1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(* $Id$ *)
open Pp
open Util
open Names
open Term
open Termops
open Univ
open Evd
open Declarations
open Environ
open Instantiate
open Closure
open Esubst
open Reduction
exception Elimconst
(* The type of (machine) states (= lambda-bar-calculus' cuts) *)
type state = constr * constr stack
type contextual_reduction_function = env -> evar_map -> constr -> constr
type reduction_function = contextual_reduction_function
type local_reduction_function = constr -> constr
type contextual_stack_reduction_function =
env -> evar_map -> constr -> constr * constr list
type stack_reduction_function = contextual_stack_reduction_function
type local_stack_reduction_function = constr -> constr * constr list
type contextual_state_reduction_function =
env -> evar_map -> state -> state
type state_reduction_function = contextual_state_reduction_function
type local_state_reduction_function = state -> state
(*************************************)
(*** Reduction Functions Operators ***)
(*************************************)
let rec whd_state (x, stack as s) =
match kind_of_term x with
| App (f,cl) -> whd_state (f, append_stack cl stack)
| Cast (c,_) -> whd_state (c, stack)
| _ -> s
let appterm_of_stack (f,s) = (f,list_of_stack s)
let whd_stack x = appterm_of_stack (whd_state (x, empty_stack))
let whd_castapp_stack = whd_stack
let stack_reduction_of_reduction red_fun env sigma s =
let t = red_fun env sigma (app_stack s) in
whd_stack t
let strong whdfun env sigma t =
let rec strongrec env t =
map_constr_with_full_binders push_rel strongrec env (whdfun env sigma t) in
strongrec env t
let local_strong whdfun =
let rec strongrec t = map_constr strongrec (whdfun t) in
strongrec
let rec strong_prodspine redfun c =
let x = redfun c in
match kind_of_term x with
| Prod (na,a,b) -> mkProd (na,a,strong_prodspine redfun b)
| _ -> x
(*************************************)
(*** Reduction using bindingss ***)
(*************************************)
(* This signature is very similar to Closure.RedFlagsSig except there
is eta but no per-constant unfolding *)
module type RedFlagsSig = sig
type flags
type flag
val fbeta : flag
val fevar : flag
val fdelta : flag
val feta : flag
val fiota : flag
val fzeta : flag
val mkflags : flag list -> flags
val red_beta : flags -> bool
val red_delta : flags -> bool
val red_evar : flags -> bool
val red_eta : flags -> bool
val red_iota : flags -> bool
val red_zeta : flags -> bool
end
(* Naive Implementation
module RedFlags = (struct
type flag = BETA | DELTA | EVAR | IOTA | ZETA | ETA
type flags = flag list
let fbeta = BETA
let fdelta = DELTA
let fevar = EVAR
let fiota = IOTA
let fzeta = ZETA
let feta = ETA
let mkflags l = l
let red_beta = List.mem BETA
let red_delta = List.mem DELTA
let red_evar = List.mem EVAR
let red_eta = List.mem ETA
let red_iota = List.mem IOTA
let red_zeta = List.mem ZETA
end : RedFlagsSig)
*)
(* Compact Implementation *)
module RedFlags = (struct
type flag = int
type flags = int
let fbeta = 1
let fdelta = 2
let fevar = 4
let feta = 8
let fiota = 16
let fzeta = 32
let mkflags = List.fold_left (lor) 0
let red_beta f = f land fbeta <> 0
let red_delta f = f land fdelta <> 0
let red_evar f = f land fevar <> 0
let red_eta f = f land feta <> 0
let red_iota f = f land fiota <> 0
let red_zeta f = f land fzeta <> 0
end : RedFlagsSig)
open RedFlags
(* Local *)
let beta = mkflags [fbeta]
let evar = mkflags [fevar]
let betaevar = mkflags [fevar; fbeta]
let betaiota = mkflags [fiota; fbeta]
let betaiotazeta = mkflags [fiota; fbeta;fzeta]
(* Contextual *)
let delta = mkflags [fdelta;fevar]
let betadelta = mkflags [fbeta;fdelta;fzeta;fevar]
let betadeltaeta = mkflags [fbeta;fdelta;fzeta;fevar;feta]
let betadeltaiota = mkflags [fbeta;fdelta;fzeta;fevar;fiota]
let betadeltaiota_nolet = mkflags [fbeta;fdelta;fevar;fiota]
let betadeltaiotaeta = mkflags [fbeta;fdelta;fzeta;fevar;fiota;feta]
let betaiotaevar = mkflags [fbeta;fiota;fevar]
let betaetalet = mkflags [fbeta;feta;fzeta]
(* Beta Reduction tools *)
let rec stacklam recfun env t stack =
match (decomp_stack stack,kind_of_term t) with
| Some (h,stacktl), Lambda (_,_,c) -> stacklam recfun (h::env) c stacktl
| _ -> recfun (substl env t, stack)
let beta_applist (c,l) =
stacklam app_stack [] c (append_stack (Array.of_list l) empty_stack)
(* Iota reduction tools *)
type 'a miota_args = {
mP : constr; (* the result type *)
mconstr : constr; (* the constructor *)
mci : case_info; (* special info to re-build pattern *)
mcargs : 'a list; (* the constructor's arguments *)
mlf : 'a array } (* the branch code vector *)
let reducible_mind_case c = match kind_of_term c with
| Construct _ | CoFix _ -> true
| _ -> false
let contract_cofix (bodynum,(types,names,bodies as typedbodies)) =
let nbodies = Array.length bodies in
let make_Fi j = mkCoFix (nbodies-j-1,typedbodies) in
substl (list_tabulate make_Fi nbodies) bodies.(bodynum)
let reduce_mind_case mia =
match kind_of_term mia.mconstr with
| Construct (ind_sp,i as cstr_sp) ->
(* let ncargs = (fst mia.mci).(i-1) in*)
let real_cargs = list_skipn mia.mci.ci_npar mia.mcargs in
applist (mia.mlf.(i-1),real_cargs)
| CoFix cofix ->
let cofix_def = contract_cofix cofix in
mkCase (mia.mci, mia.mP, applist(cofix_def,mia.mcargs), mia.mlf)
| _ -> assert false
(* contracts fix==FIX[nl;i](A1...Ak;[F1...Fk]{B1....Bk}) to produce
Bi[Fj --> FIX[nl;j](A1...Ak;[F1...Fk]{B1...Bk})] *)
let contract_fix ((recindices,bodynum),(types,names,bodies as typedbodies)) =
let nbodies = Array.length recindices in
let make_Fi j = mkFix ((recindices,nbodies-j-1),typedbodies) in
substl (list_tabulate make_Fi nbodies) bodies.(bodynum)
let fix_recarg ((recindices,bodynum),_) stack =
assert (0 <= bodynum & bodynum < Array.length recindices);
let recargnum = Array.get recindices bodynum in
try
Some (recargnum, stack_nth stack recargnum)
with Not_found ->
None
type fix_reduction_result = NotReducible | Reduced of state
let reduce_fix whdfun fix stack =
match fix_recarg fix stack with
| None -> NotReducible
| Some (recargnum,recarg) ->
let (recarg'hd,_ as recarg') = whdfun (recarg, empty_stack) in
let stack' = stack_assign stack recargnum (app_stack recarg') in
(match kind_of_term recarg'hd with
| Construct _ -> Reduced (contract_fix fix, stack')
| _ -> NotReducible)
(* Generic reduction function *)
(* Y avait un commentaire pour whd_betadeltaiota :
NB : Cette fonction alloue peu c'est l'appel
``let (c,cargs) = whfun (recarg, empty_stack)''
-------------------
qui coute cher *)
let rec whd_state_gen flags env sigma =
let rec whrec (x, stack as s) =
match kind_of_term x with
| Rel n when red_delta flags ->
(match lookup_rel n env with
| (_,Some body,_) -> whrec (lift n body, stack)
| _ -> s)
| Var id when red_delta flags ->
(match lookup_named id env with
| (_,Some body,_) -> whrec (body, stack)
| _ -> s)
| Evar ev when red_evar flags ->
(match existential_opt_value sigma ev with
| Some body -> whrec (body, stack)
| None -> s)
| Const const when red_delta flags ->
(match constant_opt_value env const with
| Some body -> whrec (body, stack)
| None -> s)
| LetIn (_,b,_,c) when red_zeta flags -> stacklam whrec [b] c stack
| Cast (c,_) -> whrec (c, stack)
| App (f,cl) -> whrec (f, append_stack cl stack)
| Lambda (na,t,c) ->
(match decomp_stack stack with
| Some (a,m) when red_beta flags -> stacklam whrec [a] c m
| None when red_eta flags ->
let env' = push_rel (na,None,t) env in
let whrec' = whd_state_gen flags env' sigma in
(match kind_of_term (app_stack (whrec' (c, empty_stack))) with
| App (f,cl) ->
let napp = Array.length cl in
if napp > 0 then
let x', l' = whrec' (array_last cl, empty_stack) in
match kind_of_term x', decomp_stack l' with
| Rel 1, None ->
let lc = Array.sub cl 0 (napp-1) in
let u = if napp=1 then f else appvect (f,lc) in
if noccurn 1 u then (pop u,empty_stack) else s
| _ -> s
else s
| _ -> s)
| _ -> s)
| Case (ci,p,d,lf) when red_iota flags ->
let (c,cargs) = whrec (d, empty_stack) in
if reducible_mind_case c then
whrec (reduce_mind_case
{mP=p; mconstr=c; mcargs=list_of_stack cargs;
mci=ci; mlf=lf}, stack)
else
(mkCase (ci, p, app_stack (c,cargs), lf), stack)
| Fix fix when red_iota flags ->
(match reduce_fix whrec fix stack with
| Reduced s' -> whrec s'
| NotReducible -> s)
| x -> s
in
whrec
let local_whd_state_gen flags =
let rec whrec (x, stack as s) =
match kind_of_term x with
| LetIn (_,b,_,c) when red_zeta flags -> stacklam whrec [b] c stack
| Cast (c,_) -> whrec (c, stack)
| App (f,cl) -> whrec (f, append_stack cl stack)
| Lambda (_,_,c) ->
(match decomp_stack stack with
| Some (a,m) when red_beta flags -> stacklam whrec [a] c m
| None when red_eta flags ->
(match kind_of_term (app_stack (whrec (c, empty_stack))) with
| App (f,cl) ->
let napp = Array.length cl in
if napp > 0 then
let x', l' = whrec (array_last cl, empty_stack) in
match kind_of_term x', decomp_stack l' with
| Rel 1, None ->
let lc = Array.sub cl 0 (napp-1) in
let u = if napp=1 then f else appvect (f,lc) in
if noccurn 1 u then (pop u,empty_stack) else s
| _ -> s
else s
| _ -> s)
| _ -> s)
| Case (ci,p,d,lf) when red_iota flags ->
let (c,cargs) = whrec (d, empty_stack) in
if reducible_mind_case c then
whrec (reduce_mind_case
{mP=p; mconstr=c; mcargs=list_of_stack cargs;
mci=ci; mlf=lf}, stack)
else
(mkCase (ci, p, app_stack (c,cargs), lf), stack)
| Fix fix when red_iota flags ->
(match reduce_fix whrec fix stack with
| Reduced s' -> whrec s'
| NotReducible -> s)
| x -> s
in
whrec
(* 1. Beta Reduction Functions *)
let whd_beta_state = local_whd_state_gen beta
let whd_beta_stack x = appterm_of_stack (whd_beta_state (x, empty_stack))
let whd_beta x = app_stack (whd_beta_state (x,empty_stack))
(* Nouveau ! *)
let whd_betaetalet_state = local_whd_state_gen betaetalet
let whd_betaetalet_stack x =
appterm_of_stack (whd_betaetalet_state (x, empty_stack))
let whd_betaetalet x = app_stack (whd_betaetalet_state (x,empty_stack))
(* 2. Delta Reduction Functions *)
let whd_delta_state e = whd_state_gen delta e
let whd_delta_stack env sigma x =
appterm_of_stack (whd_delta_state env sigma (x, empty_stack))
let whd_delta env sigma c =
app_stack (whd_delta_state env sigma (c, empty_stack))
let whd_betadelta_state e = whd_state_gen betadelta e
let whd_betadelta_stack env sigma x =
appterm_of_stack (whd_betadelta_state env sigma (x, empty_stack))
let whd_betadelta env sigma c =
app_stack (whd_betadelta_state env sigma (c, empty_stack))
let whd_betaevar_state e = whd_state_gen betaevar e
let whd_betaevar_stack env sigma c =
appterm_of_stack (whd_betaevar_state env sigma (c, empty_stack))
let whd_betaevar env sigma c =
app_stack (whd_betaevar_state env sigma (c, empty_stack))
let whd_betadeltaeta_state e = whd_state_gen betadeltaeta e
let whd_betadeltaeta_stack env sigma x =
appterm_of_stack (whd_betadeltaeta_state env sigma (x, empty_stack))
let whd_betadeltaeta env sigma x =
app_stack (whd_betadeltaeta_state env sigma (x, empty_stack))
(* 3. Iota reduction Functions *)
let whd_betaiota_state = local_whd_state_gen betaiota
let whd_betaiota_stack x =
appterm_of_stack (whd_betaiota_state (x, empty_stack))
let whd_betaiota x =
app_stack (whd_betaiota_state (x, empty_stack))
let whd_betaiotazeta_state = local_whd_state_gen betaiotazeta
let whd_betaiotazeta_stack x =
appterm_of_stack (whd_betaiotazeta_state (x, empty_stack))
let whd_betaiotazeta x =
app_stack (whd_betaiotazeta_state (x, empty_stack))
let whd_betaiotaevar_state e = whd_state_gen betaiotaevar e
let whd_betaiotaevar_stack env sigma x =
appterm_of_stack (whd_betaiotaevar_state env sigma (x, empty_stack))
let whd_betaiotaevar env sigma x =
app_stack (whd_betaiotaevar_state env sigma (x, empty_stack))
let whd_betadeltaiota_state e = whd_state_gen betadeltaiota e
let whd_betadeltaiota_stack env sigma x =
appterm_of_stack (whd_betadeltaiota_state env sigma (x, empty_stack))
let whd_betadeltaiota env sigma x =
app_stack (whd_betadeltaiota_state env sigma (x, empty_stack))
let whd_betadeltaiotaeta_state e = whd_state_gen betadeltaiotaeta e
let whd_betadeltaiotaeta_stack env sigma x =
appterm_of_stack (whd_betadeltaiotaeta_state env sigma (x, empty_stack))
let whd_betadeltaiotaeta env sigma x =
app_stack (whd_betadeltaiotaeta_state env sigma (x, empty_stack))
let whd_betadeltaiota_nolet_state e = whd_state_gen betadeltaiota_nolet e
let whd_betadeltaiota_nolet_stack env sigma x =
appterm_of_stack (whd_betadeltaiota_nolet_state env sigma (x, empty_stack))
let whd_betadeltaiota_nolet env sigma x =
app_stack (whd_betadeltaiota_nolet_state env sigma (x, empty_stack))
(****************************************************************************)
(* Reduction Functions *)
(****************************************************************************)
(* Replacing defined evars for error messages *)
let rec whd_evar sigma c =
match kind_of_term c with
| Evar (ev,args) when Evd.in_dom sigma ev & Evd.is_defined sigma ev ->
whd_evar sigma (Instantiate.existential_value sigma (ev,args))
| _ -> collapse_appl c
let nf_evar sigma =
local_strong (whd_evar sigma)
(* lazy reduction functions. The infos must be created for each term *)
let clos_norm_flags flgs env sigma t =
norm_val (create_clos_infos flgs env) (inject (nf_evar sigma t))
let nf_beta = clos_norm_flags Closure.beta empty_env Evd.empty
let nf_betaiota = clos_norm_flags Closure.betaiota empty_env Evd.empty
let nf_betadeltaiota env sigma =
clos_norm_flags Closure.betadeltaiota env sigma
(* lazy weak head reduction functions *)
let whd_flags flgs env sigma t =
whd_val (create_clos_infos flgs env) (inject (nf_evar sigma t))
(********************************************************************)
(* Conversion *)
(********************************************************************)
(*
let fkey = Profile.declare_profile "fhnf";;
let fhnf info v = Profile.profile2 fkey fhnf info v;;
let fakey = Profile.declare_profile "fhnf_apply";;
let fhnf_apply info k h a = Profile.profile4 fakey fhnf_apply info k h a;;
*)
type conversion_function =
env -> evar_map -> constr -> constr -> constraints
(* Conversion utility functions *)
type conversion_test = constraints -> constraints
type conv_pb =
| CONV
| CUMUL
let pb_is_equal pb = pb = CONV
let pb_equal = function
| CUMUL -> CONV
| CONV -> CONV
let sort_cmp pb s0 s1 cuniv =
match (s0,s1) with
| (Prop c1, Prop c2) -> if c1 = c2 then cuniv else raise NotConvertible
| (Prop c1, Type u) ->
(match pb with
CUMUL -> cuniv
| _ -> raise NotConvertible)
| (Type u1, Type u2) ->
(match pb with
| CONV -> enforce_eq u1 u2 cuniv
| CUMUL -> enforce_geq u2 u1 cuniv)
| (_, _) -> raise NotConvertible
let base_sort_cmp pb s0 s1 =
match (s0,s1) with
| (Prop c1, Prop c2) -> c1 = c2
| (Prop c1, Type u) -> pb = CUMUL
| (Type u1, Type u2) -> true
| (_, _) -> false
let conv env sigma t1 t2 =
Reduction.conv env (nf_evar sigma t1) (nf_evar sigma t2)
let conv_leq env sigma t1 t2 =
Reduction.conv env (nf_evar sigma t1) (nf_evar sigma t2)
let fconv = function CONV -> conv | CUMUL -> conv_leq
(*
let convleqkey = Profile.declare_profile "conv_leq";;
let conv_leq env sigma t1 t2 =
Profile.profile4 convleqkey conv_leq env sigma t1 t2;;
let convkey = Profile.declare_profile "conv";;
let conv env sigma t1 t2 =
Profile.profile4 convleqkey conv env sigma t1 t2;;
*)
let conv_forall2 f env sigma v1 v2 =
array_fold_left2
(fun c x y -> let c' = f env sigma x y in Constraint.union c c')
Constraint.empty
v1 v2
let conv_forall2_i f env sigma v1 v2 =
array_fold_left2_i
(fun i c x y -> let c' = f i env sigma x y in Constraint.union c c')
Constraint.empty
v1 v2
let test_conversion f env sigma x y =
try let _ = f env (nf_evar sigma x) (nf_evar sigma y) in true
with NotConvertible -> false
let is_conv env sigma = test_conversion Reduction.conv env sigma
let is_conv_leq env sigma = test_conversion Reduction.conv_leq env sigma
let is_fconv = function | CONV -> is_conv | CUMUL -> is_conv_leq
(********************************************************************)
(* Special-Purpose Reduction *)
(********************************************************************)
let whd_meta metamap c = match kind_of_term c with
| Meta p -> (try List.assoc p metamap with Not_found -> c)
| _ -> c
(* Try to replace all metas. Does not replace metas in the metas' values
* Differs from (strong whd_meta). *)
let plain_instance s c =
let rec irec u = match kind_of_term u with
| Meta p -> (try List.assoc p s with Not_found -> u)
| App (f,l) when isCast f ->
let (f,t) = destCast f in
let l' = Array.map irec l in
(match kind_of_term f with
| Meta p ->
(* Don't flatten application nodes: this is used to extract a
proof-term from a proof-tree and we want to keep the structure
of the proof-tree *)
(try let g = List.assoc p s in
match kind_of_term g with
| App _ ->
let h = id_of_string "H" in
mkLetIn (Name h,g,t,mkApp(mkRel 1,Array.map (lift 1) l'))
| _ -> mkApp (g,l')
with Not_found -> mkApp (f,l'))
| _ -> mkApp (irec f,l'))
| Cast (m,_) when isMeta m ->
(try List.assoc (destMeta m) s with Not_found -> u)
| _ -> map_constr irec u
in
if s = [] then c else irec c
(* Pourquoi ne fait-on pas nf_betaiota si s=[] ? *)
let instance s c =
if s = [] then c else local_strong whd_betaiota (plain_instance s c)
(* pseudo-reduction rule:
* [hnf_prod_app env s (Prod(_,B)) N --> B[N]
* with an HNF on the first argument to produce a product.
* if this does not work, then we use the string S as part of our
* error message. *)
let hnf_prod_app env sigma t n =
match kind_of_term (whd_betadeltaiota env sigma t) with
| Prod (_,_,b) -> subst1 n b
| _ -> anomaly "hnf_prod_app: Need a product"
let hnf_prod_appvect env sigma t nl =
Array.fold_left (hnf_prod_app env sigma) t nl
let hnf_prod_applist env sigma t nl =
List.fold_left (hnf_prod_app env sigma) t nl
let hnf_lam_app env sigma t n =
match kind_of_term (whd_betadeltaiota env sigma t) with
| Lambda (_,_,b) -> subst1 n b
| _ -> anomaly "hnf_lam_app: Need an abstraction"
let hnf_lam_appvect env sigma t nl =
Array.fold_left (hnf_lam_app env sigma) t nl
let hnf_lam_applist env sigma t nl =
List.fold_left (hnf_lam_app env sigma) t nl
let splay_prod env sigma =
let rec decrec env m c =
let t = whd_betadeltaiota env sigma c in
match kind_of_term t with
| Prod (n,a,c0) ->
decrec (push_rel (n,None,a) env)
((n,a)::m) c0
| _ -> m,t
in
decrec env []
let splay_prod_assum env sigma =
let rec prodec_rec env l c =
let t = whd_betadeltaiota_nolet env sigma c in
match kind_of_term c with
| Prod (x,t,c) ->
prodec_rec (push_rel (x,None,t) env)
(Sign.add_rel_decl (x, None, t) l) c
| LetIn (x,b,t,c) ->
prodec_rec (push_rel (x, Some b, t) env)
(Sign.add_rel_decl (x, Some b, t) l) c
| Cast (c,_) -> prodec_rec env l c
| _ -> l,t
in
prodec_rec env Sign.empty_rel_context
let splay_arity env sigma c =
let l, c = splay_prod env sigma c in
match kind_of_term c with
| Sort s -> l,s
| _ -> error "not an arity"
let sort_of_arity env c = snd (splay_arity env Evd.empty c)
let decomp_n_prod env sigma n =
let rec decrec env m ln c = if m = 0 then (ln,c) else
match kind_of_term (whd_betadeltaiota env sigma c) with
| Prod (n,a,c0) ->
decrec (push_rel (n,None,a) env)
(m-1) (Sign.add_rel_decl (n,None,a) ln) c0
| _ -> error "decomp_n_prod: Not enough products"
in
decrec env n Sign.empty_rel_context
(* One step of approximation *)
let rec apprec env sigma s =
let (t, stack as s) = whd_betaiota_state s in
match kind_of_term t with
| Case (ci,p,d,lf) ->
let (cr,crargs) = whd_betadeltaiota_stack env sigma d in
let rslt = mkCase (ci, p, applist (cr,crargs), lf) in
if reducible_mind_case cr then
apprec env sigma (rslt, stack)
else
s
| Fix fix ->
(match reduce_fix (whd_betadeltaiota_state env sigma) fix stack with
| Reduced s -> apprec env sigma s
| NotReducible -> s)
| _ -> s
let hnf env sigma c = apprec env sigma (c, empty_stack)
(* A reduction function like whd_betaiota but which keeps casts
* and does not reduce redexes containing existential variables.
* Used in Correctness.
* Added by JCF, 29/1/98. *)
let whd_programs_stack env sigma =
let rec whrec (x, stack as s) =
match kind_of_term x with
| App (f,cl) ->
let n = Array.length cl - 1 in
let c = cl.(n) in
if occur_existential c then
s
else
whrec (mkApp (f, Array.sub cl 0 n), append_stack [|c|] stack)
| LetIn (_,b,_,c) ->
if occur_existential b then
s
else
stacklam whrec [b] c stack
| Lambda (_,_,c) ->
(match decomp_stack stack with
| None -> s
| Some (a,m) -> stacklam whrec [a] c m)
| Case (ci,p,d,lf) ->
if occur_existential d then
s
else
let (c,cargs) = whrec (d, empty_stack) in
if reducible_mind_case c then
whrec (reduce_mind_case
{mP=p; mconstr=c; mcargs=list_of_stack cargs;
mci=ci; mlf=lf}, stack)
else
(mkCase (ci, p, app_stack(c,cargs), lf), stack)
| Fix fix ->
(match reduce_fix whrec fix stack with
| Reduced s' -> whrec s'
| NotReducible -> s)
| _ -> s
in
whrec
let whd_programs env sigma x =
app_stack (whd_programs_stack env sigma (x, empty_stack))
exception IsType
let find_conclusion env sigma =
let rec decrec env c =
let t = whd_betadeltaiota env sigma c in
match kind_of_term t with
| Prod (x,t,c0) -> decrec (push_rel (x,None,t) env) c0
| Lambda (x,t,c0) -> decrec (push_rel (x,None,t) env) c0
| t -> t
in
decrec env
let is_arity env sigma c =
match find_conclusion env sigma c with
| Sort _ -> true
| _ -> false
let info_arity env sigma c =
match find_conclusion env sigma c with
| Sort (Prop Null) -> false
| Sort (Prop Pos) -> true
| _ -> raise IsType
let is_info_arity env sigma c =
try (info_arity env sigma c) with IsType -> true
let is_type_arity env sigma c =
match find_conclusion env sigma c with
| Sort (Type _) -> true
| _ -> false
let is_info_type env sigma t =
let s = t.utj_type in
(s = Prop Pos) ||
(s <> Prop Null &&
try info_arity env sigma t.utj_val with IsType -> true)
|