1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id$ *)
open Util
open Term
open Inductive
open Inductiveops
open Names
open Reductionops
open Environ
open Typeops
open Declarations
let rec subst_type env sigma typ = function
| [] -> typ
| h::rest ->
match kind_of_term (whd_betadeltaiota env sigma typ) with
| Prod (na,c1,c2) -> subst_type env sigma (subst1 h c2) rest
| _ -> anomaly "Non-functional construction"
(* Si ft est le type d'un terme f, lequel est appliqué à args, *)
(* [sort_of_atomic_ty] calcule ft[args] qui doit être une sorte *)
(* On suit une méthode paresseuse, en espèrant que ft est une arité *)
(* et sinon on substitue *)
let sort_of_atomic_type env sigma ft args =
let rec concl_of_arity env ar =
match kind_of_term (whd_betadeltaiota env sigma ar) with
| Prod (na, t, b) -> concl_of_arity (push_rel (na,None,t) env) b
| Sort s -> s
| _ -> decomp_sort env sigma (subst_type env sigma ft (Array.to_list args))
in concl_of_arity env ft
let typeur sigma metamap =
let rec type_of env cstr=
match kind_of_term cstr with
| Meta n ->
(try strip_outer_cast (List.assoc n metamap)
with Not_found -> anomaly "type_of: this is not a well-typed term")
| Rel n ->
let (_,_,ty) = lookup_rel n env in
lift n ty
| Var id ->
(try
let (_,_,ty) = lookup_named id env in
body_of_type ty
with Not_found ->
anomaly ("type_of: variable "^(string_of_id id)^" unbound"))
| Const c ->
let cb = lookup_constant c env in
body_of_type cb.const_type
| Evar ev -> Evd.existential_type sigma ev
| Ind ind -> body_of_type (type_of_inductive env ind)
| Construct cstr -> body_of_type (type_of_constructor env cstr)
| Case (_,p,c,lf) ->
let Inductiveops.IndType(_,realargs) =
try Inductiveops.find_rectype env sigma (type_of env c)
with Not_found -> anomaly "type_of: Bad recursive type" in
let t = whd_beta (applist (p, realargs)) in
(match kind_of_term (whd_betadeltaiota env sigma (type_of env t)) with
| Prod _ -> whd_beta (applist (t, [c]))
| _ -> t)
| Lambda (name,c1,c2) ->
mkProd (name, c1, type_of (push_rel (name,None,c1) env) c2)
| LetIn (name,b,c1,c2) ->
subst1 b (type_of (push_rel (name,Some b,c1) env) c2)
| Fix ((_,i),(_,tys,_)) -> tys.(i)
| CoFix (i,(_,tys,_)) -> tys.(i)
| App(f,args) when isInd f ->
let t = type_of_applied_inductive env (destInd f) args in
strip_outer_cast (subst_type env sigma t (Array.to_list args))
| App(f,args) ->
strip_outer_cast
(subst_type env sigma (type_of env f) (Array.to_list args))
| Cast (c,_, t) -> t
| Sort _ | Prod _ -> mkSort (sort_of env cstr)
and sort_of env t =
match kind_of_term t with
| Cast (c,_, s) when isSort s -> destSort s
| Sort (Prop c) -> type_0
| Sort (Type u) -> Type (Univ.super u)
| Prod (name,t,c2) ->
(match (sort_of env t, sort_of (push_rel (name,None,t) env) c2) with
| _, (Prop Null as s) -> s
| Prop _, (Prop Pos as s) -> s
| Type _, (Prop Pos as s) when
Environ.engagement env = Some ImpredicativeSet -> s
| Type u1, Prop Pos -> Type (Univ.sup u1 Univ.base_univ)
| Prop Pos, (Type u2) -> Type (Univ.sup Univ.base_univ u2)
| Prop Null, (Type _ as s) -> s
| Type u1, Type u2 -> Type (Univ.sup u1 u2))
| App(f,args) when isInd f ->
let t = type_of_applied_inductive env (destInd f) args in
sort_of_atomic_type env sigma t args
| App(f,args) -> sort_of_atomic_type env sigma (type_of env f) args
| Lambda _ | Fix _ | Construct _ ->
anomaly "sort_of: Not a type (1)"
| _ -> decomp_sort env sigma (type_of env t)
and sort_family_of env t =
match kind_of_term t with
| Cast (c,_, s) when isSort s -> family_of_sort (destSort s)
| Sort (Prop c) -> InType
| Sort (Type u) -> InType
| Prod (name,t,c2) -> sort_family_of (push_rel (name,None,t) env) c2
| App(f,args) ->
family_of_sort (sort_of_atomic_type env sigma (type_of env f) args)
| Lambda _ | Fix _ | Construct _ ->
anomaly "sort_of: Not a type (1)"
| _ -> family_of_sort (decomp_sort env sigma (type_of env t))
and type_of_applied_inductive env ind args =
let specif = lookup_mind_specif env ind in
let t = Inductive.type_of_inductive specif in
if is_small_inductive specif then
(* No polymorphism *)
t
else
(* Retyping constructor with the actual arguments *)
let env',llc,ls0 = constructor_instances env specif ind args in
let lls = Array.map (Array.map (sort_of env')) llc in
let ls = Array.map max_inductive_sort lls in
set_inductive_level env (find_inductive_level env specif ind ls0 ls) t
in type_of, sort_of, sort_family_of, type_of_applied_inductive
let get_type_of env sigma c = let f,_,_,_ = typeur sigma [] in f env c
let get_sort_of env sigma t = let _,f,_,_ = typeur sigma [] in f env t
let get_sort_family_of env sigma c = let _,_,f,_ = typeur sigma [] in f env c
let type_of_applied_inductive env sigma ind args =
let _,_,_,f = typeur sigma [] in f env ind args
let get_type_of_with_meta env sigma metamap =
let f,_,_,_ = typeur sigma metamap in f env
(* Makes an assumption from a constr *)
let get_assumption_of env evc c = c
(* Makes an unsafe judgment from a constr *)
let get_judgment_of env evc c = { uj_val = c; uj_type = get_type_of env evc c }
|