1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Created by Amokrane Saïbi, Dec 1998 *)
(* Addition of products and sorts in canonical structures by Pierre
Corbineau, Feb 2008 *)
(* This file registers properties of records: projections and
canonical structures *)
open Errors
open Util
open Pp
open Names
open Globnames
open Nametab
open Term
open Libobject
open Mod_subst
open Reductionops
(*s A structure S is a non recursive inductive type with a single
constructor (the name of which defaults to Build_S) *)
(* Table des structures: le nom de la structure (un [inductive]) donne
le nom du constructeur, le nombre de paramètres et pour chaque
argument réel du constructeur, le nom de la projection
correspondante, si valide, et un booléen disant si c'est une vraie
projection ou bien une fonction constante (associée à un LetIn) *)
type struc_typ = {
s_CONST : constructor;
s_EXPECTEDPARAM : int;
s_PROJKIND : (Name.t * bool) list;
s_PROJ : constant option list }
let structure_table =
Summary.ref (Indmap.empty : struc_typ Indmap.t) ~name:"record-structs"
let projection_table =
Summary.ref Cmap.empty ~name:"record-projs"
(* TODO: could be unify struc_typ and struc_tuple ? in particular,
is the inductive always (fst constructor) ? It seems so... *)
type struc_tuple =
inductive * constructor * (Name.t * bool) list * constant option list
let load_structure i (_,(ind,id,kl,projs)) =
let n = (fst (Global.lookup_inductive ind)).Declarations.mind_nparams in
let struc =
{ s_CONST = id; s_EXPECTEDPARAM = n; s_PROJ = projs; s_PROJKIND = kl } in
structure_table := Indmap.add ind struc !structure_table;
projection_table :=
List.fold_right (Option.fold_right (fun proj -> Cmap.add proj struc))
projs !projection_table
let cache_structure o =
load_structure 1 o
let subst_structure (subst,((kn,i),id,kl,projs as obj)) =
let kn' = subst_mind subst kn in
let projs' =
(* invariant: struc.s_PROJ is an evaluable reference. Thus we can take *)
(* the first component of subst_con. *)
List.smartmap
(Option.smartmap (fun kn -> fst (subst_con_kn subst kn)))
projs
in
let id' = fst (subst_constructor subst id) in
if projs' == projs && kn' == kn && id' == id then obj else
((kn',i),id',kl,projs')
let discharge_constructor (ind, n) =
(Lib.discharge_inductive ind, n)
let discharge_structure (_,(ind,id,kl,projs)) =
Some (Lib.discharge_inductive ind, discharge_constructor id, kl,
List.map (Option.map Lib.discharge_con) projs)
let inStruc : struc_tuple -> obj =
declare_object {(default_object "STRUCTURE") with
cache_function = cache_structure;
load_function = load_structure;
subst_function = subst_structure;
classify_function = (fun x -> Substitute x);
discharge_function = discharge_structure }
let declare_structure (s,c,kl,pl) =
Lib.add_anonymous_leaf (inStruc (s,c,kl,pl))
let lookup_structure indsp = Indmap.find indsp !structure_table
let lookup_projections indsp = (lookup_structure indsp).s_PROJ
let find_projection_nparams = function
| ConstRef cst -> (Cmap.find cst !projection_table).s_EXPECTEDPARAM
| _ -> raise Not_found
let find_projection = function
| ConstRef cst -> Cmap.find cst !projection_table
| _ -> raise Not_found
(************************************************************************)
(*s A canonical structure declares "canonical" conversion hints between *)
(* the effective components of a structure and the projections of the *)
(* structure *)
(* Table des definitions "object" : pour chaque object c,
c := [x1:B1]...[xk:Bk](Build_R a1...am t1...t_n)
If ti has the form (ci ui1...uir) where ci is a global reference (or
a sort, or a product or a reference to a parameter) and if the
corresponding projection Li of the structure R is defined, one
declares a "conversion" between ci and Li.
x1:B1..xk:Bk |- (Li a1..am (c x1..xk)) =_conv (ci ui1...uir)
that maps the pair (Li,ci) to the following data
o_DEF = c
o_TABS = B1...Bk
o_INJ = Some n (when ci is a reference to the parameter xi)
o_PARAMS = a1...am
o_NARAMS = m
o_TCOMP = ui1...uir
*)
type obj_typ = {
o_DEF : constr;
o_CTX : Univ.ContextSet.t;
o_INJ : int option; (* position of trivial argument if any *)
o_TABS : constr list; (* ordered *)
o_TPARAMS : constr list; (* ordered *)
o_NPARAMS : int;
o_TCOMPS : constr list } (* ordered *)
type cs_pattern =
Const_cs of global_reference
| Prod_cs
| Sort_cs of sorts_family
| Default_cs
let eq_cs_pattern p1 p2 = match p1, p2 with
| Const_cs gr1, Const_cs gr2 -> eq_gr gr1 gr2
| Prod_cs, Prod_cs -> true
| Sort_cs s1, Sort_cs s2 -> Sorts.family_equal s1 s2
| Default_cs, Default_cs -> true
| _ -> false
let rec assoc_pat a = function
| ((pat, t), e) :: xs -> if eq_cs_pattern pat a then (t, e) else assoc_pat a xs
| [] -> raise Not_found
let object_table =
Summary.ref (Refmap.empty : ((cs_pattern * constr) * obj_typ) list Refmap.t)
~name:"record-canonical-structs"
let canonical_projections () =
Refmap.fold (fun x -> List.fold_right (fun ((y,_),c) acc -> ((x,y),c)::acc))
!object_table []
let keep_true_projections projs kinds =
let filter (p, (_, b)) = if b then Some p else None in
List.map_filter filter (List.combine projs kinds)
let cs_pattern_of_constr t =
match kind_of_term t with
App (f,vargs) ->
begin
try Const_cs (global_of_constr f) , None, Array.to_list vargs
with e when Errors.noncritical e -> raise Not_found
end
| Rel n -> Default_cs, Some n, []
| Prod (_,a,b) when not (Termops.dependent (mkRel 1) b) -> Prod_cs, None, [a; Termops.pop b]
| Sort s -> Sort_cs (family_of_sort s), None, []
| _ ->
begin
try Const_cs (global_of_constr t) , None, []
with e when Errors.noncritical e -> raise Not_found
end
(* Intended to always succeed *)
let compute_canonical_projections (con,ind) =
let env = Global.env () in
let ctx = Univ.instantiate_univ_context (Environ.constant_context env con) in
let u = Univ.UContext.instance ctx in
let v = (mkConstU (con,u)) in
let ctx = Univ.ContextSet.of_context ctx in
let c = Environ.constant_value_in env (con,u) in
let lt,t = Reductionops.splay_lam env Evd.empty c in
let lt = List.rev_map snd lt in
let args = snd (decompose_app t) in
let { s_EXPECTEDPARAM = p; s_PROJ = lpj; s_PROJKIND = kl } =
lookup_structure ind in
let params, projs = List.chop p args in
let lpj = keep_true_projections lpj kl in
let lps = List.combine lpj projs in
let comp =
List.fold_left
(fun l (spopt,t) -> (* comp=components *)
match spopt with
| Some proji_sp ->
begin
try
let patt, n , args = cs_pattern_of_constr t in
((ConstRef proji_sp, patt, t, n, args) :: l)
with Not_found ->
if Flags.is_verbose () then
(let con_pp = Nametab.pr_global_env Id.Set.empty (ConstRef con)
and proji_sp_pp = Nametab.pr_global_env Id.Set.empty (ConstRef proji_sp) in
msg_warning (strbrk "No global reference exists for projection value"
++ Termops.print_constr t ++ strbrk " in instance "
++ con_pp ++ str " of " ++ proji_sp_pp ++ strbrk ", ignoring it."));
l
end
| _ -> l)
[] lps in
List.map (fun (refi,c,t,inj,argj) ->
(refi,(c,t)),
{o_DEF=v; o_CTX=ctx; o_INJ=inj; o_TABS=lt;
o_TPARAMS=params; o_NPARAMS=List.length params; o_TCOMPS=argj})
comp
let pr_cs_pattern = function
Const_cs c -> Nametab.pr_global_env Id.Set.empty c
| Prod_cs -> str "_ -> _"
| Default_cs -> str "_"
| Sort_cs s -> Termops.pr_sort_family s
let open_canonical_structure i (_,o) =
if Int.equal i 1 then
let lo = compute_canonical_projections o in
List.iter (fun ((proj,(cs_pat,_ as pat)),s) ->
let l = try Refmap.find proj !object_table with Not_found -> [] in
let ocs = try Some (assoc_pat cs_pat l)
with Not_found -> None
in match ocs with
| None -> object_table := Refmap.add proj ((pat,s)::l) !object_table;
| Some (c, cs) ->
if Flags.is_verbose () then
let old_can_s = (Termops.print_constr cs.o_DEF)
and new_can_s = (Termops.print_constr s.o_DEF) in
let prj = (Nametab.pr_global_env Id.Set.empty proj)
and hd_val = (pr_cs_pattern cs_pat) in
msg_warning (strbrk "Ignoring canonical projection to " ++ hd_val
++ strbrk " by " ++ prj ++ strbrk " in "
++ new_can_s ++ strbrk ": redundant with " ++ old_can_s)) lo
let cache_canonical_structure o =
open_canonical_structure 1 o
let subst_canonical_structure (subst,(cst,ind as obj)) =
(* invariant: cst is an evaluable reference. Thus we can take *)
(* the first component of subst_con. *)
let cst' = subst_constant subst cst in
let ind' = subst_ind subst ind in
if cst' == cst && ind' == ind then obj else (cst',ind')
let discharge_canonical_structure (_,(cst,ind)) =
Some (Lib.discharge_con cst,Lib.discharge_inductive ind)
let inCanonStruc : constant * inductive -> obj =
declare_object {(default_object "CANONICAL-STRUCTURE") with
open_function = open_canonical_structure;
cache_function = cache_canonical_structure;
subst_function = subst_canonical_structure;
classify_function = (fun x -> Substitute x);
discharge_function = discharge_canonical_structure }
let add_canonical_structure x = Lib.add_anonymous_leaf (inCanonStruc x)
(*s High-level declaration of a canonical structure *)
let error_not_structure ref =
errorlabstrm "object_declare"
(Nameops.pr_id (basename_of_global ref) ++ str" is not a structure object.")
let check_and_decompose_canonical_structure ref =
let sp = match ref with ConstRef sp -> sp | _ -> error_not_structure ref in
let env = Global.env () in
let ctx = Environ.constant_context env sp in
let u = Univ.UContext.instance ctx in
let vc = match Environ.constant_opt_value_in env (sp, u) with
| Some vc -> vc
| None -> error_not_structure ref in
let body = snd (splay_lam (Global.env()) Evd.empty vc) in
let f,args = match kind_of_term body with
| App (f,args) -> f,args
| _ -> error_not_structure ref in
let indsp = match kind_of_term f with
| Construct ((indsp,1),u) -> indsp
| _ -> error_not_structure ref in
let s = try lookup_structure indsp with Not_found -> error_not_structure ref in
let ntrue_projs = List.length (List.filter (fun (_, x) -> x) s.s_PROJKIND) in
if s.s_EXPECTEDPARAM + ntrue_projs > Array.length args then
error_not_structure ref;
(sp,indsp)
let declare_canonical_structure ref =
add_canonical_structure (check_and_decompose_canonical_structure ref)
let lookup_canonical_conversion (proj,pat) =
assoc_pat pat (Refmap.find proj !object_table)
let is_open_canonical_projection env sigma (c,args) =
try
let ref = global_of_constr c in
let n = find_projection_nparams ref in
(** Check if there is some canonical projection attached to this structure *)
let _ = Refmap.find ref !object_table in
try
let arg = whd_betadeltaiota env sigma (Stack.nth args n) in
let hd = match kind_of_term arg with App (hd, _) -> hd | _ -> arg in
not (isConstruct hd)
with Failure _ -> false
with Not_found -> false
|