1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Errors
open Util
open Names
open Term
open Vars
open Termops
open Univ
open Evd
open Environ
exception Elimconst
(** This module implements a call by name reduction used by (at
least) evarconv unification and cbn tactic.
It has an ability to "refold" constants by storing constants and
their parameters in its stack.
*)
(** Machinery to custom the behavior of the reduction *)
module ReductionBehaviour = struct
open Globnames
open Libobject
type t = {
b_nargs: int;
b_recargs: int list;
b_dont_expose_case: bool;
}
let table =
Summary.ref (Refmap.empty : t Refmap.t) ~name:"reductionbehaviour"
type flag = [ `ReductionDontExposeCase | `ReductionNeverUnfold ]
type req =
| ReqLocal
| ReqGlobal of global_reference * (int list * int * flag list)
let load _ (_,(_,(r, b))) =
table := Refmap.add r b !table
let cache o = load 1 o
let classify = function
| ReqLocal, _ -> Dispose
| ReqGlobal _, _ as o -> Substitute o
let subst (subst, (_, (r,o as orig))) =
ReqLocal,
let r' = fst (subst_global subst r) in if r==r' then orig else (r',o)
let discharge = function
| _,(ReqGlobal (ConstRef c, req), (_, b)) ->
let b =
if Lib.is_in_section (ConstRef c) then
let vars, _, _ = Lib.section_segment_of_constant c in
let extra = List.length vars in
let nargs' =
if b.b_nargs = max_int then max_int
else if b.b_nargs < 0 then b.b_nargs
else b.b_nargs + extra in
let recargs' = List.map ((+) extra) b.b_recargs in
{ b with b_nargs = nargs'; b_recargs = recargs' }
else b
in
let c = Lib.discharge_con c in
Some (ReqGlobal (ConstRef c, req), (ConstRef c, b))
| _ -> None
let rebuild = function
| req, (ConstRef c, _ as x) -> req, x
| _ -> assert false
let inRedBehaviour = declare_object {
(default_object "REDUCTIONBEHAVIOUR") with
load_function = load;
cache_function = cache;
classify_function = classify;
subst_function = subst;
discharge_function = discharge;
rebuild_function = rebuild;
}
let set local r (recargs, nargs, flags as req) =
let nargs = if List.mem `ReductionNeverUnfold flags then max_int else nargs in
let behaviour = {
b_nargs = nargs; b_recargs = recargs;
b_dont_expose_case = List.mem `ReductionDontExposeCase flags } in
let req = if local then ReqLocal else ReqGlobal (r, req) in
Lib.add_anonymous_leaf (inRedBehaviour (req, (r, behaviour)))
;;
let get r =
try
let b = Refmap.find r !table in
let flags =
if Int.equal b.b_nargs max_int then [`ReductionNeverUnfold]
else if b.b_dont_expose_case then [`ReductionDontExposeCase] else [] in
Some (b.b_recargs, (if Int.equal b.b_nargs max_int then -1 else b.b_nargs), flags)
with Not_found -> None
let print ref =
let open Pp in
let pr_global = Nametab.pr_global_env Id.Set.empty in
match get ref with
| None -> mt ()
| Some (recargs, nargs, flags) ->
let never = List.mem `ReductionNeverUnfold flags in
let nomatch = List.mem `ReductionDontExposeCase flags in
let pp_nomatch = spc() ++ if nomatch then
str "but avoid exposing match constructs" else str"" in
let pp_recargs = spc() ++ str "when the " ++
pr_enum (fun x -> pr_nth (x+1)) recargs ++ str (String.plural (List.length recargs) " argument") ++
str (String.plural (if List.length recargs >= 2 then 1 else 2) " evaluate") ++
str " to a constructor" in
let pp_nargs =
spc() ++ str "when applied to " ++ int nargs ++
str (String.plural nargs " argument") in
hov 2 (str "The reduction tactics " ++
match recargs, nargs, never with
| _,_, true -> str "never unfold " ++ pr_global ref
| [], 0, _ -> str "always unfold " ++ pr_global ref
| _::_, n, _ when n < 0 ->
str "unfold " ++ pr_global ref ++ pp_recargs ++ pp_nomatch
| _::_, n, _ when n > List.fold_left max 0 recargs ->
str "unfold " ++ pr_global ref ++ pp_recargs ++
str " and" ++ pp_nargs ++ pp_nomatch
| _::_, _, _ ->
str "unfold " ++ pr_global ref ++ pp_recargs ++ pp_nomatch
| [], n, _ when n > 0 ->
str "unfold " ++ pr_global ref ++ pp_nargs ++ pp_nomatch
| _ -> str "unfold " ++ pr_global ref ++ pp_nomatch )
end
(** Machinery about stack of unfolded constants *)
module Cst_stack = struct
(** constant * params * args
- constant applied to params = term in head applied to args
- there is at most one arguments with an empty list of args, it must be the first.
- in args, the int represents the indice of the first arg to consider *)
type t = (constr * constr list * (int * constr array) list) list
let empty = []
let is_empty = CList.is_empty
let sanity x y =
assert(Term.eq_constr x y)
let drop_useless = function
| _ :: ((_,_,[])::_ as q) -> q
| l -> l
let add_param h cst_l =
let append2cst = function
| (c,params,[]) -> (c, h::params, [])
| (c,params,((i,t)::q)) when i = pred (Array.length t) ->
let () = sanity h t.(i) in (c, params, q)
| (c,params,(i,t)::q) ->
let () = sanity h t.(i) in (c, params, (succ i,t)::q)
in
drop_useless (List.map append2cst cst_l)
let add_args cl =
List.map (fun (a,b,args) -> (a,b,(0,cl)::args))
let add_cst cst = function
| (_,_,[]) :: q as l -> l
| l -> (cst,[],[])::l
let best_cst = function
| (cst,params,[])::_ -> Some(cst,params)
| _ -> None
let reference t = match best_cst t with
| Some (c, _) when Term.isConst c -> Some (fst (Term.destConst c))
| _ -> None
(** [best_replace d cst_l c] makes the best replacement for [d]
by [cst_l] in [c] *)
let best_replace d cst_l c =
let reconstruct_head = List.fold_left
(fun t (i,args) -> mkApp (t,Array.sub args i (Array.length args - i))) in
List.fold_right
(fun (cst,params,args) t -> Termops.replace_term
(reconstruct_head d args)
(applist (cst, List.rev params))
t) cst_l c
let pr l =
let open Pp in
let p_c = Termops.print_constr in
prlist_with_sep pr_semicolon
(fun (c,params,args) ->
hov 1 (str"(" ++ p_c c ++ str ")" ++ spc () ++ pr_sequence p_c params ++ spc () ++ str "(args:" ++
pr_sequence (fun (i,el) -> prvect_with_sep spc p_c (Array.sub el i (Array.length el - i))) args ++
str ")")) l
end
(** The type of (machine) stacks (= lambda-bar-calculus' contexts) *)
module Stack :
sig
type 'a app_node
val pr_app_node : ('a -> Pp.std_ppcmds) -> 'a app_node -> Pp.std_ppcmds
type cst_member =
| Cst_const of pconstant
| Cst_proj of projection
type 'a member =
| App of 'a app_node
| Case of case_info * 'a * 'a array * Cst_stack.t
| Proj of int * int * projection * Cst_stack.t
| Fix of fixpoint * 'a t * Cst_stack.t
| Cst of cst_member * int * int list * 'a t * Cst_stack.t
| Shift of int
| Update of 'a
and 'a t = 'a member list
val pr : ('a -> Pp.std_ppcmds) -> 'a t -> Pp.std_ppcmds
val empty : 'a t
val is_empty : 'a t -> bool
val append_app : 'a array -> 'a t -> 'a t
val decomp : 'a t -> ('a * 'a t) option
val decomp_node_last : 'a app_node -> 'a t -> ('a * 'a t)
val equal : ('a * int -> 'a * int -> bool) -> (fixpoint * int -> fixpoint * int -> bool)
-> 'a t -> 'a t -> (int * int) option
val compare_shape : 'a t -> 'a t -> bool
val map : (constr -> constr) -> constr t -> constr t
val fold2 : ('a -> constr -> constr -> 'a) -> 'a ->
constr t -> constr t -> 'a * int * int
val append_app_list : 'a list -> 'a t -> 'a t
val strip_app : 'a t -> 'a t * 'a t
val strip_n_app : int -> 'a t -> ('a t * 'a * 'a t) option
val not_purely_applicative : 'a t -> bool
val will_expose_iota : 'a t -> bool
val list_of_app_stack : constr t -> constr list option
val assign : 'a t -> int -> 'a -> 'a t
val args_size : 'a t -> int
val tail : int -> 'a t -> 'a t
val nth : 'a t -> int -> 'a
val best_state : constr * constr t -> Cst_stack.t -> constr * constr t
val zip : ?refold:bool -> constr * constr t -> constr
end =
struct
type 'a app_node = int * 'a array * int
(* first releavnt position, arguments, last relevant position *)
(*
Invariant that this module must ensure :
(behare of direct access to app_node by the rest of Reductionops)
- in app_node (i,_,j) i <= j
- There is no array realocation (outside of debug printing)
*)
let pr_app_node pr (i,a,j) =
let open Pp in surround (
prvect_with_sep pr_comma pr (Array.sub a i (j - i + 1))
)
type cst_member =
| Cst_const of pconstant
| Cst_proj of projection
type 'a member =
| App of 'a app_node
| Case of Term.case_info * 'a * 'a array * Cst_stack.t
| Proj of int * int * projection * Cst_stack.t
| Fix of fixpoint * 'a t * Cst_stack.t
| Cst of cst_member * int * int list * 'a t * Cst_stack.t
| Shift of int
| Update of 'a
and 'a t = 'a member list
let rec pr_member pr_c member =
let open Pp in
let pr_c x = hov 1 (pr_c x) in
match member with
| App app -> str "ZApp" ++ pr_app_node pr_c app
| Case (_,_,br,cst) ->
str "ZCase(" ++
prvect_with_sep (pr_bar) pr_c br
++ str ")"
| Proj (n,m,p,cst) ->
str "ZProj(" ++ int n ++ pr_comma () ++ int m ++
pr_comma () ++ pr_con (Projection.constant p) ++ str ")"
| Fix (f,args,cst) ->
str "ZFix(" ++ Termops.pr_fix Termops.print_constr f
++ pr_comma () ++ pr pr_c args ++ str ")"
| Cst (mem,curr,remains,params,cst_l) ->
str "ZCst(" ++ pr_cst_member pr_c mem ++ pr_comma () ++ int curr
++ pr_comma () ++
prlist_with_sep pr_semicolon int remains ++
pr_comma () ++ pr pr_c params ++ str ")"
| Shift i -> str "ZShift(" ++ int i ++ str ")"
| Update t -> str "ZUpdate(" ++ pr_c t ++ str ")"
and pr pr_c l =
let open Pp in
prlist_with_sep pr_semicolon (fun x -> hov 1 (pr_member pr_c x)) l
and pr_cst_member pr_c c =
let open Pp in
match c with
| Cst_const (c, u) ->
if Univ.Instance.is_empty u then Constant.print c
else str"(" ++ Constant.print c ++ str ", " ++
Univ.Instance.pr Univ.Level.pr u ++ str")"
| Cst_proj p ->
str".(" ++ Constant.print (Projection.constant p) ++ str")"
let empty = []
let is_empty = CList.is_empty
let append_app v s =
let le = Array.length v in
if Int.equal le 0 then s else App (0,v,pred le) :: s
let decomp_node (i,l,j) sk =
if i < j then (l.(i), App (succ i,l,j) :: sk)
else (l.(i), sk)
let decomp = function
| App node::s -> Some (decomp_node node s)
| _ -> None
let decomp_node_last (i,l,j) sk =
if i < j then (l.(j), App (i,l,pred j) :: sk)
else (l.(j), sk)
let equal f f_fix sk1 sk2 =
let equal_cst_member x lft1 y lft2 =
match x, y with
| Cst_const (c1,u1), Cst_const (c2, u2) ->
Constant.equal c1 c2 && Univ.Instance.equal u1 u2
| Cst_proj p1, Cst_proj p2 ->
Constant.equal (Projection.constant p1) (Projection.constant p2)
| _, _ -> false
in
let rec equal_rec sk1 lft1 sk2 lft2 =
match sk1,sk2 with
| [],[] -> Some (lft1,lft2)
| (Update _ :: _, _ | _, Update _ :: _) -> assert false
| Shift k :: s1, _ -> equal_rec s1 (lft1+k) sk2 lft2
| _, Shift k :: s2 -> equal_rec sk1 lft1 s2 (lft2+k)
| App a1 :: s1, App a2 :: s2 ->
let t1,s1' = decomp_node_last a1 s1 in
let t2,s2' = decomp_node_last a2 s2 in
if f (t1,lft1) (t2,lft2) then equal_rec s1' lft1 s2' lft2 else None
| Case (_,t1,a1,_) :: s1, Case (_,t2,a2,_) :: s2 ->
if f (t1,lft1) (t2,lft2) && CArray.equal (fun x y -> f (x,lft1) (y,lft2)) a1 a2
then equal_rec s1 lft1 s2 lft2
else None
| (Proj (n1,m1,p,_)::s1, Proj(n2,m2,p2,_)::s2) ->
if Int.equal n1 n2 && Int.equal m1 m2
&& Constant.equal (Projection.constant p) (Projection.constant p2)
then equal_rec s1 lft1 s2 lft2
else None
| Fix (f1,s1,_) :: s1', Fix (f2,s2,_) :: s2' ->
if f_fix (f1,lft1) (f2,lft2) then
match equal_rec (List.rev s1) lft1 (List.rev s2) lft2 with
| None -> None
| Some (lft1',lft2') -> equal_rec s1' lft1' s2' lft2'
else None
| Cst (c1,curr1,remains1,params1,_)::s1', Cst (c2,curr2,remains2,params2,_)::s2' ->
if equal_cst_member c1 lft1 c2 lft2 then
match equal_rec (List.rev params1) lft1 (List.rev params2) lft2 with
| Some (lft1',lft2') -> equal_rec s1' lft1' s2' lft2'
| None -> None
else None
| ((App _|Case _|Proj _|Fix _|Cst _)::_|[]), _ -> None
in equal_rec (List.rev sk1) 0 (List.rev sk2) 0
let compare_shape stk1 stk2 =
let rec compare_rec bal stk1 stk2 =
match (stk1,stk2) with
([],[]) -> Int.equal bal 0
| ((Update _|Shift _)::s1, _) -> compare_rec bal s1 stk2
| (_, (Update _|Shift _)::s2) -> compare_rec bal stk1 s2
| (App (i,_,j)::s1, _) -> compare_rec (bal + j + 1 - i) s1 stk2
| (_, App (i,_,j)::s2) -> compare_rec (bal - j - 1 + i) stk1 s2
| (Case(c1,_,_,_)::s1, Case(c2,_,_,_)::s2) ->
Int.equal bal 0 (* && c1.ci_ind = c2.ci_ind *) && compare_rec 0 s1 s2
| (Proj (n1,m1,p,_)::s1, Proj(n2,m2,p2,_)::s2) ->
Int.equal bal 0 && compare_rec 0 s1 s2
| (Fix(_,a1,_)::s1, Fix(_,a2,_)::s2) ->
Int.equal bal 0 && compare_rec 0 a1 a2 && compare_rec 0 s1 s2
| (Cst (_,_,_,p1,_)::s1, Cst (_,_,_,p2,_)::s2) ->
Int.equal bal 0 && compare_rec 0 p1 p2 && compare_rec 0 s1 s2
| (_,_) -> false in
compare_rec 0 stk1 stk2
let fold2 f o sk1 sk2 =
let rec aux o lft1 sk1 lft2 sk2 =
let fold_array =
Array.fold_left2 (fun a x y -> f a (Vars.lift lft1 x) (Vars.lift lft2 y))
in
match sk1,sk2 with
| [], [] -> o,lft1,lft2
| Shift n :: q1, _ -> aux o (lft1+n) q1 lft2 sk2
| _, Shift n :: q2 -> aux o lft1 sk1 (lft2+n) q2
| App n1 :: q1, App n2 :: q2 ->
let t1,l1 = decomp_node_last n1 q1 in
let t2,l2 = decomp_node_last n2 q2 in
aux (f o (Vars.lift lft1 t1) (Vars.lift lft2 t2))
lft1 l1 lft2 l2
| Case (_,t1,a1,_) :: q1, Case (_,t2,a2,_) :: q2 ->
aux (fold_array
(f o (Vars.lift lft1 t1) (Vars.lift lft2 t2))
a1 a2) lft1 q1 lft2 q2
| Proj (n1,m1,p1,_) :: q1, Proj (n2,m2,p2,_) :: q2 ->
aux o lft1 q1 lft2 q2
| Fix ((_,(_,a1,b1)),s1,_) :: q1, Fix ((_,(_,a2,b2)),s2,_) :: q2 ->
let (o',lft1',lft2') = aux (fold_array (fold_array o b1 b2) a1 a2)
lft1 (List.rev s1) lft2 (List.rev s2) in
aux o' lft1' q1 lft2' q2
| Cst (cst1,_,_,params1,_) :: q1, Cst (cst2,_,_,params2,_) :: q2 ->
let (o',lft1',lft2') =
aux o lft1 (List.rev params1) lft2 (List.rev params2)
in aux o' lft1' q1 lft2' q2
| (((Update _|App _|Case _|Proj _|Fix _| Cst _) :: _|[]), _) ->
raise (Invalid_argument "Reductionops.Stack.fold2")
in aux o 0 (List.rev sk1) 0 (List.rev sk2)
let rec map f x = List.map (function
| Update _ -> assert false
| (Proj (_,_,_,_) | Shift _) as e -> e
| App (i,a,j) ->
let le = j - i + 1 in
App (0,Array.map f (Array.sub a i le), le-1)
| Case (info,ty,br,alt) -> Case (info, f ty, Array.map f br, alt)
| Fix ((r,(na,ty,bo)),arg,alt) ->
Fix ((r,(na,Array.map f ty, Array.map f bo)),map f arg,alt)
| Cst (cst,curr,remains,params,alt) ->
Cst (cst,curr,remains,map f params,alt)
) x
let append_app_list l s =
let a = Array.of_list l in
append_app a s
let rec args_size = function
| App (i,_,j)::s -> j + 1 - i + args_size s
| Shift(_)::s -> args_size s
| Update(_)::s -> args_size s
| (Case _|Fix _|Proj _|Cst _)::_ | [] -> 0
let strip_app s =
let rec aux out = function
| ( App _ | Shift _ as e) :: s -> aux (e :: out) s
| s -> List.rev out,s
in aux [] s
let strip_n_app n s =
let rec aux n out = function
| Shift k as e :: s -> aux n (e :: out) s
| App (i,a,j) as e :: s ->
let nb = j - i + 1 in
if n >= nb then
aux (n - nb) (e::out) s
else
let p = i+n in
Some (CList.rev
(if Int.equal n 0 then out else App (i,a,p-1) :: out),
a.(p),
if j > p then App(succ p,a,j)::s else s)
| s -> None
in aux n [] s
let not_purely_applicative args =
List.exists (function (Fix _ | Case _ | Proj _ | Cst _) -> true | _ -> false) args
let will_expose_iota args =
List.exists
(function (Fix (_,_,l) | Case (_,_,_,l) |
Proj (_,_,_,l) | Cst (_,_,_,_,l)) when Cst_stack.is_empty l -> true | _ -> false)
args
let list_of_app_stack s =
let rec aux = function
| App (i,a,j) :: s ->
let (k,(args',s')) = aux s in
let a' = Array.map (Vars.lift k) (Array.sub a i (j - i + 1)) in
k,(Array.fold_right (fun x y -> x::y) a' args', s')
| Shift n :: s ->
let (k,(args',s')) = aux s in (k+n,(args', s'))
| s -> (0,([],s)) in
let (lft,(out,s')) = aux s in
let init = match s' with [] when Int.equal lft 0 -> true | _ -> false in
Option.init init out
let assign s p c =
match strip_n_app p s with
| Some (pre,_,sk) -> pre @ (App (0,[|c|],0)::sk)
| None -> assert false
let tail n0 s0 =
let rec aux lft n s =
let out s = if Int.equal lft 0 then s else Shift lft :: s in
if Int.equal n 0 then out s else
match s with
| App (i,a,j) :: s ->
let nb = j - i + 1 in
if n >= nb then
aux lft (n - nb) s
else
let p = i+n in
if j >= p then App(p,a,j)::s else s
| Shift k :: s' -> aux (lft+k) n s'
| _ -> raise (Invalid_argument "Reductionops.Stack.tail")
in aux 0 n0 s0
let nth s p =
match strip_n_app p s with
| Some (_,el,_) -> el
| None -> raise Not_found
(** This function breaks the abstraction of Cst_stack ! *)
let best_state (_,sk as s) l =
let rec aux sk def = function
|(cst, params, []) -> (cst, append_app_list (List.rev params) sk)
|(cst, params, (i,t)::q) -> match decomp sk with
| Some (el,sk') when Constr.equal el t.(i) ->
if i = pred (Array.length t)
then aux sk' def (cst, params, q)
else aux sk' def (cst, params, (succ i,t)::q)
| _ -> def
in List.fold_left (aux sk) s l
let constr_of_cst_member f sk =
match f with
| Cst_const (c, u) -> mkConstU (c,u), sk
| Cst_proj p ->
match decomp sk with
| Some (hd, sk) -> mkProj (p, hd), sk
| None -> assert false
let rec zip ?(refold=false) = function
| f, [] -> f
| f, (App (i,a,j) :: s) ->
let a' = if Int.equal i 0 && Int.equal j (Array.length a - 1)
then a
else Array.sub a i (j - i + 1) in
zip ~refold (mkApp (f, a'), s)
| f, (Case (ci,rt,br,cst_l)::s) when refold ->
zip ~refold (best_state (mkCase (ci,rt,f,br), s) cst_l)
| f, (Case (ci,rt,br,_)::s) -> zip ~refold (mkCase (ci,rt,f,br), s)
| f, (Fix (fix,st,cst_l)::s) when refold ->
zip ~refold (best_state (mkFix fix, st @ (append_app [|f|] s)) cst_l)
| f, (Fix (fix,st,_)::s) -> zip ~refold
(mkFix fix, st @ (append_app [|f|] s))
| f, (Cst (cst,_,_,params,cst_l)::s) when refold ->
zip ~refold (best_state (constr_of_cst_member cst (params @ (append_app [|f|] s))) cst_l)
| f, (Cst (cst,_,_,params,_)::s) ->
zip ~refold (constr_of_cst_member cst (params @ (append_app [|f|] s)))
| f, (Shift n::s) -> zip ~refold (lift n f, s)
| f, (Proj (n,m,p,cst_l)::s) when refold ->
zip ~refold (best_state (mkProj (p,f),s) cst_l)
| f, (Proj (n,m,p,_)::s) -> zip ~refold (mkProj (p,f),s)
| _, (Update _::_) -> assert false
end
(** The type of (machine) states (= lambda-bar-calculus' cuts) *)
type state = constr * constr Stack.t
type contextual_reduction_function = env -> evar_map -> constr -> constr
type reduction_function = contextual_reduction_function
type local_reduction_function = evar_map -> constr -> constr
type e_reduction_function = { e_redfun : 'r. env -> 'r Sigma.t -> constr -> (constr, 'r) Sigma.sigma }
type contextual_stack_reduction_function =
env -> evar_map -> constr -> constr * constr list
type stack_reduction_function = contextual_stack_reduction_function
type local_stack_reduction_function =
evar_map -> constr -> constr * constr list
type contextual_state_reduction_function =
env -> evar_map -> state -> state
type state_reduction_function = contextual_state_reduction_function
type local_state_reduction_function = evar_map -> state -> state
let pr_state (tm,sk) =
let open Pp in
h 0 (Termops.print_constr tm ++ str "|" ++ cut () ++ Stack.pr Termops.print_constr sk)
(*************************************)
(*** Reduction Functions Operators ***)
(*************************************)
let safe_evar_value sigma ev =
try Some (Evd.existential_value sigma ev)
with NotInstantiatedEvar | Not_found -> None
let safe_meta_value sigma ev =
try Some (Evd.meta_value sigma ev)
with Not_found -> None
let strong whdfun env sigma t =
let rec strongrec env t =
map_constr_with_full_binders push_rel strongrec env (whdfun env sigma t) in
strongrec env t
let local_strong whdfun sigma =
let rec strongrec t = map_constr strongrec (whdfun sigma t) in
strongrec
let rec strong_prodspine redfun sigma c =
let x = redfun sigma c in
match kind_of_term x with
| Prod (na,a,b) -> mkProd (na,a,strong_prodspine redfun sigma b)
| _ -> x
(*************************************)
(*** Reduction using bindingss ***)
(*************************************)
(* Local *)
let nored = Closure.RedFlags.no_red
let beta = Closure.beta
let eta = Closure.RedFlags.mkflags [Closure.RedFlags.fETA]
let zeta = Closure.RedFlags.mkflags [Closure.RedFlags.fZETA]
let betaiota = Closure.betaiota
let betaiotazeta = Closure.betaiotazeta
(* Contextual *)
let delta = Closure.RedFlags.mkflags [Closure.RedFlags.fDELTA]
let betalet = Closure.RedFlags.mkflags [Closure.RedFlags.fBETA;Closure.RedFlags.fZETA]
let betaetalet = Closure.RedFlags.red_add betalet Closure.RedFlags.fETA
let betadelta = Closure.RedFlags.red_add betalet Closure.RedFlags.fDELTA
let betadeltaeta = Closure.RedFlags.red_add betadelta Closure.RedFlags.fETA
let betadeltaiota = Closure.RedFlags.red_add betadelta Closure.RedFlags.fIOTA
let betadeltaiota_nolet = Closure.betadeltaiotanolet
let betadeltaiotaeta = Closure.RedFlags.red_add betadeltaiota Closure.RedFlags.fETA
(* Beta Reduction tools *)
let apply_subst recfun env cst_l t stack =
let rec aux env cst_l t stack =
match (Stack.decomp stack,kind_of_term t) with
| Some (h,stacktl), Lambda (_,_,c) ->
aux (h::env) (Cst_stack.add_param h cst_l) c stacktl
| _ -> recfun cst_l (substl env t, stack)
in aux env cst_l t stack
let stacklam recfun env t stack =
apply_subst (fun _ -> recfun) env Cst_stack.empty t stack
let beta_applist (c,l) =
stacklam Stack.zip [] c (Stack.append_app_list l Stack.empty)
(* Iota reduction tools *)
type 'a miota_args = {
mP : constr; (* the result type *)
mconstr : constr; (* the constructor *)
mci : case_info; (* special info to re-build pattern *)
mcargs : 'a list; (* the constructor's arguments *)
mlf : 'a array } (* the branch code vector *)
let reducible_mind_case c = match kind_of_term c with
| Construct _ | CoFix _ -> true
| _ -> false
(** @return c if there is a constant c whose body is bd
@return bd else.
It has only a meaning because internal representation of "Fixpoint f x
:= t" is Definition f := fix f x => t
Even more fragile that we could hope because do Module M. Fixpoint
f x := t. End M. Definition f := u. and say goodbye to any hope
of refolding M.f this way ...
*)
let magicaly_constant_of_fixbody env reference bd = function
| Name.Anonymous -> bd
| Name.Name id ->
try
let (cst_mod,cst_sect,_) = Constant.repr3 reference in
let cst = Constant.make3 cst_mod cst_sect (Label.of_id id) in
let (cst, u), ctx = Universes.fresh_constant_instance env cst in
match constant_opt_value_in env (cst,u) with
| None -> bd
| Some t ->
let b, csts = Universes.eq_constr_universes t bd in
let subst = Universes.Constraints.fold (fun (l,d,r) acc ->
Univ.LMap.add (Option.get (Universe.level l)) (Option.get (Universe.level r)) acc)
csts Univ.LMap.empty
in
let inst = Instance.subst_fn (fun u -> Univ.LMap.find u subst) u in
if b then mkConstU (cst,inst) else bd
with
| Not_found -> bd
let contract_cofix ?env ?reference (bodynum,(names,types,bodies as typedbodies)) =
let nbodies = Array.length bodies in
let make_Fi j =
let ind = nbodies-j-1 in
if Int.equal bodynum ind then mkCoFix (ind,typedbodies)
else
let bd = mkCoFix (ind,typedbodies) in
match env with
| None -> bd
| Some e ->
match reference with
| None -> bd
| Some r -> magicaly_constant_of_fixbody e r bd names.(ind) in
let closure = List.init nbodies make_Fi in
substl closure bodies.(bodynum)
(** Similar to the "fix" case below *)
let reduce_and_refold_cofix recfun env cst_l cofix sk =
let raw_answer = contract_cofix ~env ?reference:(Cst_stack.reference cst_l) cofix in
apply_subst
(fun x (t,sk') -> recfun x (Cst_stack.best_replace (mkCoFix cofix) cst_l t,sk'))
[] Cst_stack.empty raw_answer sk
let reduce_mind_case mia =
match kind_of_term mia.mconstr with
| Construct ((ind_sp,i),u) ->
(* let ncargs = (fst mia.mci).(i-1) in*)
let real_cargs = List.skipn mia.mci.ci_npar mia.mcargs in
applist (mia.mlf.(i-1),real_cargs)
| CoFix cofix ->
let cofix_def = contract_cofix cofix in
mkCase (mia.mci, mia.mP, applist(cofix_def,mia.mcargs), mia.mlf)
| _ -> assert false
(* contracts fix==FIX[nl;i](A1...Ak;[F1...Fk]{B1....Bk}) to produce
Bi[Fj --> FIX[nl;j](A1...Ak;[F1...Fk]{B1...Bk})] *)
let contract_fix ?env ?reference ((recindices,bodynum),(names,types,bodies as typedbodies)) =
let nbodies = Array.length recindices in
let make_Fi j =
let ind = nbodies-j-1 in
if Int.equal bodynum ind then mkFix ((recindices,ind),typedbodies)
else
let bd = mkFix ((recindices,ind),typedbodies) in
match env with
| None -> bd
| Some e ->
match reference with
| None -> bd
| Some r -> magicaly_constant_of_fixbody e r bd names.(ind) in
let closure = List.init nbodies make_Fi in
substl closure bodies.(bodynum)
(** First we substitute the Rel bodynum by the fixpoint and then we try to
replace the fixpoint by the best constant from [cst_l]
Other rels are directly substituted by constants "magically found from the
context" in contract_fix *)
let reduce_and_refold_fix recfun env cst_l fix sk =
let raw_answer = contract_fix ~env ?reference:(Cst_stack.reference cst_l) fix in
apply_subst
(fun x (t,sk') -> recfun x (Cst_stack.best_replace (mkFix fix) cst_l t,sk'))
[] Cst_stack.empty raw_answer sk
let fix_recarg ((recindices,bodynum),_) stack =
assert (0 <= bodynum && bodynum < Array.length recindices);
let recargnum = Array.get recindices bodynum in
try
Some (recargnum, Stack.nth stack recargnum)
with Not_found ->
None
(** Generic reduction function with environment
Here is where unfolded constant are stored in order to be
eventualy refolded.
If tactic_mode is true, it uses ReductionBehaviour, prefers
refold constant instead of value and tries to infer constants
fix and cofix came from.
It substitutes fix and cofix by the constant they come from in
contract_* in any case .
*)
let debug_RAKAM = ref (false)
let _ = Goptions.declare_bool_option {
Goptions.optsync = true; Goptions.optdepr = false;
Goptions.optname =
"Print states of the Reductionops abstract machine";
Goptions.optkey = ["Debug";"RAKAM"];
Goptions.optread = (fun () -> !debug_RAKAM);
Goptions.optwrite = (fun a -> debug_RAKAM:=a);
}
let equal_stacks (x, l) (y, l') =
let f_equal (x,lft1) (y,lft2) = Constr.equal (Vars.lift lft1 x) (Vars.lift lft2 y) in
let eq_fix (a,b) (c,d) = f_equal (Constr.mkFix a, b) (Constr.mkFix c, d) in
match Stack.equal f_equal eq_fix l l' with
| None -> false
| Some (lft1,lft2) -> f_equal (x, lft1) (y, lft2)
let rec whd_state_gen ?csts tactic_mode flags env sigma =
let rec whrec cst_l (x, stack as s) =
let () = if !debug_RAKAM then
let open Pp in
pp (h 0 (str "<<" ++ Termops.print_constr x ++
str "|" ++ cut () ++ Cst_stack.pr cst_l ++
str "|" ++ cut () ++ Stack.pr Termops.print_constr stack ++
str ">>") ++ fnl ())
in
let fold () =
let () = if !debug_RAKAM then
let open Pp in pp (str "<><><><><>" ++ fnl ()) in
if tactic_mode then (Stack.best_state s cst_l,Cst_stack.empty) else (s,cst_l)
in
match kind_of_term x with
| Rel n when Closure.RedFlags.red_set flags Closure.RedFlags.fDELTA ->
(match lookup_rel n env with
| (_,Some body,_) -> whrec Cst_stack.empty (lift n body, stack)
| _ -> fold ())
| Var id when Closure.RedFlags.red_set flags (Closure.RedFlags.fVAR id) ->
(match lookup_named id env with
| (_,Some body,_) -> whrec (Cst_stack.add_cst (mkVar id) cst_l) (body, stack)
| _ -> fold ())
| Evar ev ->
(match safe_evar_value sigma ev with
| Some body -> whrec cst_l (body, stack)
| None -> fold ())
| Meta ev ->
(match safe_meta_value sigma ev with
| Some body -> whrec cst_l (body, stack)
| None -> fold ())
| Const (c,u as const) when Closure.RedFlags.red_set flags (Closure.RedFlags.fCONST c) ->
(match constant_opt_value_in env const with
| None -> fold ()
| Some body ->
if not tactic_mode
then whrec (Cst_stack.add_cst (mkConstU const) cst_l) (body, stack)
else (* Looks for ReductionBehaviour *)
match ReductionBehaviour.get (Globnames.ConstRef c) with
| None -> whrec (Cst_stack.add_cst (mkConstU const) cst_l) (body, stack)
| Some (recargs, nargs, flags) ->
if (List.mem `ReductionNeverUnfold flags
|| (nargs > 0 && Stack.args_size stack < nargs))
then fold ()
else (* maybe unfolds *)
if List.mem `ReductionDontExposeCase flags then
let app_sk,sk = Stack.strip_app stack in
let (tm',sk'),cst_l' =
whrec (Cst_stack.add_cst (mkConstU const) cst_l) (body, app_sk)
in
let rec is_case x = match kind_of_term x with
| Lambda (_,_, x) | LetIn (_,_,_, x) | Cast (x, _,_) -> is_case x
| App (hd, _) -> is_case hd
| Case _ -> true
| _ -> false in
if equal_stacks (x, app_sk) (tm', sk')
|| Stack.will_expose_iota sk'
|| is_case tm'
then fold ()
else whrec cst_l' (tm', sk' @ sk)
else match recargs with
|[] -> (* if nargs has been specified *)
(* CAUTION : the constant is NEVER refold
(even when it hides a (co)fix) *)
whrec cst_l (body, stack)
|curr::remains -> match Stack.strip_n_app curr stack with
| None -> fold ()
| Some (bef,arg,s') ->
whrec Cst_stack.empty
(arg,Stack.Cst(Stack.Cst_const const,curr,remains,bef,cst_l)::s')
)
| Proj (p, c) when Closure.RedFlags.red_projection flags p ->
(let pb = lookup_projection p env in
let kn = Projection.constant p in
let npars = pb.Declarations.proj_npars
and arg = pb.Declarations.proj_arg in
if not tactic_mode then
let stack' = (c, Stack.Proj (npars, arg, p, Cst_stack.empty (*cst_l*)) :: stack) in
whrec Cst_stack.empty stack'
else match ReductionBehaviour.get (Globnames.ConstRef kn) with
| None ->
let stack' = (c, Stack.Proj (npars, arg, p, cst_l) :: stack) in
let stack'', csts = whrec Cst_stack.empty stack' in
if equal_stacks stack' stack'' then fold ()
else stack'', csts
| Some (recargs, nargs, flags) ->
if (List.mem `ReductionNeverUnfold flags
|| (nargs > 0 && Stack.args_size stack < (nargs - (npars + 1))))
then fold ()
else
let recargs = List.map_filter (fun x ->
let idx = x - npars in
if idx < 0 then None else Some idx) recargs
in
match recargs with
|[] -> (* if nargs has been specified *)
(* CAUTION : the constant is NEVER refold
(even when it hides a (co)fix) *)
let stack' = (c, Stack.Proj (npars, arg, p, cst_l) :: stack) in
whrec Cst_stack.empty(* cst_l *) stack'
| curr::remains ->
if curr == 0 then (* Try to reduce the record argument *)
whrec Cst_stack.empty
(c, Stack.Cst(Stack.Cst_proj p,curr,remains,Stack.empty,cst_l)::stack)
else
match Stack.strip_n_app curr stack with
| None -> fold ()
| Some (bef,arg,s') ->
whrec Cst_stack.empty
(arg,Stack.Cst(Stack.Cst_proj p,curr,remains,
Stack.append_app [|c|] bef,cst_l)::s'))
| LetIn (_,b,_,c) when Closure.RedFlags.red_set flags Closure.RedFlags.fZETA ->
apply_subst whrec [b] cst_l c stack
| Cast (c,_,_) -> whrec cst_l (c, stack)
| App (f,cl) ->
whrec
(Cst_stack.add_args cl cst_l)
(f, Stack.append_app cl stack)
| Lambda (na,t,c) ->
(match Stack.decomp stack with
| Some _ when Closure.RedFlags.red_set flags Closure.RedFlags.fBETA ->
apply_subst whrec [] cst_l x stack
| None when Closure.RedFlags.red_set flags Closure.RedFlags.fETA ->
let env' = push_rel (na,None,t) env in
let whrec' = whd_state_gen tactic_mode flags env' sigma in
(match kind_of_term (Stack.zip ~refold:true (fst (whrec' (c, Stack.empty)))) with
| App (f,cl) ->
let napp = Array.length cl in
if napp > 0 then
let (x', l'),_ = whrec' (Array.last cl, Stack.empty) in
match kind_of_term x', l' with
| Rel 1, [] ->
let lc = Array.sub cl 0 (napp-1) in
let u = if Int.equal napp 1 then f else appvect (f,lc) in
if noccurn 1 u then (pop u,Stack.empty),Cst_stack.empty else fold ()
| _ -> fold ()
else fold ()
| _ -> fold ())
| _ -> fold ())
| Case (ci,p,d,lf) ->
whrec Cst_stack.empty (d, Stack.Case (ci,p,lf,cst_l) :: stack)
| Fix ((ri,n),_ as f) ->
(match Stack.strip_n_app ri.(n) stack with
|None -> fold ()
|Some (bef,arg,s') ->
whrec Cst_stack.empty (arg, Stack.Fix(f,bef,cst_l)::s'))
| Construct ((ind,c),u) ->
if Closure.RedFlags.red_set flags Closure.RedFlags.fIOTA then
match Stack.strip_app stack with
|args, (Stack.Case(ci, _, lf,_)::s') ->
whrec Cst_stack.empty (lf.(c-1), (Stack.tail ci.ci_npar args) @ s')
|args, (Stack.Proj (n,m,p,_)::s') ->
whrec Cst_stack.empty (Stack.nth args (n+m), s')
|args, (Stack.Fix (f,s',cst_l)::s'') ->
let x' = Stack.zip(x,args) in
let out_sk = s' @ (Stack.append_app [|x'|] s'') in
reduce_and_refold_fix whrec env cst_l f out_sk
|args, (Stack.Cst (const,curr,remains,s',cst_l) :: s'') ->
let x' = Stack.zip(x,args) in
begin match remains with
| [] ->
(match const with
| Stack.Cst_const const ->
(match constant_opt_value_in env const with
| None -> fold ()
| Some body ->
whrec (Cst_stack.add_cst (mkConstU const) cst_l)
(body, s' @ (Stack.append_app [|x'|] s'')))
| Stack.Cst_proj p ->
let pb = lookup_projection p env in
let npars = pb.Declarations.proj_npars in
let narg = pb.Declarations.proj_arg in
let stack = s' @ (Stack.append_app [|x'|] s'') in
match Stack.strip_n_app 0 stack with
| None -> assert false
| Some (_,arg,s'') ->
whrec Cst_stack.empty (arg, Stack.Proj (npars,narg,p,cst_l) :: s''))
| next :: remains' -> match Stack.strip_n_app (next-curr-1) s'' with
| None -> fold ()
| Some (bef,arg,s''') ->
whrec Cst_stack.empty
(arg,
Stack.Cst (const,next,remains',s' @ (Stack.append_app [|x'|] bef),cst_l) :: s''')
end
|_, (Stack.App _|Stack.Update _|Stack.Shift _)::_ -> assert false
|_, [] -> fold ()
else fold ()
| CoFix cofix ->
if Closure.RedFlags.red_set flags Closure.RedFlags.fIOTA then
match Stack.strip_app stack with
|args, ((Stack.Case _ |Stack.Proj _)::s') ->
reduce_and_refold_cofix whrec env cst_l cofix stack
|_ -> fold ()
else fold ()
| Rel _ | Var _ | Const _ | LetIn _ | Proj _ -> fold ()
| Sort _ | Ind _ | Prod _ -> fold ()
in
whrec (Option.default Cst_stack.empty csts)
(** reduction machine without global env and refold machinery *)
let local_whd_state_gen flags sigma =
let rec whrec (x, stack as s) =
match kind_of_term x with
| LetIn (_,b,_,c) when Closure.RedFlags.red_set flags Closure.RedFlags.fZETA ->
stacklam whrec [b] c stack
| Cast (c,_,_) -> whrec (c, stack)
| App (f,cl) -> whrec (f, Stack.append_app cl stack)
| Lambda (_,_,c) ->
(match Stack.decomp stack with
| Some (a,m) when Closure.RedFlags.red_set flags Closure.RedFlags.fBETA ->
stacklam whrec [a] c m
| None when Closure.RedFlags.red_set flags Closure.RedFlags.fETA ->
(match kind_of_term (Stack.zip (whrec (c, Stack.empty))) with
| App (f,cl) ->
let napp = Array.length cl in
if napp > 0 then
let x', l' = whrec (Array.last cl, Stack.empty) in
match kind_of_term x', l' with
| Rel 1, [] ->
let lc = Array.sub cl 0 (napp-1) in
let u = if Int.equal napp 1 then f else appvect (f,lc) in
if noccurn 1 u then (pop u,Stack.empty) else s
| _ -> s
else s
| _ -> s)
| _ -> s)
| Proj (p,c) when Closure.RedFlags.red_projection flags p ->
(let pb = lookup_projection p (Global.env ()) in
whrec (c, Stack.Proj (pb.Declarations.proj_npars, pb.Declarations.proj_arg,
p, Cst_stack.empty)
:: stack))
| Case (ci,p,d,lf) ->
whrec (d, Stack.Case (ci,p,lf,Cst_stack.empty) :: stack)
| Fix ((ri,n),_ as f) ->
(match Stack.strip_n_app ri.(n) stack with
|None -> s
|Some (bef,arg,s') -> whrec (arg, Stack.Fix(f,bef,Cst_stack.empty)::s'))
| Evar ev ->
(match safe_evar_value sigma ev with
Some c -> whrec (c,stack)
| None -> s)
| Meta ev ->
(match safe_meta_value sigma ev with
Some c -> whrec (c,stack)
| None -> s)
| Construct ((ind,c),u) ->
if Closure.RedFlags.red_set flags Closure.RedFlags.fIOTA then
match Stack.strip_app stack with
|args, (Stack.Case(ci, _, lf,_)::s') ->
whrec (lf.(c-1), (Stack.tail ci.ci_npar args) @ s')
|args, (Stack.Proj (n,m,p,_) :: s') ->
whrec (Stack.nth args (n+m), s')
|args, (Stack.Fix (f,s',cst)::s'') ->
let x' = Stack.zip(x,args) in
whrec (contract_fix f, s' @ (Stack.append_app [|x'|] s''))
|_, (Stack.App _|Stack.Update _|Stack.Shift _|Stack.Cst _)::_ -> assert false
|_, [] -> s
else s
| CoFix cofix ->
if Closure.RedFlags.red_set flags Closure.RedFlags.fIOTA then
match Stack.strip_app stack with
|args, ((Stack.Case _ | Stack.Proj _)::s') ->
whrec (contract_cofix cofix, stack)
|_ -> s
else s
| x -> s
in
whrec
let raw_whd_state_gen flags env =
let f sigma s = fst (whd_state_gen false flags env sigma s) in
f
let stack_red_of_state_red f =
let f sigma x = decompose_app (Stack.zip (f sigma (x, Stack.empty))) in
f
(* Drops the Cst_stack *)
let iterate_whd_gen refold flags env sigma s =
let rec aux t =
let (hd,sk),_ = whd_state_gen refold flags env sigma (t,Stack.empty) in
let whd_sk = Stack.map aux sk in
Stack.zip ~refold (hd,whd_sk)
in aux s
let red_of_state_red f sigma x =
Stack.zip (f sigma (x,Stack.empty))
(* 0. No Reduction Functions *)
let whd_nored_state = local_whd_state_gen nored
let whd_nored_stack = stack_red_of_state_red whd_nored_state
let whd_nored = red_of_state_red whd_nored_state
(* 1. Beta Reduction Functions *)
let whd_beta_state = local_whd_state_gen beta
let whd_beta_stack = stack_red_of_state_red whd_beta_state
let whd_beta = red_of_state_red whd_beta_state
(* Nouveau ! *)
let whd_betaetalet_state = local_whd_state_gen betaetalet
let whd_betaetalet_stack = stack_red_of_state_red whd_betaetalet_state
let whd_betaetalet = red_of_state_red whd_betaetalet_state
let whd_betalet_state = local_whd_state_gen betalet
let whd_betalet_stack = stack_red_of_state_red whd_betalet_state
let whd_betalet = red_of_state_red whd_betalet_state
(* 2. Delta Reduction Functions *)
let whd_delta_state e = raw_whd_state_gen delta e
let whd_delta_stack env = stack_red_of_state_red (whd_delta_state env)
let whd_delta env = red_of_state_red (whd_delta_state env)
let whd_betadelta_state e = raw_whd_state_gen betadelta e
let whd_betadelta_stack env =
stack_red_of_state_red (whd_betadelta_state env)
let whd_betadelta env =
red_of_state_red (whd_betadelta_state env)
let whd_betadeltaeta_state e = raw_whd_state_gen betadeltaeta e
let whd_betadeltaeta_stack env =
stack_red_of_state_red (whd_betadeltaeta_state env)
let whd_betadeltaeta env =
red_of_state_red (whd_betadeltaeta_state env)
(* 3. Iota reduction Functions *)
let whd_betaiota_state = local_whd_state_gen betaiota
let whd_betaiota_stack = stack_red_of_state_red whd_betaiota_state
let whd_betaiota = red_of_state_red whd_betaiota_state
let whd_betaiotazeta_state = local_whd_state_gen betaiotazeta
let whd_betaiotazeta_stack = stack_red_of_state_red whd_betaiotazeta_state
let whd_betaiotazeta = red_of_state_red whd_betaiotazeta_state
let whd_betadeltaiota_state env = raw_whd_state_gen betadeltaiota env
let whd_betadeltaiota_stack env =
stack_red_of_state_red (whd_betadeltaiota_state env)
let whd_betadeltaiota env =
red_of_state_red (whd_betadeltaiota_state env)
let whd_betadeltaiotaeta_state env = raw_whd_state_gen betadeltaiotaeta env
let whd_betadeltaiotaeta_stack env =
stack_red_of_state_red (whd_betadeltaiotaeta_state env)
let whd_betadeltaiotaeta env =
red_of_state_red (whd_betadeltaiotaeta_state env)
let whd_betadeltaiota_nolet_state env = raw_whd_state_gen betadeltaiota_nolet env
let whd_betadeltaiota_nolet_stack env =
stack_red_of_state_red (whd_betadeltaiota_nolet_state env)
let whd_betadeltaiota_nolet env =
red_of_state_red (whd_betadeltaiota_nolet_state env)
(* 4. Eta reduction Functions *)
let whd_eta c = Stack.zip (local_whd_state_gen eta Evd.empty (c,Stack.empty))
(* 5. Zeta Reduction Functions *)
let whd_zeta c = Stack.zip (local_whd_state_gen zeta Evd.empty (c,Stack.empty))
(****************************************************************************)
(* Reduction Functions *)
(****************************************************************************)
(* Replacing defined evars for error messages *)
let rec whd_evar sigma c =
match kind_of_term c with
| Evar ev ->
let (evk, args) = ev in
let args = Array.map (fun c -> whd_evar sigma c) args in
(match safe_evar_value sigma (evk, args) with
Some c -> whd_evar sigma c
| None -> c)
| Sort (Type u) ->
let u' = Evd.normalize_universe sigma u in
if u' == u then c else mkSort (Sorts.sort_of_univ u')
| Const (c', u) when not (Univ.Instance.is_empty u) ->
let u' = Evd.normalize_universe_instance sigma u in
if u' == u then c else mkConstU (c', u')
| Ind (i, u) when not (Univ.Instance.is_empty u) ->
let u' = Evd.normalize_universe_instance sigma u in
if u' == u then c else mkIndU (i, u')
| Construct (co, u) when not (Univ.Instance.is_empty u) ->
let u' = Evd.normalize_universe_instance sigma u in
if u' == u then c else mkConstructU (co, u')
| _ -> c
let nf_evar =
local_strong whd_evar
(* lazy reduction functions. The infos must be created for each term *)
(* Note by HH [oct 08] : why would it be the job of clos_norm_flags to add
a [nf_evar] here *)
let clos_norm_flags flgs env sigma t =
try
let evars ev = safe_evar_value sigma ev in
Closure.norm_val
(Closure.create_clos_infos ~evars flgs env)
(Closure.inject t)
with e when is_anomaly e -> error "Tried to normalize ill-typed term"
let nf_beta = clos_norm_flags Closure.beta (Global.env ())
let nf_betaiota = clos_norm_flags Closure.betaiota (Global.env ())
let nf_betaiotazeta = clos_norm_flags Closure.betaiotazeta (Global.env ())
let nf_betadeltaiota env sigma =
clos_norm_flags Closure.betadeltaiota env sigma
(********************************************************************)
(* Conversion *)
(********************************************************************)
(*
let fkey = Profile.declare_profile "fhnf";;
let fhnf info v = Profile.profile2 fkey fhnf info v;;
let fakey = Profile.declare_profile "fhnf_apply";;
let fhnf_apply info k h a = Profile.profile4 fakey fhnf_apply info k h a;;
*)
let is_transparent e k =
match Conv_oracle.get_strategy (Environ.oracle e) k with
| Conv_oracle.Opaque -> false
| _ -> true
(* Conversion utility functions *)
type conversion_test = constraints -> constraints
let pb_is_equal pb = pb == Reduction.CONV
let pb_equal = function
| Reduction.CUMUL -> Reduction.CONV
| Reduction.CONV -> Reduction.CONV
let report_anomaly _ =
let e = UserError ("", Pp.str "Conversion test raised an anomaly") in
let e = Errors.push e in
iraise e
let test_trans_conversion (f: constr Reduction.extended_conversion_function) reds env sigma x y =
try
let evars ev = safe_evar_value sigma ev in
let _ = f ~reds env ~evars:(evars, Evd.universes sigma) x y in
true
with Reduction.NotConvertible -> false
| e when is_anomaly e -> report_anomaly e
let is_conv ?(reds=full_transparent_state) env sigma = test_trans_conversion Reduction.conv reds env sigma
let is_conv_leq ?(reds=full_transparent_state) env sigma = test_trans_conversion Reduction.conv_leq reds env sigma
let is_fconv ?(reds=full_transparent_state) = function
| Reduction.CONV -> is_conv ~reds
| Reduction.CUMUL -> is_conv_leq ~reds
let check_conv ?(pb=Reduction.CUMUL) ?(ts=full_transparent_state) env sigma x y =
let f = match pb with
| Reduction.CONV -> Reduction.conv
| Reduction.CUMUL -> Reduction.conv_leq
in
try f ~reds:ts env ~evars:(safe_evar_value sigma, Evd.universes sigma) x y; true
with Reduction.NotConvertible -> false
| Univ.UniverseInconsistency _ -> false
| e when is_anomaly e -> report_anomaly e
let sigma_compare_sorts env pb s0 s1 sigma =
match pb with
| Reduction.CONV -> Evd.set_eq_sort env sigma s0 s1
| Reduction.CUMUL -> Evd.set_leq_sort env sigma s0 s1
let sigma_compare_instances ~flex i0 i1 sigma =
try Evd.set_eq_instances ~flex sigma i0 i1
with Evd.UniversesDiffer
| Univ.UniverseInconsistency _ ->
raise Reduction.NotConvertible
let sigma_univ_state =
{ Reduction.compare = sigma_compare_sorts;
Reduction.compare_instances = sigma_compare_instances }
let infer_conv_gen conv_fun ?(catch_incon=true) ?(pb=Reduction.CUMUL)
?(ts=full_transparent_state) env sigma x y =
try
let fold cstr sigma =
try Some (Evd.add_universe_constraints sigma cstr)
with Univ.UniverseInconsistency _ | Evd.UniversesDiffer -> None
in
let b, sigma =
let ans =
if pb == Reduction.CUMUL then
Universes.leq_constr_univs_infer (Evd.universes sigma) fold x y sigma
else
Universes.eq_constr_univs_infer (Evd.universes sigma) fold x y sigma
in
match ans with
| None -> false, sigma
| Some sigma -> true, sigma
in
if b then sigma, true
else
let sigma' =
conv_fun pb ~l2r:false sigma ts
env (sigma, sigma_univ_state) x y in
sigma', true
with
| Reduction.NotConvertible -> sigma, false
| Univ.UniverseInconsistency _ when catch_incon -> sigma, false
| e when is_anomaly e -> report_anomaly e
let infer_conv = infer_conv_gen (fun pb ~l2r sigma ->
Reduction.generic_conv pb ~l2r (safe_evar_value sigma))
(* This reference avoids always having to link C code with the kernel *)
let vm_infer_conv = ref (infer_conv ~catch_incon:true ~ts:full_transparent_state)
let set_vm_infer_conv f = vm_infer_conv := f
let vm_infer_conv ?(pb=Reduction.CUMUL) env t1 t2 =
!vm_infer_conv ~pb env t1 t2
(********************************************************************)
(* Special-Purpose Reduction *)
(********************************************************************)
let whd_meta sigma c = match kind_of_term c with
| Meta p -> (try meta_value sigma p with Not_found -> c)
| _ -> c
let default_plain_instance_ident = Id.of_string "H"
(* Try to replace all metas. Does not replace metas in the metas' values
* Differs from (strong whd_meta). *)
let plain_instance s c =
let rec irec n u = match kind_of_term u with
| Meta p -> (try lift n (Metamap.find p s) with Not_found -> u)
| App (f,l) when isCast f ->
let (f,_,t) = destCast f in
let l' = CArray.Fun1.smartmap irec n l in
(match kind_of_term f with
| Meta p ->
(* Don't flatten application nodes: this is used to extract a
proof-term from a proof-tree and we want to keep the structure
of the proof-tree *)
(try let g = Metamap.find p s in
match kind_of_term g with
| App _ ->
let l' = CArray.Fun1.smartmap lift 1 l' in
mkLetIn (Name default_plain_instance_ident,g,t,mkApp(mkRel 1, l'))
| _ -> mkApp (g,l')
with Not_found -> mkApp (f,l'))
| _ -> mkApp (irec n f,l'))
| Cast (m,_,_) when isMeta m ->
(try lift n (Metamap.find (destMeta m) s) with Not_found -> u)
| _ ->
map_constr_with_binders succ irec n u
in
if Metamap.is_empty s then c
else irec 0 c
(* [instance] is used for [res_pf]; the call to [local_strong whd_betaiota]
has (unfortunately) different subtle side effects:
- ** Order of subgoals **
If the lemma is a case analysis with parameters, it will move the
parameters as first subgoals (e.g. "case H" applied on
"H:D->A/\B|-C" will present the subgoal |-D first while w/o
betaiota the subgoal |-D would have come last).
- ** Betaiota-contraction in statement **
If the lemma has a parameter which is a function and this
function is applied in the lemma, then the _strong_ betaiota will
contract the application of the function to its argument (e.g.
"apply (H (fun x => x))" in "H:forall f, f 0 = 0 |- 0=0" will
result in applying the lemma 0=0 in which "(fun x => x) 0" has
been contracted). A goal to rewrite may then fail or succeed
differently.
- ** Naming of hypotheses **
If a lemma is a function of the form "fun H:(forall a:A, P a)
=> .. F H .." where the expected type of H is "forall b:A, P b",
then, without reduction, the application of the lemma will
generate a subgoal "forall a:A, P a" (and intro will use name
"a"), while with reduction, it will generate a subgoal "forall
b:A, P b" (and intro will use name "b").
- ** First-order pattern-matching **
If a lemma has the type "(fun x => p) t" then rewriting t may fail
if the type of the lemma is first beta-reduced (this typically happens
when rewriting a single variable and the type of the lemma is obtained
by meta_instance (with empty map) which itself calls instance with this
empty map).
*)
let instance sigma s c =
(* if s = [] then c else *)
local_strong whd_betaiota sigma (plain_instance s c)
(* pseudo-reduction rule:
* [hnf_prod_app env s (Prod(_,B)) N --> B[N]
* with an HNF on the first argument to produce a product.
* if this does not work, then we use the string S as part of our
* error message. *)
let hnf_prod_app env sigma t n =
match kind_of_term (whd_betadeltaiota env sigma t) with
| Prod (_,_,b) -> subst1 n b
| _ -> anomaly ~label:"hnf_prod_app" (Pp.str "Need a product")
let hnf_prod_appvect env sigma t nl =
Array.fold_left (hnf_prod_app env sigma) t nl
let hnf_prod_applist env sigma t nl =
List.fold_left (hnf_prod_app env sigma) t nl
let hnf_lam_app env sigma t n =
match kind_of_term (whd_betadeltaiota env sigma t) with
| Lambda (_,_,b) -> subst1 n b
| _ -> anomaly ~label:"hnf_lam_app" (Pp.str "Need an abstraction")
let hnf_lam_appvect env sigma t nl =
Array.fold_left (hnf_lam_app env sigma) t nl
let hnf_lam_applist env sigma t nl =
List.fold_left (hnf_lam_app env sigma) t nl
let splay_prod env sigma =
let rec decrec env m c =
let t = whd_betadeltaiota env sigma c in
match kind_of_term t with
| Prod (n,a,c0) ->
decrec (push_rel (n,None,a) env)
((n,a)::m) c0
| _ -> m,t
in
decrec env []
let splay_lam env sigma =
let rec decrec env m c =
let t = whd_betadeltaiota env sigma c in
match kind_of_term t with
| Lambda (n,a,c0) ->
decrec (push_rel (n,None,a) env)
((n,a)::m) c0
| _ -> m,t
in
decrec env []
let splay_prod_assum env sigma =
let rec prodec_rec env l c =
let t = whd_betadeltaiota_nolet env sigma c in
match kind_of_term t with
| Prod (x,t,c) ->
prodec_rec (push_rel (x,None,t) env)
(Context.Rel.add (x, None, t) l) c
| LetIn (x,b,t,c) ->
prodec_rec (push_rel (x, Some b, t) env)
(Context.Rel.add (x, Some b, t) l) c
| Cast (c,_,_) -> prodec_rec env l c
| _ ->
let t' = whd_betadeltaiota env sigma t in
if Term.eq_constr t t' then l,t
else prodec_rec env l t'
in
prodec_rec env Context.Rel.empty
let splay_arity env sigma c =
let l, c = splay_prod env sigma c in
match kind_of_term c with
| Sort s -> l,s
| _ -> invalid_arg "splay_arity"
let sort_of_arity env sigma c = snd (splay_arity env sigma c)
let splay_prod_n env sigma n =
let rec decrec env m ln c = if Int.equal m 0 then (ln,c) else
match kind_of_term (whd_betadeltaiota env sigma c) with
| Prod (n,a,c0) ->
decrec (push_rel (n,None,a) env)
(m-1) (Context.Rel.add (n,None,a) ln) c0
| _ -> invalid_arg "splay_prod_n"
in
decrec env n Context.Rel.empty
let splay_lam_n env sigma n =
let rec decrec env m ln c = if Int.equal m 0 then (ln,c) else
match kind_of_term (whd_betadeltaiota env sigma c) with
| Lambda (n,a,c0) ->
decrec (push_rel (n,None,a) env)
(m-1) (Context.Rel.add (n,None,a) ln) c0
| _ -> invalid_arg "splay_lam_n"
in
decrec env n Context.Rel.empty
let is_sort env sigma t =
match kind_of_term (whd_betadeltaiota env sigma t) with
| Sort s -> true
| _ -> false
(* reduction to head-normal-form allowing delta/zeta only in argument
of case/fix (heuristic used by evar_conv) *)
let whd_betaiota_deltazeta_for_iota_state ts env sigma csts s =
let rec whrec csts s =
let (t, stack as s),csts' = whd_state_gen ~csts false betaiota env sigma s in
match Stack.strip_app stack with
|args, (Stack.Case _ :: _ as stack') ->
let (t_o,stack_o),csts_o = whd_state_gen ~csts:csts' false
(Closure.RedFlags.red_add_transparent betadeltaiota ts) env sigma (t,args) in
if reducible_mind_case t_o then whrec csts_o (t_o, stack_o@stack') else s,csts'
|args, (Stack.Fix _ :: _ as stack') ->
let (t_o,stack_o),csts_o = whd_state_gen ~csts:csts' false
(Closure.RedFlags.red_add_transparent betadeltaiota ts) env sigma (t,args) in
if isConstruct t_o then whrec csts_o (t_o, stack_o@stack') else s,csts'
|args, (Stack.Proj (n,m,p,_) :: stack'') ->
let (t_o,stack_o),csts_o = whd_state_gen ~csts:csts' false
(Closure.RedFlags.red_add_transparent betadeltaiota ts) env sigma (t,args) in
if isConstruct t_o then
whrec Cst_stack.empty (Stack.nth stack_o (n+m), stack'')
else s,csts'
|_, ((Stack.App _| Stack.Shift _|Stack.Update _|Stack.Cst _) :: _|[]) -> s,csts'
in whrec csts s
let find_conclusion env sigma =
let rec decrec env c =
let t = whd_betadeltaiota env sigma c in
match kind_of_term t with
| Prod (x,t,c0) -> decrec (push_rel (x,None,t) env) c0
| Lambda (x,t,c0) -> decrec (push_rel (x,None,t) env) c0
| t -> t
in
decrec env
let is_arity env sigma c =
match find_conclusion env sigma c with
| Sort _ -> true
| _ -> false
(*************************************)
(* Metas *)
let meta_value evd mv =
let rec valrec mv =
match meta_opt_fvalue evd mv with
| Some (b,_) ->
let metas = Metamap.bind valrec b.freemetas in
instance evd metas b.rebus
| None -> mkMeta mv
in
valrec mv
let meta_instance sigma b =
let fm = b.freemetas in
if Metaset.is_empty fm then b.rebus
else
let c_sigma = Metamap.bind (fun mv -> meta_value sigma mv) fm in
instance sigma c_sigma b.rebus
let nf_meta sigma c = meta_instance sigma (mk_freelisted c)
(* Instantiate metas that create beta/iota redexes *)
let meta_reducible_instance evd b =
let fm = b.freemetas in
let fold mv accu =
let fvalue = try meta_opt_fvalue evd mv with Not_found -> None in
match fvalue with
| None -> accu
| Some (g, (_, s)) -> Metamap.add mv (g.rebus, s) accu
in
let metas = Metaset.fold fold fm Metamap.empty in
let rec irec u =
let u = whd_betaiota Evd.empty u in
match kind_of_term u with
| Case (ci,p,c,bl) when isMeta (strip_outer_cast c) ->
let m = destMeta (strip_outer_cast c) in
(match
try
let g, s = Metamap.find m metas in
let is_coerce = match s with CoerceToType -> true | _ -> false in
if isConstruct g || not is_coerce then Some g else None
with Not_found -> None
with
| Some g -> irec (mkCase (ci,p,g,bl))
| None -> mkCase (ci,irec p,c,Array.map irec bl))
| App (f,l) when isMeta (strip_outer_cast f) ->
let m = destMeta (strip_outer_cast f) in
(match
try
let g, s = Metamap.find m metas in
let is_coerce = match s with CoerceToType -> true | _ -> false in
if isLambda g || not is_coerce then Some g else None
with Not_found -> None
with
| Some g -> irec (mkApp (g,l))
| None -> mkApp (f,Array.map irec l))
| Meta m ->
(try let g, s = Metamap.find m metas in
let is_coerce = match s with CoerceToType -> true | _ -> false in
if not is_coerce then irec g else u
with Not_found -> u)
| Proj (p,c) when isMeta c || isCast c && isMeta (pi1 (destCast c)) ->
let m = try destMeta c with _ -> destMeta (pi1 (destCast c)) in
(match
try
let g, s = Metamap.find m metas in
let is_coerce = match s with CoerceToType -> true | _ -> false in
if isConstruct g || not is_coerce then Some g else None
with Not_found -> None
with
| Some g -> irec (mkProj (p,g))
| None -> mkProj (p,c))
| _ -> map_constr irec u
in
if Metaset.is_empty fm then (* nf_betaiota? *) b.rebus
else irec b.rebus
let head_unfold_under_prod ts env _ c =
let unfold (cst,u as cstu) =
if Cpred.mem cst (snd ts) then
match constant_opt_value_in env cstu with
| Some c -> c
| None -> mkConstU cstu
else mkConstU cstu in
let rec aux c =
match kind_of_term c with
| Prod (n,t,c) -> mkProd (n,aux t, aux c)
| _ ->
let (h,l) = decompose_app c in
match kind_of_term h with
| Const cst -> beta_applist (unfold cst,l)
| _ -> c in
aux c
let betazetaevar_applist sigma n c l =
let rec stacklam n env t stack =
if Int.equal n 0 then applist (substl env t, stack) else
match kind_of_term t, stack with
| Lambda(_,_,c), arg::stacktl -> stacklam (n-1) (arg::env) c stacktl
| LetIn(_,b,_,c), _ -> stacklam (n-1) (substl env b::env) c stack
| Evar ev, _ ->
(match safe_evar_value sigma ev with
| Some body -> stacklam n env body stack
| None -> applist (substl env t, stack))
| _ -> anomaly (Pp.str "Not enough lambda/let's") in
stacklam n [] c l
|