstr.kind sigma t with
| Cast (c,_, s) when isSort sigma s -> family_of_sort (destSort sigma s)
| Sort _ -> InType
| Prod (name,t,c2) ->
let s2 = sort_family_of (push_rel (LocalAssum (name,t)) env) c2 in
if not (is_impredicative_set env) &&
s2 == InSet && sort_family_of env t == InType then InType else s2
| App(f,args) when is_template_polymorphic env sigma f ->
let t = type_of_global_reference_knowing_parameters env f args in
family_of_sort (sort_of_atomic_type env sigma t args)
| App(f,args) ->
family_of_sort (sort_of_atomic_type env sigma (type_of env f) args)
| Lambda _ | Fix _ | Construct _ -> retype_error NotAType
| _ ->
family_of_sort (decomp_sort env sigma (type_of env t))
and type_of_global_reference_knowing_parameters env c args =
let argtyps =
Array.map (fun c -> lazy (EConstr.to_constr sigma (type_of env c))) args in
match EConstr.kind sigma c with
| Ind (ind, u) ->
let u = EInstance.kind sigma u in
let mip = lookup_mind_specif env ind in
EConstr.of_constr (try Inductive.type_of_inductive_knowing_parameters
~polyprop env (mip, u) argtyps
with Reduction.NotArity -> retype_error NotAnArity)
| Construct (cstr, u) ->
let u = EInstance.kind sigma u in
EConstr.of_constr (type_of_constructor env (cstr, u))
| _ -> assert false
in type_of, sort_of, sort_family_of,
type_of_global_reference_knowing_parameters
let get_sort_of ?(polyprop=true) env sigma t =
let _,f,_,_ = retype ~polyprop sigma in anomaly_on_error (f env) t
let get_sort_family_of ?(polyprop=true) env sigma c =
let _,_,f,_ = retype ~polyprop sigma in anomaly_on_error (f env) c
let type_of_global_reference_knowing_parameters env sigma c args =
let _,_,_,f = retype sigma in anomaly_on_error (f env c) args
let type_of_global_reference_knowing_conclusion env sigma c conclty =
match EConstr.kind sigma c with
| Ind (ind,u) ->
let spec = Inductive.lookup_mind_specif env ind in
type_of_inductive_knowing_conclusion env sigma (spec, EInstance.kind sigma u) conclty
| Const (cst, u) ->
let t = constant_type_in env (cst, EInstance.kind sigma u) in
(* TODO *)
sigma, EConstr.of_constr t
| Var id -> sigma, type_of_var env id
| Construct (cstr, u) -> sigma, EConstr.of_constr (type_of_constructor env (cstr, EInstance.kind sigma u))
| _ -> assert false
(* Profiling *)
(* let get_type_of polyprop lax env sigma c = *)
(* let f,_,_,_ = retype ~polyprop sigma in *)
(* if lax then f env c else anomaly_on_error (f env) c *)
(* let get_type_of_key = Profile.declare_profile "get_type_of" *)
(* let get_type_of = Profile.profile5 get_type_of_key get_type_of *)
(* let get_type_of ?(polyprop=true) ?(lax=false) env sigma c = *)
(* get_type_of polyprop lax env sigma c *)
let get_type_of ?(polyprop=true) ?(lax=false) env sigma c =
let f,_,_,_ = retype ~polyprop sigma in
if lax then f env c else anomaly_on_error (f env) c
(* Makes an unsafe judgment from a constr *)
let get_judgment_of env evc c = { uj_val = c; uj_type = get_type_of env evc c }
(* Returns sorts of a context *)
let sorts_of_context env evc ctxt =
let rec aux = function
| [] -> env,[]
| d :: ctxt ->
let env,sorts = aux ctxt in
let s = get_sort_of env evc (RelDecl.get_type d) in
(push_rel d env,s::sorts) in
snd (aux ctxt)
let expand_projection env sigma pr c args =
let ty = get_type_of ~lax:true env sigma c in
let (i,u), ind_args =
try Inductiveops.find_mrectype env sigma ty
with Not_found -> retype_error BadRecursiveType
in
mkApp (mkConstU (Projection.constant pr,u),
Array.of_list (ind_args @ (c :: args)))
|