aboutsummaryrefslogtreecommitdiffhomepage
path: root/pretyping/pretyping.ml
blob: 77c422b378370cd1cb67cea15705a8866e6d26f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

(* $Id$ *)

open Pp
open Util
open Names
open Generic
open Sign
open Evd
open Term
open Reduction
open Environ
open Type_errors
open Typeops
open Classops
open List
open Recordops 
open Evarutil
open Pretype_errors
open Rawterm
open Evarconv
open Coercion


(***********************************************************************)
(* This concerns Cases *)
open Inductive
open Instantiate

(* Pour le vieux "match" que Program utilise encore, vieille histoire ... *)

(* Awful special reduction function which skips abstraction on Xtra in
   order to be safe for Program ... *)

let stacklamxtra recfun = 
  let rec lamrec sigma p_0 p_1 = match p_0,p_1 with 
    | (stack, (DOP2(Lambda,DOP1(XTRA "COMMENT",_),DLAM(_,c)) as t)) ->
        recfun stack (substl sigma t)
    | ((h::t), (DOP2(Lambda,_,DLAM(_,c)))) -> lamrec (h::sigma) t c
    | (stack, t) -> recfun stack (substl sigma t)
  in 
  lamrec 

let rec whrec x stack =
  match x with   
    | DOP2(Lambda,DOP1(XTRA "COMMENT",c),DLAM(name,t)) ->
    	let t' = applist (whrec t (List.map (lift 1) stack)) in 
	DOP2(Lambda,DOP1(XTRA "COMMENT",c),DLAM(name,t')),[]
    | DOP2(Lambda,c1,DLAM(name,c2)) ->
    	(match stack with
	   | [] -> (DOP2(Lambda,c1,DLAM(name,whd_betaxtra c2)),[])
	   | a1::rest -> stacklamxtra (fun l x -> whrec x l) [a1] rest c2)
    | DOPN(AppL,cl) -> whrec (array_hd cl) (array_app_tl cl stack)
    | DOP2(Cast,c,_) ->  whrec c stack
    | x -> x,stack

and whd_betaxtra x = applist(whrec x [])

let lift_context n l = 
  let k = List.length l in 
  list_map_i (fun i (name,c) -> (name,liftn n (k-i) c)) 0 l
let prod_create env (a,b) = 
  mkProd (named_hd env a Anonymous) a b
let lambda_name env (n,a,b) = 
  mkLambda (named_hd env a n) a b
let lambda_create env (a,b) = 
  mkLambda (named_hd env a Anonymous) a b
let it_prod_name env = 
  List.fold_left (fun c (n,t) -> prod_name env (n,t,c)) 
let it_lambda_name env = 
  List.fold_left (fun c (n,t) -> lambda_name env (n,t,c))

let transform_rec loc env sigma cl (ct,pt) = 
  let (mind,largs as appmind) = find_minductype env sigma ct in
  let p = cl.(0)
  and c = cl.(1)
  and lf = Array.sub cl 2 ((Array.length cl) - 2) in
  let mispec = lookup_mind_specif mind env in
  let mI = mkMutInd mind in
  let recargs = mis_recarg mispec in
  let expn = Array.length recargs in
  if Array.length lf <> expn then 
    error_number_branches_loc loc CCI env c ct expn;
  if is_recursive [mispec.mis_tyi] recargs then
    let dep = find_case_dep_nparams env sigma (c,p) appmind pt in 
    let ntypes = mis_ntypes mispec (* was mis_nconstr !?! *)
    and tyi = mispec.mis_tyi 
    and nparams = mis_nparams mispec in
    let depFvec = Array.create ntypes (None : (bool * constr) option) in 
    let _ = Array.set depFvec mispec.mis_tyi (Some(dep,Rel 1)) in 
    let (pargs,realargs) = list_chop nparams largs in
    let vargs = Array.of_list pargs in
    let (_,typeconstrvec) = mis_type_mconstructs mispec in
    (* build now the fixpoint *)
    let realar =
      hnf_prod_appvect env sigma "make_branch" (mis_arity mispec) vargs in
    let lnames,_ = splay_prod env sigma realar in 
    let nar = List.length lnames in
    let ci = make_default_case_info mispec in
    let branches = 
      array_map3
	(fun f t reca -> 
	   whd_betaxtra
             (Indrec.make_rec_branch_arg env sigma
                ((Array.map (lift (nar+2)) vargs),depFvec,nar+1)
                f t reca))
        (Array.map (lift (nar+2)) lf) typeconstrvec recargs 
    in 
    let deffix = 
      it_lambda_name env
	(lambda_create env
	   (appvect (mI,Array.append (Array.map (lift (nar+1)) vargs)
                       (rel_vect 0 nar)),
            mkMutCaseA ci (lift (nar+2) p) (Rel 1) branches))
        (lift_context 1 lnames) 
    in
    if noccurn 1 deffix then 
      whd_beta env sigma (applist (pop deffix,realargs@[c]))
    else
      let typPfix = 
	it_prod_name env
	  (prod_create env
	     (appvect (mI,(Array.append 
			     (Array.map (lift nar) vargs)
			     (rel_vect 0 nar))),
	      (if dep then 
		 applist (whd_beta_stack env sigma 
			    (lift (nar+1) p) (rel_list 0 (nar+1)))
	       else 
		 applist (whd_beta_stack env sigma 
			    (lift (nar+1) p) (rel_list 1 nar)))))
          lnames 
      in
      let fix = DOPN(Fix([|nar|],0),
		     [|typPfix;
		       DLAMV(Name(id_of_string "F"),[|deffix|])|])
      in 
      applist (fix,realargs@[c])
  else
    let lnames,_ = splay_prod env sigma (mis_arity mispec) in 
    let nar = List.length lnames in
    let ci = make_default_case_info mispec in
    mkMutCaseA ci p c lf

(***********************************************************************)

(*
let ctxt_of_ids ids =
  Array.map
    (function
       | RRef (_,RVar id) -> VAR id
       | _ -> error "pretyping: arbitrary subst of ref not implemented")
    ids
*)
let ctxt_of_ids cl = cl

let mt_evd = Evd.empty

let vect_lift_type = Array.mapi (fun i t -> typed_app (lift i) t)

let j_nf_ise sigma {uj_val=v;uj_type=t;uj_kind=k} =
  {uj_val=nf_ise1 sigma v;uj_type=nf_ise1 sigma t;uj_kind=k}

let jv_nf_ise sigma = Array.map (j_nf_ise sigma)

(* Utilisé pour inférer le prédicat des Cases *)
(* Semble exagérement fort *)
(* Faudra préférer une unification entre les types de toutes les clauses *)
(* et autoriser des ? à rester dans le résultat de l'unification *)

let evar_type_fixpoint env isevars lna lar vdefj =
  let lt = Array.length vdefj in 
    if Array.length lar = lt then 
      for i = 0 to lt-1 do 
        if not (the_conv_x_leq env isevars
		  (vdefj.(i)).uj_type (lift lt (body_of_type lar.(i)))) then
          error_ill_typed_rec_body CCI env i lna 
	    (jv_nf_ise !isevars vdefj) 
	    (Array.map (typed_app (nf_ise1 !isevars)) lar)
      done


(* Inutile ?
let cast_rel isevars env cj tj =
    if the_conv_x_leq isevars env cj.uj_type tj.uj_val then
        {uj_val=j_val_only cj;
         uj_type=tj.uj_val;
         uj_kind = hnf_constr !isevars tj.uj_type}
   else error_actual_type CCI env (j_nf_ise !isevars cj) (j_nf_ise !isevars tj)

*)
let let_path = make_path ["Core"] (id_of_string "let") CCI

let wrong_number_of_cases_message loc env isevars (c,ct) expn = 
  let c = nf_ise1 !isevars c and ct = nf_ise1 !isevars ct in
  error_number_branches_loc loc CCI env c ct expn

let check_branches_message loc env isevars (c,ct) (explft,lft) = 
  let n = Array.length explft and expn = Array.length lft in
  if n<>expn then wrong_number_of_cases_message loc env isevars (c,ct) expn;
  for i = 0 to n-1 do
    if not (the_conv_x_leq env isevars lft.(i) explft.(i)) then 
      let c = nf_ise1 !isevars c
      and ct = nf_ise1 !isevars ct 
      and lfi = nf_betaiota env !isevars (nf_ise1 !isevars lft.(i)) in
      error_ill_formed_branch_loc loc CCI env c i lfi 
	(nf_betaiota env !isevars explft.(i))
  done

(*
let evar_type_case isevars env ct pt lft p c =
  let (mind,bty,rslty) = type_case_branches env !isevars ct pt p c
  in check_branches_message isevars env (c,ct) (bty,lft); (mind,rslty)
*)

let pretype_var loc env lvar id = 
  try
    List.assoc id lvar
  with
    Not_found ->
      (try
         match lookup_id id (context env) with
           | RELNAME (n,typ) ->
	     { uj_val  = Rel n;
	       uj_type = lift n (body_of_type typ);
	       uj_kind = DOP0 (Sort (level_of_type typ)) }
           | GLOBNAME (id,typ) ->
	     { uj_val  = VAR id;
	       uj_type = body_of_type typ;
	       uj_kind = DOP0 (Sort (level_of_type typ)) }
      with Not_found ->
        error_var_not_found_loc loc CCI id);;

(*************************************************************************)
(* Main pretyping function                                               *)

let trad_metamap = ref []
let trad_nocheck = ref false

let pretype_ref loc isevars env lvar = function
| RVar id -> pretype_var loc env lvar id

| RConst (sp,ctxt) ->
    let cst = (sp,ctxt_of_ids ctxt) in
    make_judge (mkConst cst) (type_of_constant env !isevars cst)

| RAbst sp -> failwith "Pretype: abst doit disparaître"
(*
  if sp = let_path then
      (match Array.to_list cl with
       [m;DLAM(na,b)] ->
       let mj = pretype empty_tycon isevars env m in
	 (try 
	    let mj = inh_ass_of_j isevars env mj in
	    let mb = body_of_type mj in
	    let bj =
	     pretype empty_tycon (push_rel (na,mj) env) isevars b in
	   {uj_val = DOPN(Abst sp,[|mb;DLAM(na,bj.uj_val)|]);
            uj_type = sAPP (DLAM(na,bj.uj_type)) mb;
            uj_kind = pop bj.uj_kind }
	 with UserError _ -> 
	   pretype vtcon isevars env (abst_value cstr)) 
      | _ -> errorlabstrm "Trad.constr_of_com" [< 'sTR"Malformed ``let''" >])
   else if evaluable_abst cstr then
     pretype vtcon isevars env (abst_value cstr)
   else error "Cannot typecheck an unevaluable abstraction"
*)
| REVar (sp,ctxt) -> error " Not able to type terms with dependent subgoals"
(* Not able to type goal existential yet
    let cstr = mkConst (sp,ctxt_of_ids ids) in
    make_judge cstr (type_of_existential env !isevars cstr)
*)
| RInd (ind_sp,ctxt) ->
    let ind = (ind_sp,ctxt_of_ids ctxt) in
    make_judge (mkMutInd ind) (type_of_inductive env !isevars ind)
 
| RConstruct (cstr_sp,ctxt) ->
    let cstr = (cstr_sp,ctxt_of_ids ctxt) in
    let (typ,kind) = destCast (type_of_constructor env !isevars cstr) in
    {uj_val=mkMutConstruct cstr; uj_type=typ; uj_kind=kind}

let pretype_sort = function
  | RProp c -> judge_of_prop_contents c
  | RType -> { uj_val = dummy_sort; uj_type = dummy_sort; uj_kind = dummy_sort}

(* pretype vtcon isevars env constr tries to solve the *)
(* existential variables in constr in environment env with the *)
(* constraint vtcon (see Tradevar). *)
(* Invariant : Prod and Lambda types are casted !! *)
let rec pretype vtcon env isevars lvar lmeta cstr =
match cstr with   (* Où teste-t-on que le résultat doit satisfaire tycon ? *)

| RRef (loc,ref) -> 
    pretype_ref loc isevars env lvar ref

| RMeta (loc,n) ->
    (try
       List.assoc n lmeta
     with
        Not_found ->
          let metaty =
            try List.assoc n !trad_metamap
            with Not_found ->
	    (* Tester si la référence est castée *)
	      user_err_loc (loc,"pretype",
	        [< 'sTR "Metavariable "; 'iNT n; 'sTR" is unbound" >])
	  in
            (match kind_of_term metaty with
                IsCast (typ,kind) ->
                  {uj_val=DOP0 (Meta n); uj_type=typ; uj_kind=kind}
               | _ ->
                 {uj_val=DOP0 (Meta n);
                  uj_type=metaty;
                  uj_kind=failwith "should be casted"}))
	          (* hnf_constr !isevars (exemeta_hack metaty).uj_type}) *)

| RHole loc ->
  if !compter then nbimpl:=!nbimpl+1;
  (match vtcon with
    (true,(Some v, _)) ->
      let (valc,typc) = (body_of_type v,mkSort (level_of_type v)) in
      {uj_val=valc; uj_type=typc; uj_kind=dummy_sort}
  | (false,(None,Some ty)) ->
      let c = new_isevar isevars env ty CCI in
      {uj_val=c;uj_type=ty;uj_kind = dummy_sort}
  | (true,(None,None)) ->
      let ty = mkCast dummy_sort dummy_sort in
      let c = new_isevar isevars env ty CCI in
      {uj_val=c;uj_type=ty;uj_kind = dummy_sort}
  | (false,(None,None)) ->
      (match loc with
	  None -> anomaly "There is an implicit argument I cannot solve"
	| Some loc -> 
	    user_err_loc
	      (loc,"pretype",
	       [< 'sTR "Cannot infer a term for this placeholder" >]))
  | _ -> anomaly "tycon")


| RRec (loc,fixkind,lfi,lar,vdef) ->
  let larj = Array.map (pretype def_vty_con env isevars lvar lmeta ) lar in
  let lara = Array.map (assumption_of_judgment env !isevars) larj in
  let nbfix = Array.length lfi in
  let lfi = List.map (fun id -> Name id) (Array.to_list lfi) in
  let newenv =
    array_fold_left2 (fun env id ar -> (push_rel (id,ar) env))
      env (Array.of_list (List.rev lfi)) (vect_lift_type lara) in
  let vdefj =
    Array.mapi 
      (fun i def -> (* we lift nbfix times the type in tycon, because of
                     * the nbfix variables pushed to newenv *)
        pretype (mk_tycon (lift nbfix (larj.(i).uj_val))) newenv isevars lvar
          lmeta def) vdef in
  (evar_type_fixpoint env isevars lfi lara vdefj;
  match fixkind with
    | RFix(vn,i) ->
      let fix = mkFix vn i lara (List.rev lfi) (Array.map j_val_only vdefj) in
	check_fix env !isevars fix;
	make_judge fix lara.(i)
    | RCofix i -> 
      let cofix = mkCoFix i lara (List.rev lfi) (Array.map j_val_only vdefj) in
	check_cofix env !isevars cofix;
	make_judge cofix lara.(i))

| RSort (loc,s) -> pretype_sort s

| RApp (loc,f,args) -> 
    let j = pretype empty_tycon env isevars lvar lmeta f in
    let j = inh_app_fun env isevars j in
    let apply_one_arg (tycon,jl) c =
      let cj =
        pretype (app_dom_tycon env isevars tycon) env isevars lvar lmeta c in
      let rtc = app_rng_tycon env isevars cj.uj_val tycon in
      (rtc,cj::jl)  in
    let jl = List.rev (snd (List.fold_left apply_one_arg
			      (mk_tycon j.uj_type,[]) args)) in
    inh_apply_rel_list !trad_nocheck env isevars jl j vtcon

| RBinder(loc,BLambda,name,c1,c2)      ->
    let j =
      pretype (abs_dom_valcon env isevars vtcon) env isevars lvar lmeta c1 in
    let assum = inh_ass_of_j env isevars j in
    let var = (name,assum) in
    let j' =
      pretype (abs_rng_tycon env isevars vtcon) (push_rel var env) isevars lvar
        lmeta c2 
    in 
    fst (abs_rel env !isevars name assum j')

| RBinder(loc,BProd,name,c1,c2)        ->
    let j = pretype def_vty_con env isevars lvar lmeta c1 in
    let assum = inh_ass_of_j env isevars j in
    let var = (name,assum) in
    let j' = pretype def_vty_con (push_rel var env) isevars lvar lmeta c2 in
    let j'' = inh_tosort env isevars j' in
    fst (gen_rel env !isevars name assum j'')

| ROldCase (loc,isrec,po,c,lf) ->
  let cj = pretype empty_tycon env isevars lvar lmeta c in
  let {mind=mind;params=params;realargs=realargs} =
    try find_inductive env !isevars cj.uj_type
    with Induc -> error_case_not_inductive CCI env
	(nf_ise1 !isevars cj.uj_val) (nf_ise1 !isevars cj.uj_type) in
  let pj = match po with
    | Some p -> pretype empty_tycon env isevars lvar lmeta p
    | None -> 
	try match vtcon with
	    (_,(_,Some pred)) -> 
	      let (predc,predt) = destCast pred in
	      let predj = {uj_val=predc;uj_type=predt;uj_kind=dummy_sort} in
	      inh_tosort env isevars predj
	  | _ -> error "notype"
	with UserError _ -> (* get type information from type of branches *)
	  let rec findtype i =
	    if i > Array.length lf
	    then error_cant_find_case_type_loc loc env cj.uj_val
	    else
	      try
		let expti =
		  Cases.branch_scheme env isevars isrec i (mind,params) in
		let fj =
                  pretype (mk_tycon expti) env isevars lvar lmeta lf.(i-1) in
		let efjt = nf_ise1 !isevars fj.uj_type in 
		let pred = 
		  Indrec.pred_case_ml_onebranch env !isevars isrec 
		    (cj.uj_val,(mind,params,realargs)) (i,fj.uj_val,efjt) in
		if has_ise !isevars pred then findtype (i+1)
		else 
		  let pty = Retyping.get_type_of env !isevars pred in
		  let k = Retyping.get_type_of env !isevars pty in
		    {uj_val=pred;uj_type=pty;uj_kind=k}
	      with UserError _ -> findtype (i+1) in
	    findtype 1 in

  let evalct = nf_ise1 !isevars cj.uj_type
  and evalPt = nf_ise1 !isevars pj.uj_type in

  let (bty,rsty) =
    Indrec.type_rec_branches isrec env !isevars evalct evalPt pj.uj_val cj.uj_val in
  if Array.length bty <> Array.length lf then
    wrong_number_of_cases_message loc env isevars (cj.uj_val,evalct)
      (Array.length bty)
  else
    let lfj =
      array_map2
        (fun tyc f -> pretype (mk_tycon tyc) env isevars lvar lmeta f) bty
          lf in
    let lfv = (Array.map (fun j -> j.uj_val) lfj) in
    let lft = (Array.map (fun j -> j.uj_type) lfj) in
    check_branches_message loc env isevars (cj.uj_val,evalct) (bty,lft);
    let v =
      if isrec
      then 
	let rEC = Array.append [|pj.uj_val; cj.uj_val|] lfv in
	transform_rec loc env !isevars rEC (evalct,evalPt)
      else
	let ci = make_default_case_info (lookup_mind_specif mind env) in
	mkMutCaseA ci pj.uj_val cj.uj_val (Array.map (fun j-> j.uj_val) lfj) in

       {uj_val = v;
       uj_type = rsty;
       uj_kind = snd (splay_prod env !isevars evalPt)}

| RCases (loc,prinfo,po,tml,eqns) ->
    Cases.compile_cases
      ((fun vtyc env -> pretype vtyc env isevars lvar lmeta),isevars)
      vtcon env (* loc *) (po,tml,eqns)

| RCast(loc,c,t) ->
  let tj = pretype def_vty_con env isevars lvar lmeta t in
  let tj = inh_tosort_force env isevars tj in
  let cj =
    pretype (mk_tycon2 vtcon (body_of_type (assumption_of_judgment env !isevars
      tj))) env isevars lvar lmeta c in
  inh_cast_rel env isevars cj tj

(* Maintenant, tout s'exécute... 
  | _ -> error_cant_execute CCI env (nf_ise1 env !isevars cstr)
*)


let unsafe_fmachine vtcon nocheck isevars metamap env lvar lmeta constr =
  trad_metamap := metamap;
  trad_nocheck := nocheck;
  reset_problems ();
  pretype vtcon env isevars lvar lmeta constr


(* [fail_evar] says how to process unresolved evars:
 *   true -> raise an error message
 *   false -> convert them into new Metas (casted with their type)
 *)
let process_evars fail_evar env sigma =
  (if fail_evar then
     try whd_ise env sigma
     with Uninstantiated_evar n ->
          errorlabstrm "whd_ise"
            [< 'sTR"There is an unknown subterm I cannot solve" >]
   else whd_ise1_metas env sigma)


let j_apply f env sigma j =
  let under_outer_cast f env sigma = function
    | DOP2 (Cast,b,t) -> DOP2 (Cast,f env sigma b,f env sigma t)
    | c -> f env sigma c in
  { uj_val=strong (under_outer_cast f) env sigma j.uj_val;
    uj_type=strong f env sigma j.uj_type;
    uj_kind=strong f env sigma j.uj_kind}

(* TODO: comment faire remonter l'information si le typage a resolu des
       variables du sigma original. il faudrait que la fonction de typage
       retourne aussi le nouveau sigma...
*)

let ise_resolve_casted_gen sigma env lvar lmeta typ c =
  let isevars = ref sigma in
  let j = unsafe_fmachine (mk_tycon typ) false isevars [] env lvar lmeta c in
  (j_apply (fun _ -> process_evars true) env !isevars j).uj_val

let ise_resolve_casted sigma env typ c =
  ise_resolve_casted_gen sigma env [] [] typ c

(* Raw calls to the inference machine of Trad: boolean says if we must fail
   on unresolved evars, or replace them by Metas; the unsafe_judgment list
   allows us to extend env with some bindings *)
let ise_resolve fail_evar sigma metamap env lvar lmeta c =
  let isevars = ref sigma in
  let j = unsafe_fmachine empty_tycon false isevars metamap env lvar lmeta c in
  j_apply (fun _ -> process_evars fail_evar) env !isevars j

let ise_resolve_type fail_evar sigma metamap env c =
  let isevars = ref sigma in
  let j = unsafe_fmachine def_vty_con false isevars metamap env [] [] c in
  let tj = inh_ass_of_j env isevars j in
  typed_app (strong (fun _ -> process_evars fail_evar) env !isevars) tj

let ise_resolve_nocheck sigma metamap env c =
  let isevars = ref sigma in
  let j = unsafe_fmachine empty_tycon true isevars metamap env [] [] c in
  j_apply (fun _ -> process_evars true) env !isevars j

let ise_resolve1 is_ass sigma env c =
  if is_ass then 
    body_of_type (ise_resolve_type true sigma [] env c)
  else 
    (ise_resolve true sigma [] env [] [] c).uj_val

let ise_resolve2 sigma env lmeta lvar c =
  (ise_resolve true sigma [] env lmeta lvar c).uj_val;;

(* Keeping universe constraints *)
(*
let fconstruct_type_with_univ_sp sigma sign sp c =
  with_universes
    (Mach.fexecute_type sigma sign) (sp,initial_universes,c) 


let fconstruct_with_univ_sp sigma sign sp c =
  with_universes
    (Mach.fexecute sigma sign) (sp,initial_universes,c) 


let infconstruct_type_with_univ_sp sigma (sign,fsign) sp c =
  with_universes
    (Mach.infexecute_type sigma (sign,fsign)) (sp,initial_universes,c) 


let infconstruct_with_univ_sp sigma (sign,fsign) sp c =
  with_universes
    (Mach.infexecute sigma (sign,fsign)) (sp,initial_universes,c) 
*)