1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(* $Id$ *)
open Pp
open Util
open Names
open Sign
open Evd
open Term
open Termops
open Reductionops
open Environ
open Type_errors
open Typeops
open Classops
open List
open Recordops
open Evarutil
open Pretype_errors
open Rawterm
open Evarconv
open Coercion
open Dyn
(***********************************************************************)
(* This concerns Cases *)
open Declarations
open Inductive
open Inductiveops
open Instantiate
let lift_context n l =
let k = List.length l in
list_map_i (fun i (name,c) -> (name,liftn n (k-i) c)) 0 l
let transform_rec loc env sigma (pj,c,lf) indt =
let p = pj.uj_val in
let (indf,realargs) = dest_ind_type indt in
let (ind,params) = dest_ind_family indf in
let (mib,mip) = lookup_mind_specif env ind in
let recargs = mip.mind_recargs in
let mI = mkInd ind in
let ci = make_default_case_info env ind in
let nconstr = Array.length mip.mind_consnames in
if Array.length lf <> nconstr then
(let cj = {uj_val=c; uj_type=mkAppliedInd indt} in
error_number_branches_loc loc env sigma cj nconstr);
let tyi = snd ind in
if mis_is_recursive_subset [tyi] recargs then
let dep =
is_dependent_elimination env (nf_evar sigma pj.uj_type) indf in
let init_depFvec i = if i = tyi then Some(dep,mkRel 1) else None in
let depFvec = Array.init mib.mind_ntypes init_depFvec in
(* build now the fixpoint *)
let lnames,_ = get_arity env indf in
let nar = List.length lnames in
let nparams = mip.mind_nparams in
let constrs = get_constructors env (lift_inductive_family (nar+2) indf) in
let branches =
array_map3
(fun f t reca ->
whd_beta
(Indrec.make_rec_branch_arg env sigma
(nparams,depFvec,nar+1)
f t reca))
(Array.map (lift (nar+2)) lf) constrs (dest_subterms recargs)
in
let deffix =
it_mkLambda_or_LetIn_name env
(lambda_create env
(applist (mI,List.append (List.map (lift (nar+1)) params)
(extended_rel_list 0 lnames)),
mkCase (ci, lift (nar+2) p, mkRel 1, branches)))
(lift_rel_context 1 lnames)
in
if noccurn 1 deffix then
whd_beta (applist (pop deffix,realargs@[c]))
else
let ind = applist (mI,(List.append
(List.map (lift nar) params)
(extended_rel_list 0 lnames))) in
let typPfix =
it_mkProd_or_LetIn_name env
(prod_create env
(ind,
(if dep then
let ext_lnames = (Anonymous,None,ind)::lnames in
let args = extended_rel_list 0 ext_lnames in
whd_beta (applist (lift (nar+1) p, args))
else
let args = extended_rel_list 1 lnames in
whd_beta (applist (lift (nar+1) p, args)))))
lnames in
let fix =
mkFix (([|nar|],0),
([|Name(id_of_string "F")|],[|typPfix|],[|deffix|])) in
applist (fix,realargs@[c])
else
mkCase (ci, p, c, lf)
(***********************************************************************)
(* To embed constr in rawconstr *)
let ((constr_in : constr -> Dyn.t),
(constr_out : Dyn.t -> constr)) = create "constr"
let mt_evd = Evd.empty
let vect_lift_type = Array.mapi (fun i t -> type_app (lift i) t)
(* Utilisé pour inférer le prédicat des Cases *)
(* Semble exagérement fort *)
(* Faudra préférer une unification entre les types de toutes les clauses *)
(* et autoriser des ? à rester dans le résultat de l'unification *)
let evar_type_fixpoint loc env isevars lna lar vdefj =
let lt = Array.length vdefj in
if Array.length lar = lt then
for i = 0 to lt-1 do
if not (the_conv_x_leq env isevars
(vdefj.(i)).uj_type
(lift lt lar.(i))) then
error_ill_typed_rec_body_loc loc env (evars_of isevars)
i lna vdefj lar
done
let error_unsolvable_implicit (loc,kind) =
let message = match kind with
| QuestionMark -> str "Cannot infer a term for this placeholder"
| CasesType ->
str "Cannot infer the type of this pattern-matching problem"
| AbstractionType (Name id) ->
str "Cannot infer a type for " ++ Nameops.pr_id id
| AbstractionType Anonymous ->
str "Cannot infer a type of this anonymous abstraction"
| ImplicitArg (c,n) ->
str "Cannot infer the " ++ pr_ord n ++
str " implicit argument of " ++ Nametab.pr_global_env (Global.env()) c
| InternalHole ->
str "Cannot infer a term for an internal placeholder"
in
user_err_loc (loc,"pretype",message)
let check_branches_message loc env isevars c (explft,lft) =
for i = 0 to Array.length explft - 1 do
if not (the_conv_x_leq env isevars lft.(i) explft.(i)) then
let sigma = evars_of isevars in
error_ill_formed_branch_loc loc env sigma c i lft.(i) explft.(i)
done
(* coerce to tycon if any *)
let inh_conv_coerce_to_tycon loc env isevars j = function
| None -> j
| Some typ -> inh_conv_coerce_to loc env isevars j typ
(*
let evar_type_case isevars env ct pt lft p c =
let (mind,bty,rslty) = type_case_branches env (evars_of isevars) ct pt p c
in check_branches_message isevars env (c,ct) (bty,lft); (mind,rslty)
*)
let pretype_id loc env lvar id =
try
List.assoc id lvar
with Not_found ->
try
let (n,typ) = lookup_rel_id id (rel_context env) in
{ uj_val = mkRel n; uj_type = type_app (lift n) typ }
with Not_found ->
try
let (_,_,typ) = lookup_named id env in
{ uj_val = mkVar id; uj_type = typ }
with Not_found ->
error_var_not_found_loc loc id
(*************************************************************************)
(* Main pretyping function *)
let pretype_ref isevars env lvar ref =
let c = Declare.constr_of_reference ref in
make_judge c (Retyping.get_type_of env Evd.empty c)
let pretype_sort = function
| RProp c -> judge_of_prop_contents c
| RType _ -> judge_of_new_Type ()
(* [pretype tycon env isevars lvar lmeta cstr] attempts to type [cstr] *)
(* in environment [env], with existential variables [(evars_of isevars)] and *)
(* the type constraint tycon *)
let rec pretype tycon env isevars lvar lmeta = function
| RRef (loc,ref) ->
inh_conv_coerce_to_tycon loc env isevars
(pretype_ref isevars env lvar ref)
tycon
| RVar (loc, id) ->
inh_conv_coerce_to_tycon loc env isevars
(pretype_id loc env lvar id)
tycon
| REvar (loc, ev) ->
(* Ne faudrait-il pas s'assurer que hyps est bien un
sous-contexte du contexte courant, et qu'il n'y a pas de Rel "caché" *)
let hyps = (Evd.map (evars_of isevars) ev).evar_hyps in
let args = instance_from_named_context hyps in
let c = mkEvar (ev, args) in
let j = (Retyping.get_judgment_of env (evars_of isevars) c) in
inh_conv_coerce_to_tycon loc env isevars j tycon
| RMeta (loc,n) ->
let j =
try
List.assoc n lmeta
with
Not_found ->
user_err_loc
(loc,"pretype",
str "Metavariable " ++ int n ++ str " is unbound")
in inh_conv_coerce_to_tycon loc env isevars j tycon
| RHole loc ->
if !compter then nbimpl:=!nbimpl+1;
(match tycon with
| Some ty ->
{ uj_val = new_isevar isevars env loc ty; uj_type = ty }
| None -> error_unsolvable_implicit loc)
| RRec (loc,fixkind,names,lar,vdef) ->
let larj =
Array.map (pretype_type empty_valcon env isevars lvar lmeta) lar in
let lara = Array.map (fun a -> a.utj_val) larj in
let nbfix = Array.length lar in
let names = Array.map (fun id -> Name id) names in
let newenv = push_rec_types (names,lara,[||]) env in
let vdefj =
Array.mapi
(fun i def -> (* we lift nbfix times the type in tycon, because of
* the nbfix variables pushed to newenv *)
pretype (mk_tycon (lift nbfix (larj.(i).utj_val)))
newenv isevars lvar lmeta def)
vdef in
evar_type_fixpoint loc env isevars names lara vdefj;
let fixj =
match fixkind with
| RFix (vn,i as vni) ->
let fix = (vni,(names,lara,Array.map j_val vdefj)) in
check_fix env fix;
make_judge (mkFix fix) lara.(i)
| RCoFix i ->
let cofix = (i,(names,lara,Array.map j_val vdefj)) in
check_cofix env cofix;
make_judge (mkCoFix cofix) lara.(i) in
inh_conv_coerce_to_tycon loc env isevars fixj tycon
| RSort (loc,s) ->
inh_conv_coerce_to_tycon loc env isevars (pretype_sort s) tycon
| RApp (loc,f,args) ->
let fj = pretype empty_tycon env isevars lvar lmeta f in
let floc = loc_of_rawconstr f in
let rec apply_rec env n resj = function
| [] -> resj
| c::rest ->
let argloc = loc_of_rawconstr c in
let resj = inh_app_fun env isevars resj in
let resty =
whd_betadeltaiota env (evars_of isevars) resj.uj_type in
match kind_of_term resty with
| Prod (na,c1,c2) ->
let hj = pretype (mk_tycon c1) env isevars lvar lmeta c in
let newresj =
{ uj_val = applist (j_val resj, [j_val hj]);
uj_type = subst1 hj.uj_val c2 } in
apply_rec env (n+1) newresj rest
| _ ->
let hj = pretype empty_tycon env isevars lvar lmeta c in
error_cant_apply_not_functional_loc
(Rawterm.join_loc floc argloc) env (evars_of isevars)
resj [hj]
in let resj = apply_rec env 1 fj args in
(*
let apply_one_arg (floc,tycon,jl) c =
let (dom,rng) = split_tycon floc env isevars tycon in
let cj = pretype dom env isevars lvar lmeta c in
let rng_tycon = option_app (subst1 cj.uj_val) rng in
let argloc = loc_of_rawconstr c in
(join_loc floc argloc,rng_tycon,(argloc,cj)::jl) in
let _,_,jl =
List.fold_left apply_one_arg (floc,mk_tycon j.uj_type,[]) args in
let jl = List.rev jl in
let resj = inh_apply_rel_list loc env isevars jl (floc,j) tycon in
*)
inh_conv_coerce_to_tycon loc env isevars resj tycon
| RLambda(loc,name,c1,c2) ->
let (dom,rng) = split_tycon loc env isevars tycon in
let dom_valcon = valcon_of_tycon dom in
let j = pretype_type dom_valcon env isevars lvar lmeta c1 in
let var = (name,None,j.utj_val) in
let j' = pretype rng (push_rel var env) isevars lvar lmeta c2 in
judge_of_abstraction env name j j'
| RProd(loc,name,c1,c2) ->
let j = pretype_type empty_valcon env isevars lvar lmeta c1 in
let var = (name,j.utj_val) in
let env' = push_rel_assum var env in
let j' = pretype_type empty_valcon env' isevars lvar lmeta c2 in
let resj =
try judge_of_product env name j j'
with TypeError _ as e -> Stdpp.raise_with_loc loc e in
inh_conv_coerce_to_tycon loc env isevars resj tycon
| RLetIn(loc,name,c1,c2) ->
let j = pretype empty_tycon env isevars lvar lmeta c1 in
let t = Evarutil.refresh_universes j.uj_type in
let var = (name,Some j.uj_val,t) in
let tycon = option_app (lift 1) tycon in
let j' = pretype tycon (push_rel var env) isevars lvar lmeta c2 in
{ uj_val = mkLetIn (name, j.uj_val, t, j'.uj_val) ;
uj_type = type_app (subst1 j.uj_val) j'.uj_type }
(* Special Case for let constructions to avoid exponential behavior *)
| ROldCase (loc,false,po,c,[| f |]) ->
let cj = pretype empty_tycon env isevars lvar lmeta c in
let (IndType (indf,realargs) as indt) =
try find_rectype env (evars_of isevars) cj.uj_type
with Not_found ->
let cloc = loc_of_rawconstr c in
error_case_not_inductive_loc cloc env (evars_of isevars) cj in
(match po with
| Some p ->
let pj = pretype empty_tycon env isevars lvar lmeta p in
let dep = is_dependent_elimination env pj.uj_type indf in
let ar =
arity_of_case_predicate env indf dep (Type (new_univ())) in
let _ = the_conv_x_leq env isevars pj.uj_type ar in
let pj = j_nf_evar (evars_of isevars) pj in
let pj = if dep then pj else
let n = List.length realargs in
let rec decomp n p =
if n=0 then p else
match kind_of_term p with
| Lambda (_,_,c) -> decomp (n-1) c
| _ -> decomp (n-1) (applist (lift 1 p, [mkRel 1])) in
let sign,s = decompose_prod_n n pj.uj_type in
let ind = build_dependent_inductive env indf in
let s' = mkProd (Anonymous, ind, s) in
let ccl = lift 1 (decomp n pj.uj_val) in
let ccl' = mkLambda (Anonymous, ind, ccl) in
{uj_val=lam_it ccl' sign; uj_type=prod_it s' sign} in
let (bty,rsty) = Indrec.type_rec_branches false env (evars_of isevars) indt pj cj.uj_val in
if Array.length bty <> 1 then
error_number_branches_loc loc env (evars_of isevars) cj (Array.length bty)
else
let fj = let tyc = bty.(0) in pretype (mk_tycon tyc) env isevars lvar lmeta f in
let fv = j_val fj in
let ft = fj.uj_type in
check_branches_message loc env isevars cj.uj_val (bty,[|ft|]);
let v =
let mis,_ = dest_ind_family indf in
let ci = make_default_case_info env mis in
mkCase (ci, (nf_betaiota pj.uj_val), cj.uj_val,[|fv|])
in { uj_val = v; uj_type = rsty }
| None ->
(* get type information from type of branches *)
let expbr = Cases.branch_scheme env isevars false indf in
if Array.length expbr <> 1 then
error_number_branches_loc loc env (evars_of isevars)
cj (Array.length expbr);
let expti = expbr.(0) in
let fj = pretype (mk_tycon expti) env isevars lvar lmeta f in
let pred = Cases.pred_case_ml env (evars_of isevars) false indt (0,fj.uj_type) in
let pj =
if has_undefined_isevars isevars pred then
(* get type information from constraint *)
(* warning: if the constraint comes from an evar type, it *)
(* may be Type while Prop or Set would be expected *)
match tycon with
| Some pred ->
Retyping.get_judgment_of env (evars_of isevars) pred
| None ->
let sigma = evars_of isevars in
error_cant_find_case_type_loc loc env sigma cj.uj_val
else
let pty =
Retyping.get_type_of env (evars_of isevars) pred in
let pj = { uj_val = pred; uj_type = pty } in
let _ = option_app (the_conv_x_leq env isevars pred) tycon
in pj
in let pj = j_nf_evar (evars_of isevars) pj in
let pj =
let n = List.length realargs in
let rec decomp n p =
if n=0 then p else
match kind_of_term p with
| Lambda (_,_,c) -> decomp (n-1) c
| _ -> decomp (n-1) (applist (lift 1 p, [mkRel 1])) in
let sign,s = decompose_prod_n n pj.uj_type in
let ind = build_dependent_inductive env indf in
let s' = mkProd (Anonymous, ind, s) in
let ccl = lift 1 (decomp n pj.uj_val) in
let ccl' = mkLambda (Anonymous, ind, ccl) in
{uj_val=lam_it ccl' sign; uj_type=prod_it s' sign} in
let fv = fj.uj_val in
let ft = fj.uj_type in
let v =
let mis,_ = dest_ind_family indf in
let ci = make_default_case_info env mis in
mkCase (ci, (nf_betaiota pj.uj_val), cj.uj_val,[|fv|] )
in
let (_,rsty) =
Indrec.type_rec_branches
false env (evars_of isevars) indt pj cj.uj_val in
{ uj_val = v;
uj_type = rsty })
| ROldCase (loc,isrec,po,c,lf) ->
let cj = pretype empty_tycon env isevars lvar lmeta c in
let (IndType (indf,realargs) as indt) =
try find_rectype env (evars_of isevars) cj.uj_type
with Not_found ->
let cloc = loc_of_rawconstr c in
error_case_not_inductive_loc cloc env (evars_of isevars) cj in
let (dep,pj) = match po with
| Some p ->
let pj = pretype empty_tycon env isevars lvar lmeta p in
let dep = is_dependent_elimination env pj.uj_type indf in
let ar =
arity_of_case_predicate env indf dep (Type (new_univ())) in
let _ = the_conv_x_leq env isevars pj.uj_type ar in
(dep, pj)
| None ->
(* get type information from type of branches *)
let expbr = Cases.branch_scheme env isevars isrec indf in
let rec findtype i =
if i >= Array.length lf
then
(* get type information from constraint *)
(* warning: if the constraint comes from an evar type, it *)
(* may be Type while Prop or Set would be expected *)
match tycon with
| Some pred ->
(false,
Retyping.get_judgment_of env (evars_of isevars) pred)
| None ->
let sigma = evars_of isevars in
error_cant_find_case_type_loc loc env sigma cj.uj_val
else
try
let expti = expbr.(i) in
let fj =
pretype (mk_tycon expti) env isevars lvar lmeta lf.(i) in
let pred =
Cases.pred_case_ml
env (evars_of isevars) isrec indt (i,fj.uj_type) in
if has_undefined_isevars isevars pred then findtype (i+1)
else
let pty =
Retyping.get_type_of env (evars_of isevars) pred in
let pj = { uj_val = pred; uj_type = pty } in
let _ = option_app (the_conv_x_leq env isevars pred) tycon
in (false,pj)
with Cases.NotInferable _ -> findtype (i+1) in
findtype 0 in
let pj = j_nf_evar (evars_of isevars) pj in
let pj =
if dep then pj else
let n = List.length realargs in
let rec decomp n p =
if n=0 then p else
match kind_of_term p with
| Lambda (_,_,c) -> decomp (n-1) c
| _ -> decomp (n-1) (applist (lift 1 p, [mkRel 1])) in
let sign,s = decompose_prod_n n pj.uj_type in
let ind = build_dependent_inductive env indf in
let s' = mkProd (Anonymous, ind, s) in
let ccl = lift 1 (decomp n pj.uj_val) in
let ccl' = mkLambda (Anonymous, ind, ccl) in
{uj_val=lam_it ccl' sign; uj_type=prod_it s' sign} in
let (bty,rsty) =
Indrec.type_rec_branches
isrec env (evars_of isevars) indt pj cj.uj_val in
if Array.length bty <> Array.length lf then
error_number_branches_loc loc env (evars_of isevars)
cj (Array.length bty)
else
let lfj =
array_map2
(fun tyc f -> pretype (mk_tycon tyc) env isevars lvar lmeta f) bty
lf in
let lfv = Array.map j_val lfj in
let lft = Array.map (fun j -> j.uj_type) lfj in
check_branches_message loc env isevars cj.uj_val (bty,lft);
let v =
if isrec
then
transform_rec loc env (evars_of isevars)(pj,cj.uj_val,lfv) indt
else
let mis,_ = dest_ind_family indf in
let ci = make_default_case_info env mis in
mkCase (ci, (nf_betaiota pj.uj_val), cj.uj_val,
Array.map (fun j-> j.uj_val) lfj)
in
{ uj_val = v;
uj_type = rsty }
| RCases (loc,prinfo,po,tml,eqns) ->
Cases.compile_cases loc
((fun vtyc env -> pretype vtyc env isevars lvar lmeta),isevars)
tycon env (* loc *) (po,tml,eqns)
| RCast(loc,c,t) ->
let tj = pretype_type empty_tycon env isevars lvar lmeta t in
let cj = pretype (mk_tycon tj.utj_val) env isevars lvar lmeta c in
(* User Casts are for helping pretyping, experimentally not to be kept*)
(* ... except for Correctness *)
let v = mkCast (cj.uj_val, tj.utj_val) in
let cj = { uj_val = v; uj_type = tj.utj_val } in
inh_conv_coerce_to_tycon loc env isevars cj tycon
| RDynamic (loc,d) ->
if (tag d) = "constr" then
let c = constr_out d in
let j = (Retyping.get_judgment_of env (evars_of isevars) c) in
j
(*inh_conv_coerce_to_tycon loc env isevars j tycon*)
else
user_err_loc (loc,"pretype",(str "Not a constr tagged Dynamic"))
(* [pretype_type valcon env isevars lvar lmeta c] coerces [c] into a type *)
and pretype_type valcon env isevars lvar lmeta = function
| RHole loc ->
if !compter then nbimpl:=!nbimpl+1;
(match valcon with
| Some v ->
{ utj_val = v;
utj_type = Retyping.get_sort_of env (evars_of isevars) v }
| None ->
let s = new_Type_sort () in
{ utj_val = new_isevar isevars env loc (mkSort s);
utj_type = s})
| c ->
let j = pretype empty_tycon env isevars lvar lmeta c in
let tj = inh_coerce_to_sort env isevars j in
match valcon with
| None -> tj
| Some v ->
if the_conv_x_leq env isevars v tj.utj_val then tj
else
error_unexpected_type_loc
(loc_of_rawconstr c) env (evars_of isevars) tj.utj_val v
let unsafe_infer tycon isevars env lvar lmeta constr =
let j = pretype tycon env isevars lvar lmeta constr in
j_nf_evar (evars_of isevars) j
let unsafe_infer_type valcon isevars env lvar lmeta constr =
let tj = pretype_type valcon env isevars lvar lmeta constr in
tj_nf_evar (evars_of isevars) tj
(* If fail_evar is false, [process_evars] builds a meta_map with the
unresolved Evar that were not in initial sigma; otherwise it fail
on the first unresolved Evar not already in the initial sigma. *)
(* [fail_evar] says how to process unresolved evars:
* true -> raise an error message
* false -> convert them into new Metas (casted with their type)
*)
(* assumes the defined existentials have been replaced in c (should be
done in unsafe_infer and unsafe_infer_type) *)
let check_evars fail_evar initial_sigma isevars c =
let sigma = evars_of isevars in
let rec proc_rec c =
match kind_of_term c with
| Evar (ev,args as k) ->
assert (Evd.in_dom sigma ev);
if not (Evd.in_dom initial_sigma ev) then
(if fail_evar then
error_unsolvable_implicit (evar_source ev isevars))
| _ -> iter_constr proc_rec c
in
proc_rec c
(* TODO: comment faire remonter l'information si le typage a resolu des
variables du sigma original. il faudrait que la fonction de typage
retourne aussi le nouveau sigma...
*)
(* constr with holes *)
type open_constr = evar_map * constr
let ise_resolve_casted_gen fail_evar sigma env lvar lmeta typ c =
let isevars = create_evar_defs sigma in
let j = unsafe_infer (mk_tycon typ) isevars env lvar lmeta c in
check_evars fail_evar sigma isevars (mkCast(j.uj_val,j.uj_type));
(evars_of isevars, j)
let ise_resolve_casted sigma env typ c =
ise_resolve_casted_gen true sigma env [] [] typ c
(* Raw calls to the unsafe inference machine: boolean says if we must fail
on unresolved evars, or replace them by Metas; the unsafe_judgment list
allows us to extend env with some bindings *)
let ise_infer_gen fail_evar sigma env lvar lmeta exptyp c =
let tycon = match exptyp with None -> empty_tycon | Some t -> mk_tycon t in
let isevars = create_evar_defs sigma in
let j = unsafe_infer tycon isevars env lvar lmeta c in
check_evars fail_evar sigma isevars (mkCast(j.uj_val,j.uj_type));
(evars_of isevars, j)
let ise_infer_type_gen fail_evar sigma env lvar lmeta c =
let isevars = create_evar_defs sigma in
let tj = unsafe_infer_type empty_valcon isevars env lvar lmeta c in
check_evars fail_evar sigma isevars tj.utj_val;
(evars_of isevars, tj)
type meta_map = (int * unsafe_judgment) list
type var_map = (identifier * unsafe_judgment) list
let understand_judgment sigma env c =
snd (ise_infer_gen true sigma env [] [] None c)
let understand_type_judgment sigma env c =
snd (ise_infer_type_gen true sigma env [] [] c)
let understand sigma env c =
let _, c = ise_infer_gen true sigma env [] [] None c in
c.uj_val
let understand_type sigma env c =
let _,c = ise_infer_type_gen true sigma env [] [] c in
c.utj_val
let understand_gen sigma env lvar lmeta ~expected_type:exptyp c =
let _, c = ise_infer_gen true sigma env lvar lmeta exptyp c in
c.uj_val
let understand_gen_tcc sigma env lvar lmeta exptyp c =
let metamap, c = ise_infer_gen false sigma env lvar lmeta exptyp c in
metamap, c.uj_val
|