1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id$ *)
open Pp
open Util
open Names
open Sign
open Evd
open Term
open Termops
open Reductionops
open Environ
open Type_errors
open Typeops
open Libnames
open Nameops
open Classops
open List
open Recordops
open Evarutil
open Pretype_errors
open Rawterm
open Evarconv
open Pattern
open Dyn
type typing_constraint = OfType of types option | IsType
type var_map = (identifier * unsafe_judgment) list
type unbound_ltac_var_map = (identifier * identifier option) list
(************************************************************************)
(* This concerns Cases *)
open Declarations
open Inductive
open Inductiveops
(************************************************************************)
(* An auxiliary function for searching for fixpoint guard indexes *)
exception Found of int array
let search_guard loc env possible_indexes fixdefs =
(* Standard situation with only one possibility for each fix. *)
(* We treat it separately in order to get proper error msg. *)
if List.for_all (fun l->1=List.length l) possible_indexes then
let indexes = Array.of_list (List.map List.hd possible_indexes) in
let fix = ((indexes, 0),fixdefs) in
(try check_fix env fix with
| e -> if loc = dummy_loc then raise e else Stdpp.raise_with_loc loc e);
indexes
else
(* we now search recursively amoungst all combinations *)
(try
List.iter
(fun l ->
let indexes = Array.of_list l in
let fix = ((indexes, 0),fixdefs) in
try check_fix env fix; raise (Found indexes)
with TypeError _ -> ())
(list_combinations possible_indexes);
let errmsg = "Cannot guess decreasing argument of fix." in
if loc = dummy_loc then error errmsg else
user_err_loc (loc,"search_guard", Pp.str errmsg)
with Found indexes -> indexes)
(* To embed constr in rawconstr *)
let ((constr_in : constr -> Dyn.t),
(constr_out : Dyn.t -> constr)) = create "constr"
(** Miscellaneous interpretation functions *)
let interp_sort = function
| RProp c -> Prop c
| RType _ -> new_Type_sort ()
let interp_elimination_sort = function
| RProp Null -> InProp
| RProp Pos -> InSet
| RType _ -> InType
module type S =
sig
module Cases : Cases.S
(* Allow references to syntaxically inexistent variables (i.e., if applied on an inductive) *)
val allow_anonymous_refs : bool ref
(* Generic call to the interpreter from rawconstr to open_constr, leaving
unresolved holes as evars and returning the typing contexts of
these evars. Work as [understand_gen] for the rest. *)
val understand_tcc : ?resolve_classes:bool ->
evar_map -> env -> ?expected_type:types -> rawconstr -> open_constr
val understand_tcc_evars :
evar_defs ref -> env -> typing_constraint -> rawconstr -> constr
(* More general entry point with evars from ltac *)
(* Generic call to the interpreter from rawconstr to constr, failing
unresolved holes in the rawterm cannot be instantiated.
In [understand_ltac sigma env ltac_env constraint c],
sigma : initial set of existential variables (typically dependent subgoals)
ltac_env : partial substitution of variables (used for the tactic language)
constraint : tell if interpreted as a possibly constrained term or a type
*)
val understand_ltac :
evar_map -> env -> var_map * unbound_ltac_var_map ->
typing_constraint -> rawconstr -> evar_defs * constr
(* Standard call to get a constr from a rawconstr, resolving implicit args *)
val understand : evar_map -> env -> ?expected_type:Term.types ->
rawconstr -> constr
(* Idem but the rawconstr is intended to be a type *)
val understand_type : evar_map -> env -> rawconstr -> constr
(* A generalization of the two previous case *)
val understand_gen : typing_constraint -> evar_map -> env ->
rawconstr -> constr
(* Idem but returns the judgment of the understood term *)
val understand_judgment : evar_map -> env -> rawconstr -> unsafe_judgment
(* Idem but do not fail on unresolved evars *)
val understand_judgment_tcc : evar_defs ref -> env -> rawconstr -> unsafe_judgment
(*i*)
(* Internal of Pretyping...
* Unused outside, but useful for debugging
*)
val pretype :
type_constraint -> env -> evar_defs ref ->
var_map * (identifier * identifier option) list ->
rawconstr -> unsafe_judgment
val pretype_type :
val_constraint -> env -> evar_defs ref ->
var_map * (identifier * identifier option) list ->
rawconstr -> unsafe_type_judgment
val pretype_gen :
bool -> bool -> evar_defs ref -> env ->
var_map * (identifier * identifier option) list ->
typing_constraint -> rawconstr -> constr
(*i*)
end
module Pretyping_F (Coercion : Coercion.S) = struct
module Cases = Cases.Cases_F(Coercion)
(* Allow references to syntaxically inexistent variables (i.e., if applied on an inductive) *)
let allow_anonymous_refs = ref false
let evd_comb0 f evdref =
let (evd',x) = f !evdref in
evdref := evd';
x
let evd_comb1 f evdref x =
let (evd',y) = f !evdref x in
evdref := evd';
y
let evd_comb2 f evdref x y =
let (evd',z) = f !evdref x y in
evdref := evd';
z
let evd_comb3 f evdref x y z =
let (evd',t) = f !evdref x y z in
evdref := evd';
t
let mt_evd = Evd.empty
(* Utilisé pour inférer le prédicat des Cases *)
(* Semble exagérement fort *)
(* Faudra préférer une unification entre les types de toutes les clauses *)
(* et autoriser des ? à rester dans le résultat de l'unification *)
let evar_type_fixpoint loc env evdref lna lar vdefj =
let lt = Array.length vdefj in
if Array.length lar = lt then
for i = 0 to lt-1 do
if not (e_cumul env evdref (vdefj.(i)).uj_type
(lift lt lar.(i))) then
error_ill_typed_rec_body_loc loc env ( !evdref)
i lna vdefj lar
done
let check_branches_message loc env evdref c (explft,lft) =
for i = 0 to Array.length explft - 1 do
if not (e_cumul env evdref lft.(i) explft.(i)) then
let sigma = !evdref in
error_ill_formed_branch_loc loc env sigma c i lft.(i) explft.(i)
done
(* coerce to tycon if any *)
let inh_conv_coerce_to_tycon loc env evdref j = function
| None -> j
| Some t -> evd_comb2 (Coercion.inh_conv_coerce_to loc env) evdref j t
let push_rels vars env = List.fold_right push_rel vars env
(* used to enforce a name in Lambda when the type constraints itself
is named, hence possibly dependent *)
let orelse_name name name' = match name with
| Anonymous -> name'
| _ -> name
let pretype_id loc env (lvar,unbndltacvars) id =
try
let (n,typ) = lookup_rel_id id (rel_context env) in
{ uj_val = mkRel n; uj_type = lift n typ }
with Not_found ->
try
List.assoc id lvar
with Not_found ->
try
let (_,_,typ) = lookup_named id env in
{ uj_val = mkVar id; uj_type = typ }
with Not_found ->
try (* To build a nicer ltac error message *)
match List.assoc id unbndltacvars with
| None -> user_err_loc (loc,"",
str "Variable " ++ pr_id id ++ str " should be bound to a term.")
| Some id0 -> Pretype_errors.error_var_not_found_loc loc id0
with Not_found ->
error_var_not_found_loc loc id
(* make a dependent predicate from an undependent one *)
let make_dep_of_undep env (IndType (indf,realargs)) pj =
let n = List.length realargs in
let rec decomp n p =
if n=0 then p else
match kind_of_term p with
| Lambda (_,_,c) -> decomp (n-1) c
| _ -> decomp (n-1) (applist (lift 1 p, [mkRel 1]))
in
let sign,s = decompose_prod_n n pj.uj_type in
let ind = build_dependent_inductive env indf in
let s' = mkProd (Anonymous, ind, s) in
let ccl = lift 1 (decomp n pj.uj_val) in
let ccl' = mkLambda (Anonymous, ind, ccl) in
{uj_val=it_mkLambda ccl' sign; uj_type=it_mkProd s' sign}
let evar_kind_of_term sigma c =
kind_of_term (whd_evar ( sigma) c)
(*************************************************************************)
(* Main pretyping function *)
let pretype_ref evdref env ref =
let c = constr_of_global ref in
make_judge c (Retyping.get_type_of env Evd.empty c)
let pretype_sort = function
| RProp c -> judge_of_prop_contents c
| RType _ -> judge_of_new_Type ()
exception Found of fixpoint
(* [pretype tycon env evdref lvar lmeta cstr] attempts to type [cstr] *)
(* in environment [env], with existential variables [evdref] and *)
(* the type constraint tycon *)
let rec pretype (tycon : type_constraint) env evdref lvar = function
| RRef (loc,ref) ->
inh_conv_coerce_to_tycon loc env evdref
(pretype_ref evdref env ref)
tycon
| RVar (loc, id) ->
inh_conv_coerce_to_tycon loc env evdref
(pretype_id loc env lvar id)
tycon
| REvar (loc, evk, instopt) ->
(* Ne faudrait-il pas s'assurer que hyps est bien un
sous-contexte du contexte courant, et qu'il n'y a pas de Rel "caché" *)
let hyps = evar_filtered_context (Evd.find ( !evdref) evk) in
let args = match instopt with
| None -> instance_from_named_context hyps
| Some inst -> failwith "Evar subtitutions not implemented" in
let c = mkEvar (evk, args) in
let j = (Retyping.get_judgment_of env ( !evdref) c) in
inh_conv_coerce_to_tycon loc env evdref j tycon
| RPatVar (loc,(someta,n)) ->
anomaly "Found a pattern variable in a rawterm to type"
| RHole (loc,k) ->
let ty =
match tycon with
| Some (None, ty) -> ty
| None | Some _ ->
e_new_evar evdref env ~src:(loc,InternalHole) (new_Type ()) in
{ uj_val = e_new_evar evdref env ~src:(loc,k) ty; uj_type = ty }
| RRec (loc,fixkind,names,bl,lar,vdef) ->
let rec type_bl env ctxt = function
[] -> ctxt
| (na,bk,None,ty)::bl ->
let ty' = pretype_type empty_valcon env evdref lvar ty in
let dcl = (na,None,ty'.utj_val) in
type_bl (push_rel dcl env) (add_rel_decl dcl ctxt) bl
| (na,bk,Some bd,ty)::bl ->
let ty' = pretype_type empty_valcon env evdref lvar ty in
let bd' = pretype (mk_tycon ty'.utj_val) env evdref lvar ty in
let dcl = (na,Some bd'.uj_val,ty'.utj_val) in
type_bl (push_rel dcl env) (add_rel_decl dcl ctxt) bl in
let ctxtv = Array.map (type_bl env empty_rel_context) bl in
let larj =
array_map2
(fun e ar ->
pretype_type empty_valcon (push_rel_context e env) evdref lvar ar)
ctxtv lar in
let lara = Array.map (fun a -> a.utj_val) larj in
let ftys = array_map2 (fun e a -> it_mkProd_or_LetIn a e) ctxtv lara in
let nbfix = Array.length lar in
let names = Array.map (fun id -> Name id) names in
(* Note: bodies are not used by push_rec_types, so [||] is safe *)
let newenv = push_rec_types (names,ftys,[||]) env in
let vdefj =
array_map2_i
(fun i ctxt def ->
(* we lift nbfix times the type in tycon, because of
* the nbfix variables pushed to newenv *)
let (ctxt,ty) =
decompose_prod_n_assum (rel_context_length ctxt)
(lift nbfix ftys.(i)) in
let nenv = push_rel_context ctxt newenv in
let j = pretype (mk_tycon ty) nenv evdref lvar def in
{ uj_val = it_mkLambda_or_LetIn j.uj_val ctxt;
uj_type = it_mkProd_or_LetIn j.uj_type ctxt })
ctxtv vdef in
evar_type_fixpoint loc env evdref names ftys vdefj;
let ftys = Array.map (nf_evar ( !evdref)) ftys in
let fdefs = Array.map (fun x -> nf_evar ( !evdref) (j_val x)) vdefj in
let fixj = match fixkind with
| RFix (vn,i) ->
(* First, let's find the guard indexes. *)
(* If recursive argument was not given by user, we try all args.
An earlier approach was to look only for inductive arguments,
but doing it properly involves delta-reduction, and it finally
doesn't seem worth the effort (except for huge mutual
fixpoints ?) *)
let possible_indexes = Array.to_list (Array.mapi
(fun i (n,_) -> match n with
| Some n -> [n]
| None -> list_map_i (fun i _ -> i) 0 ctxtv.(i))
vn)
in
let fixdecls = (names,ftys,fdefs) in
let indexes = search_guard loc env possible_indexes fixdecls in
make_judge (mkFix ((indexes,i),fixdecls)) ftys.(i)
| RCoFix i ->
let cofix = (i,(names,ftys,fdefs)) in
(try check_cofix env cofix with e -> Stdpp.raise_with_loc loc e);
make_judge (mkCoFix cofix) ftys.(i) in
inh_conv_coerce_to_tycon loc env evdref fixj tycon
| RSort (loc,s) ->
inh_conv_coerce_to_tycon loc env evdref (pretype_sort s) tycon
| RApp (loc,f,args) ->
let fj = pretype empty_tycon env evdref lvar f in
let floc = loc_of_rawconstr f in
let rec apply_rec env n resj = function
| [] -> resj
| c::rest ->
let argloc = loc_of_rawconstr c in
let resj = evd_comb1 (Coercion.inh_app_fun env) evdref resj in
let resty = whd_betadeltaiota env ( !evdref) resj.uj_type in
match kind_of_term resty with
| Prod (na,c1,c2) ->
let hj = pretype (mk_tycon c1) env evdref lvar c in
let value, typ = applist (j_val resj, [j_val hj]), subst1 hj.uj_val c2 in
apply_rec env (n+1)
{ uj_val = value;
uj_type = typ }
rest
| _ ->
let hj = pretype empty_tycon env evdref lvar c in
error_cant_apply_not_functional_loc
(join_loc floc argloc) env ( !evdref)
resj [hj]
in
let resj = apply_rec env 1 fj args in
let resj =
match evar_kind_of_term !evdref resj.uj_val with
| App (f,args) ->
let f = whd_evar ( !evdref) f in
begin match kind_of_term f with
| Ind _ | Const _
when isInd f or has_polymorphic_type (destConst f)
->
let sigma = !evdref in
let c = mkApp (f,Array.map (whd_evar sigma) args) in
let t = Retyping.get_type_of env sigma c in
make_judge c t
| _ -> resj end
| _ -> resj in
inh_conv_coerce_to_tycon loc env evdref resj tycon
| RLambda(loc,name,bk,c1,c2) ->
let (name',dom,rng) = evd_comb1 (split_tycon loc env) evdref tycon in
let dom_valcon = valcon_of_tycon dom in
let j = pretype_type dom_valcon env evdref lvar c1 in
let var = (name,None,j.utj_val) in
let j' = pretype rng (push_rel var env) evdref lvar c2 in
judge_of_abstraction env (orelse_name name name') j j'
| RProd(loc,name,bk,c1,c2) ->
let j = pretype_type empty_valcon env evdref lvar c1 in
let j' =
if name = Anonymous then
let j = pretype_type empty_valcon env evdref lvar c2 in
{ j with utj_val = lift 1 j.utj_val }
else
let var = (name,j.utj_val) in
let env' = push_rel_assum var env in
pretype_type empty_valcon env' evdref lvar c2
in
let resj =
try judge_of_product env name j j'
with TypeError _ as e -> Stdpp.raise_with_loc loc e in
inh_conv_coerce_to_tycon loc env evdref resj tycon
| RLetIn(loc,name,c1,c2) ->
let j =
match c1 with
| RCast (loc, c, CastConv (DEFAULTcast, t)) ->
let tj = pretype_type empty_valcon env evdref lvar t in
pretype (mk_tycon tj.utj_val) env evdref lvar c
| _ -> pretype empty_tycon env evdref lvar c1
in
let t = refresh_universes j.uj_type in
let var = (name,Some j.uj_val,t) in
let tycon = lift_tycon 1 tycon in
let j' = pretype tycon (push_rel var env) evdref lvar c2 in
{ uj_val = mkLetIn (name, j.uj_val, t, j'.uj_val) ;
uj_type = subst1 j.uj_val j'.uj_type }
| RLetTuple (loc,nal,(na,po),c,d) ->
let cj = pretype empty_tycon env evdref lvar c in
let (IndType (indf,realargs)) =
try find_rectype env ( !evdref) cj.uj_type
with Not_found ->
let cloc = loc_of_rawconstr c in
error_case_not_inductive_loc cloc env ( !evdref) cj
in
let cstrs = get_constructors env indf in
if Array.length cstrs <> 1 then
user_err_loc (loc,"",str "Destructing let is only for inductive types with one constructor.");
let cs = cstrs.(0) in
if List.length nal <> cs.cs_nargs then
user_err_loc (loc,"", str "Destructing let on this type expects " ++ int cs.cs_nargs ++ str " variables.");
let fsign = List.map2 (fun na (_,c,t) -> (na,c,t))
(List.rev nal) cs.cs_args in
let env_f = push_rels fsign env in
(* Make dependencies from arity signature impossible *)
let arsgn =
let arsgn,_ = get_arity env indf in
if not !allow_anonymous_refs then
List.map (fun (_,b,t) -> (Anonymous,b,t)) arsgn
else arsgn
in
let psign = (na,None,build_dependent_inductive env indf)::arsgn in
let nar = List.length arsgn in
(match po with
| Some p ->
let env_p = push_rels psign env in
let pj = pretype_type empty_valcon env_p evdref lvar p in
let ccl = nf_evar !evdref pj.utj_val in
let psign = make_arity_signature env true indf in (* with names *)
let p = it_mkLambda_or_LetIn ccl psign in
let inst =
(Array.to_list cs.cs_concl_realargs)
@[build_dependent_constructor cs] in
let lp = lift cs.cs_nargs p in
let fty = hnf_lam_applist env ( !evdref) lp inst in
let fj = pretype (mk_tycon fty) env_f evdref lvar d in
let f = it_mkLambda_or_LetIn fj.uj_val fsign in
let v =
let mis,_ = dest_ind_family indf in
let ci = make_case_info env mis LetStyle in
mkCase (ci, p, cj.uj_val,[|f|]) in
{ uj_val = v; uj_type = substl (realargs@[cj.uj_val]) ccl }
| None ->
let tycon = lift_tycon cs.cs_nargs tycon in
let fj = pretype tycon env_f evdref lvar d in
let f = it_mkLambda_or_LetIn fj.uj_val fsign in
let ccl = nf_evar !evdref fj.uj_type in
let ccl =
if noccur_between 1 cs.cs_nargs ccl then
lift (- cs.cs_nargs) ccl
else
error_cant_find_case_type_loc loc env ( !evdref)
cj.uj_val in
let ccl = refresh_universes ccl in
let p = it_mkLambda_or_LetIn (lift (nar+1) ccl) psign in
let v =
let mis,_ = dest_ind_family indf in
let ci = make_case_info env mis LetStyle in
mkCase (ci, p, cj.uj_val,[|f|] )
in
{ uj_val = v; uj_type = ccl })
| RIf (loc,c,(na,po),b1,b2) ->
let cj = pretype empty_tycon env evdref lvar c in
let (IndType (indf,realargs)) =
try find_rectype env ( !evdref) cj.uj_type
with Not_found ->
let cloc = loc_of_rawconstr c in
error_case_not_inductive_loc cloc env ( !evdref) cj in
let cstrs = get_constructors env indf in
if Array.length cstrs <> 2 then
user_err_loc (loc,"",
str "If is only for inductive types with two constructors.");
let arsgn =
let arsgn,_ = get_arity env indf in
if not !allow_anonymous_refs then
(* Make dependencies from arity signature impossible *)
List.map (fun (_,b,t) -> (Anonymous,b,t)) arsgn
else arsgn
in
let nar = List.length arsgn in
let psign = (na,None,build_dependent_inductive env indf)::arsgn in
let pred,p = match po with
| Some p ->
let env_p = push_rels psign env in
let pj = pretype_type empty_valcon env_p evdref lvar p in
let ccl = nf_evar ( !evdref) pj.utj_val in
let pred = it_mkLambda_or_LetIn ccl psign in
let typ = lift (- nar) (beta_applist (pred,[cj.uj_val])) in
let jtyp = inh_conv_coerce_to_tycon loc env evdref {uj_val = pred;
uj_type = typ} tycon
in
jtyp.uj_val, jtyp.uj_type
| None ->
let p = match tycon with
| Some (None, ty) -> ty
| None | Some _ ->
e_new_evar evdref env ~src:(loc,InternalHole) (new_Type ())
in
it_mkLambda_or_LetIn (lift (nar+1) p) psign, p in
let pred = nf_evar ( !evdref) pred in
let p = nf_evar ( !evdref) p in
let f cs b =
let n = rel_context_length cs.cs_args in
let pi = lift n pred in (* liftn n 2 pred ? *)
let pi = beta_applist (pi, [build_dependent_constructor cs]) in
let csgn =
if not !allow_anonymous_refs then
List.map (fun (_,b,t) -> (Anonymous,b,t)) cs.cs_args
else
List.map
(fun (n, b, t) ->
match n with
Name _ -> (n, b, t)
| Anonymous -> (Name (id_of_string "H"), b, t))
cs.cs_args
in
let env_c = push_rels csgn env in
let bj = pretype (mk_tycon pi) env_c evdref lvar b in
it_mkLambda_or_LetIn bj.uj_val cs.cs_args in
let b1 = f cstrs.(0) b1 in
let b2 = f cstrs.(1) b2 in
let v =
let mis,_ = dest_ind_family indf in
let ci = make_case_info env mis IfStyle in
mkCase (ci, pred, cj.uj_val, [|b1;b2|])
in
{ uj_val = v; uj_type = p }
| RCases (loc,sty,po,tml,eqns) ->
Cases.compile_cases loc sty
((fun vtyc env evdref -> pretype vtyc env evdref lvar),evdref)
tycon env (* loc *) (po,tml,eqns)
| RCast (loc,c,k) ->
let cj =
match k with
CastCoerce ->
let cj = pretype empty_tycon env evdref lvar c in
evd_comb1 (Coercion.inh_coerce_to_base loc env) evdref cj
| CastConv (k,t) ->
let tj = pretype_type empty_valcon env evdref lvar t in
let cj = pretype empty_tycon env evdref lvar c in
let cty = nf_evar !evdref cj.uj_type and tval = nf_evar !evdref tj.utj_val in
let cj = match k with
| VMcast when not (occur_existential cty || occur_existential tval) ->
ignore (Reduction.vm_conv Reduction.CUMUL env cty tval); cj
| _ -> inh_conv_coerce_to_tycon loc env evdref cj (mk_tycon tval)
in
let v = mkCast (cj.uj_val, k, tval) in
{ uj_val = v; uj_type = tval }
in inh_conv_coerce_to_tycon loc env evdref cj tycon
| RDynamic (loc,d) ->
if (tag d) = "constr" then
let c = constr_out d in
let j = (Retyping.get_judgment_of env ( !evdref) c) in
j
(*inh_conv_coerce_to_tycon loc env evdref j tycon*)
else
user_err_loc (loc,"pretype",(str "Not a constr tagged Dynamic."))
(* [pretype_type valcon env evdref lvar c] coerces [c] into a type *)
and pretype_type valcon env evdref lvar = function
| RHole loc ->
(match valcon with
| Some v ->
let s =
let sigma = !evdref in
let t = Retyping.get_type_of env sigma v in
match kind_of_term (whd_betadeltaiota env sigma t) with
| Sort s -> s
| Evar ev when is_Type (existential_type sigma ev) ->
evd_comb1 (define_evar_as_sort) evdref ev
| _ -> anomaly "Found a type constraint which is not a type"
in
{ utj_val = v;
utj_type = s }
| None ->
let s = new_Type_sort () in
{ utj_val = e_new_evar evdref env ~src:loc (mkSort s);
utj_type = s})
| c ->
let j = pretype empty_tycon env evdref lvar c in
let loc = loc_of_rawconstr c in
let tj = evd_comb1 (Coercion.inh_coerce_to_sort loc env) evdref j in
match valcon with
| None -> tj
| Some v ->
if e_cumul env evdref v tj.utj_val then tj
else
error_unexpected_type_loc
(loc_of_rawconstr c) env ( !evdref) tj.utj_val v
let pretype_gen fail_evar resolve_classes evdref env lvar kind c =
let c' = match kind with
| OfType exptyp ->
let tycon = match exptyp with None -> empty_tycon | Some t -> mk_tycon t in
(pretype tycon env evdref lvar c).uj_val
| IsType ->
(pretype_type empty_valcon env evdref lvar c).utj_val in
evdref := fst (consider_remaining_unif_problems env !evdref);
if resolve_classes then
evdref :=
Typeclasses.resolve_typeclasses ~onlyargs:false
~split:true ~fail:fail_evar env !evdref;
let c = nf_evar !evdref c' in
if fail_evar then check_evars env Evd.empty !evdref c;
c
(* TODO: comment faire remonter l'information si le typage a resolu des
variables du sigma original. il faudrait que la fonction de typage
retourne aussi le nouveau sigma...
*)
let understand_judgment sigma env c =
let evdref = ref (create_evar_defs sigma) in
let j = pretype empty_tycon env evdref ([],[]) c in
let evd,_ = consider_remaining_unif_problems env !evdref in
let evd = Typeclasses.resolve_typeclasses ~onlyargs:true ~split:false
~fail:true env evd
in
let j = j_nf_evar evd j in
check_evars env sigma evd (mkCast(j.uj_val,DEFAULTcast, j.uj_type));
j
let understand_judgment_tcc evdref env c =
let j = pretype empty_tycon env evdref ([],[]) c in
j_nf_evar !evdref j
(* Raw calls to the unsafe inference machine: boolean says if we must
fail on unresolved evars; the unsafe_judgment list allows us to
extend env with some bindings *)
let ise_pretype_gen fail_evar resolve_classes sigma env lvar kind c =
let evdref = ref (Evd.create_evar_defs sigma) in
let c = pretype_gen fail_evar resolve_classes evdref env lvar kind c in
!evdref, c
(** Entry points of the high-level type synthesis algorithm *)
let understand_gen kind sigma env c =
snd (ise_pretype_gen true true sigma env ([],[]) kind c)
let understand sigma env ?expected_type:exptyp c =
snd (ise_pretype_gen true true sigma env ([],[]) (OfType exptyp) c)
let understand_type sigma env c =
snd (ise_pretype_gen true true sigma env ([],[]) IsType c)
let understand_ltac sigma env lvar kind c =
ise_pretype_gen false false sigma env lvar kind c
let understand_tcc ?(resolve_classes=true) sigma env ?expected_type:exptyp c =
ise_pretype_gen false resolve_classes sigma env ([],[]) (OfType exptyp) c
let understand_tcc_evars evdref env kind c =
pretype_gen false true evdref env ([],[]) kind c
end
module Default : S = Pretyping_F(Coercion.Default)
|