1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id$ *)
open Util
open Pp
open Names
open Libnames
open Nametab
open Term
open Termops
open Typeops
open Libobject
open Library
open Classops
open Mod_subst
open Reductionops
(*s A structure S is a non recursive inductive type with a single
constructor (the name of which defaults to Build_S) *)
(* Table des structures: le nom de la structure (un [inductive]) donne
le nom du constructeur, le nombre de paramètres et pour chaque
argument réel du constructeur, le nom de la projection
correspondante, si valide, et un booléen disant si c'est une vraie
projection ou bien une fonction constante (associée à un LetIn) *)
type struc_typ = {
s_CONST : constructor;
s_EXPECTEDPARAM : int;
s_PROJKIND : (name * bool) list;
s_PROJ : constant option list }
let structure_table = ref (Indmap.empty : struc_typ Indmap.t)
let projection_table = ref Cmap.empty
let load_structure i (_,(ind,id,kl,projs)) =
let n = (fst (Global.lookup_inductive ind)).Declarations.mind_nparams in
let struc =
{ s_CONST = id; s_EXPECTEDPARAM = n; s_PROJ = projs; s_PROJKIND = kl } in
structure_table := Indmap.add ind struc !structure_table;
projection_table :=
List.fold_right (Option.fold_right (fun proj -> Cmap.add proj struc))
projs !projection_table
let cache_structure o =
load_structure 1 o
let subst_structure (_,subst,((kn,i),id,kl,projs as obj)) =
let kn' = subst_kn subst kn in
let projs' =
(* invariant: struc.s_PROJ is an evaluable reference. Thus we can take *)
(* the first component of subst_con. *)
list_smartmap
(Option.smartmap (fun kn -> fst (subst_con subst kn)))
projs
in
let id' = fst (subst_constructor subst id) in
if projs' == projs && kn' == kn && id' == id then obj else
((kn',i),id',kl,projs')
let discharge_structure (_,(ind,id,kl,projs)) =
Some (Lib.discharge_inductive ind, id, kl,
List.map (Option.map Lib.discharge_con) projs)
let (inStruc,outStruc) =
declare_object {(default_object "STRUCTURE") with
cache_function = cache_structure;
load_function = load_structure;
subst_function = subst_structure;
classify_function = (fun (_,x) -> Substitute x);
discharge_function = discharge_structure;
export_function = (function x -> Some x) }
let declare_structure (s,c,kl,pl) =
Lib.add_anonymous_leaf (inStruc (s,c,kl,pl))
let lookup_structure indsp = Indmap.find indsp !structure_table
let lookup_projections indsp = (lookup_structure indsp).s_PROJ
let find_projection_nparams = function
| ConstRef cst -> (Cmap.find cst !projection_table).s_EXPECTEDPARAM
| _ -> raise Not_found
let find_projection = function
| ConstRef cst -> Cmap.find cst !projection_table
| _ -> raise Not_found
(* Management of a field store : each field + argument of the inferred
* records are stored in a discrimination tree *)
let subst_id s (gr,ev,evm) =
(fst(subst_global s gr),ev,Evd.subst_evar_map s evm)
module MethodsDnet : Term_dnet.S
with type ident = global_reference * Evd.evar * Evd.evar_map
= Term_dnet.Make
(struct
type t = global_reference * Evd.evar * Evd.evar_map
let compare = Pervasives.compare
let subst = subst_id
let constr_of (_,ev,evm) = Evd.evar_concl (Evd.find evm ev)
end)
(struct
let reduce c = Reductionops.head_unfold_under_prod
Names.full_transparent_state (Global.env()) Evd.empty c
let direction = true
end)
let meth_dnet = ref MethodsDnet.empty
open Summary
let _ =
declare_summary "record-methods-state"
{ freeze_function = (fun () -> !meth_dnet);
unfreeze_function = (fun m -> meth_dnet := m);
init_function = (fun () -> meth_dnet := MethodsDnet.empty);
survive_module = false;
survive_section = false }
open Libobject
let load_method (_,(ty,id)) =
meth_dnet := MethodsDnet.add ty id !meth_dnet
let (in_method,out_method) =
declare_object
{ (default_object "RECMETHODS") with
load_function = (fun _ -> load_method);
cache_function = load_method;
subst_function = (fun (_,s,(ty,id)) -> Mod_subst.subst_mps s ty,subst_id s id);
export_function = (fun x -> Some x);
classify_function = (fun (_,x) -> Substitute x)
}
let methods_matching c = MethodsDnet.search_pattern !meth_dnet c
let declare_method cons ev sign =
Lib.add_anonymous_leaf (in_method ((Evd.evar_concl (Evd.find sign ev)),(cons,ev,sign)))
(************************************************************************)
(*s A canonical structure declares "canonical" conversion hints between *)
(* the effective components of a structure and the projections of the *)
(* structure *)
(* Table des definitions "object" : pour chaque object c,
c := [x1:B1]...[xk:Bk](Build_R a1...am t1...t_n)
If ti has the form (ci ui1...uir) where ci is a global reference and
if the corresponding projection Li of the structure R is defined, one
declare a "conversion" between ci and Li
x1:B1..xk:Bk |- (Li a1..am (c x1..xk)) =_conv (ci ui1...uir)
that maps the pair (Li,ci) to the following data
o_DEF = c
o_TABS = B1...Bk
o_PARAMS = a1...am
o_NARAMS = m
o_TCOMP = ui1...uir
*)
type obj_typ = {
o_DEF : constr;
o_INJ : int; (* position of trivial argument (negative= none) *)
o_TABS : constr list; (* ordered *)
o_TPARAMS : constr list; (* ordered *)
o_NPARAMS : int;
o_TCOMPS : constr list } (* ordered *)
type cs_pattern =
Const_cs of global_reference
| Prod_cs
| Sort_cs of sorts_family
| Default_cs
let object_table = ref (Refmap.empty : (cs_pattern * obj_typ) list Refmap.t)
let canonical_projections () =
Refmap.fold (fun x -> List.fold_right (fun (y,c) acc -> ((x,y),c)::acc))
!object_table []
let keep_true_projections projs kinds =
map_succeed (function (p,(_,true)) -> p | _ -> failwith "")
(List.combine projs kinds)
let cs_pattern_of_constr t =
match kind_of_term t with
App (f,vargs) ->
begin
try Const_cs (global_of_constr f) , -1, Array.to_list vargs with
_ -> raise Not_found
end
| Rel n -> Default_cs, pred n, []
| Prod (_,a,b) when not (dependent (mkRel 1) b) -> Prod_cs, -1, [a;pop b]
| Sort s -> Sort_cs (family_of_sort s), -1, []
| _ ->
begin
try Const_cs (global_of_constr t) , -1, [] with
_ -> raise Not_found
end
(* Intended to always succeed *)
let compute_canonical_projections (con,ind) =
let v = mkConst con in
let c = Environ.constant_value (Global.env()) con in
let lt,t = Reductionops.splay_lam (Global.env()) Evd.empty c in
let lt = List.rev (List.map snd lt) in
let args = snd (decompose_app t) in
let { s_EXPECTEDPARAM = p; s_PROJ = lpj; s_PROJKIND = kl } =
lookup_structure ind in
let params, projs = list_chop p args in
let lpj = keep_true_projections lpj kl in
let lps = List.combine lpj projs in
let comp =
List.fold_left
(fun l (spopt,t) -> (* comp=components *)
match spopt with
| Some proji_sp ->
begin
try
let patt, n , args = cs_pattern_of_constr t in
((ConstRef proji_sp, patt, n, args) :: l)
with Not_found -> l
end
| _ -> l)
[] lps in
List.map (fun (refi,c,inj,argj) ->
(refi,c),
{o_DEF=v; o_INJ=inj; o_TABS=lt;
o_TPARAMS=params; o_NPARAMS=List.length params; o_TCOMPS=argj})
comp
let open_canonical_structure i (_,o) =
if i=1 then
let lo = compute_canonical_projections o in
List.iter (fun ((proj,cs_pat),s) ->
let l = try Refmap.find proj !object_table with Not_found -> [] in
if not (List.mem_assoc cs_pat l) then
object_table := Refmap.add proj ((cs_pat,s)::l) !object_table) lo
let cache_canonical_structure o =
open_canonical_structure 1 o
let subst_canonical_structure (_,subst,(cst,ind as obj)) =
(* invariant: cst is an evaluable reference. Thus we can take *)
(* the first component of subst_con. *)
let cst' = fst (subst_con subst cst) in
let ind' = Inductiveops.subst_inductive subst ind in
if cst' == cst & ind' == ind then obj else (cst',ind')
let discharge_canonical_structure (_,(cst,ind)) =
Some (Lib.discharge_con cst,Lib.discharge_inductive ind)
let (inCanonStruc,outCanonStruct) =
declare_object {(default_object "CANONICAL-STRUCTURE") with
open_function = open_canonical_structure;
cache_function = cache_canonical_structure;
subst_function = subst_canonical_structure;
classify_function = (fun (_,x) -> Substitute x);
discharge_function = discharge_canonical_structure;
export_function = (function x -> Some x) }
let add_canonical_structure x = Lib.add_anonymous_leaf (inCanonStruc x)
(*s High-level declaration of a canonical structure *)
let error_not_structure ref =
errorlabstrm "object_declare"
(Nameops.pr_id (id_of_global ref) ++ str" is not a structure object.")
let check_and_decompose_canonical_structure ref =
let sp = match ref with ConstRef sp -> sp | _ -> error_not_structure ref in
let env = Global.env () in
let vc = match Environ.constant_opt_value env sp with
| Some vc -> vc
| None -> error_not_structure ref in
let body = snd (splay_lam (Global.env()) Evd.empty vc) in
let f,args = match kind_of_term body with
| App (f,args) -> f,args
| _ -> error_not_structure ref in
let indsp = match kind_of_term f with
| Construct (indsp,1) -> indsp
| _ -> error_not_structure ref in
let s = try lookup_structure indsp with Not_found -> error_not_structure ref in
let ntrue_projs = List.length (List.filter (fun (_, x) -> x) s.s_PROJKIND) in
if s.s_EXPECTEDPARAM + ntrue_projs > Array.length args then
error_not_structure ref;
(sp,indsp)
let declare_canonical_structure ref =
add_canonical_structure (check_and_decompose_canonical_structure ref)
let outCanonicalStructure x = fst (outCanonStruct x)
let lookup_canonical_conversion (proj,pat) =
List.assoc pat (Refmap.find proj !object_table)
let is_open_canonical_projection sigma (c,args) =
try
let l = Refmap.find (global_of_constr c) !object_table in
let n = (snd (List.hd l)).o_NPARAMS in
try isEvar (whd_evar sigma (List.nth args n)) with Failure _ -> false
with Not_found -> false
let freeze () =
!structure_table, !projection_table, !object_table
let unfreeze (s,p,o) =
structure_table := s; projection_table := p; object_table := o
let init () =
structure_table := Indmap.empty; projection_table := Cmap.empty;
object_table := Refmap.empty
let _ = init()
let _ =
Summary.declare_summary "objdefs"
{ Summary.freeze_function = freeze;
Summary.unfreeze_function = unfreeze;
Summary.init_function = init;
Summary.survive_module = false;
Summary.survive_section = false }
|