1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id$ *)
open Pp
open Util
open Names
open Sign
open Evd
open Term
open Termops
open Reductionops
open Environ
open Type_errors
open Typeops
open Libnames
open Nameops
open Classops
open List
open Recordops
open Evarutil
open Pretype_errors
open Rawterm
open Evarconv
open Coercion
open Pattern
open Dyn
let evd_comb0 f isevars =
let (evd',x) = f !isevars in
isevars := evd';
x
let evd_comb1 f isevars x =
let (evd',y) = f !isevars x in
isevars := evd';
y
let evd_comb2 f isevars x y =
let (evd',z) = f !isevars x y in
isevars := evd';
z
let evd_comb3 f isevars x y z =
let (evd',t) = f !isevars x y z in
isevars := evd';
t
(************************************************************************)
(* This concerns Cases *)
open Declarations
open Inductive
open Inductiveops
(************************************************************************)
(* To embed constr in rawconstr *)
let ((constr_in : constr -> Dyn.t),
(constr_out : Dyn.t -> constr)) = create "constr"
let mt_evd = Evd.empty
let vect_lift_type = Array.mapi (fun i t -> type_app (lift i) t)
(* Utilisé pour inférer le prédicat des Cases *)
(* Semble exagérement fort *)
(* Faudra préférer une unification entre les types de toutes les clauses *)
(* et autoriser des ? à rester dans le résultat de l'unification *)
let evar_type_fixpoint loc env isevars lna lar vdefj =
let lt = Array.length vdefj in
if Array.length lar = lt then
for i = 0 to lt-1 do
if not (e_cumul env isevars (vdefj.(i)).uj_type
(lift lt lar.(i))) then
error_ill_typed_rec_body_loc loc env (evars_of !isevars)
i lna vdefj lar
done
let check_branches_message loc env isevars c (explft,lft) =
for i = 0 to Array.length explft - 1 do
if not (e_cumul env isevars lft.(i) explft.(i)) then
let sigma = evars_of !isevars in
error_ill_formed_branch_loc loc env sigma c i lft.(i) explft.(i)
done
(* coerce to tycon if any *)
let inh_conv_coerce_to_tycon loc env isevars j = function
| None -> j
| Some typ -> evd_comb2 (inh_conv_coerce_to loc env) isevars j typ
let push_rels vars env = List.fold_right push_rel vars env
(*
let evar_type_case isevars env ct pt lft p c =
let (mind,bty,rslty) = type_case_branches env (evars_of isevars) ct pt p c
in check_branches_message isevars env (c,ct) (bty,lft); (mind,rslty)
*)
let strip_meta id = (* For Grammar v7 compatibility *)
let s = string_of_id id in
if s.[0]='$' then id_of_string (String.sub s 1 (String.length s - 1))
else id
let pretype_id loc env (lvar,unbndltacvars) id =
let id = strip_meta id in (* May happen in tactics defined by Grammar *)
try
let (n,typ) = lookup_rel_id id (rel_context env) in
{ uj_val = mkRel n; uj_type = type_app (lift n) typ }
with Not_found ->
try
List.assoc id lvar
with Not_found ->
try
let (_,_,typ) = lookup_named id env in
{ uj_val = mkVar id; uj_type = typ }
with Not_found ->
try (* To build a nicer ltac error message *)
match List.assoc id unbndltacvars with
| None -> user_err_loc (loc,"",
str "variable " ++ pr_id id ++ str " should be bound to a term")
| Some id0 -> Pretype_errors.error_var_not_found_loc loc id0
with Not_found ->
error_var_not_found_loc loc id
(* make a dependent predicate from an undependent one *)
let make_dep_of_undep env (IndType (indf,realargs)) pj =
let n = List.length realargs in
let rec decomp n p =
if n=0 then p else
match kind_of_term p with
| Lambda (_,_,c) -> decomp (n-1) c
| _ -> decomp (n-1) (applist (lift 1 p, [mkRel 1]))
in
let sign,s = decompose_prod_n n pj.uj_type in
let ind = build_dependent_inductive env indf in
let s' = mkProd (Anonymous, ind, s) in
let ccl = lift 1 (decomp n pj.uj_val) in
let ccl' = mkLambda (Anonymous, ind, ccl) in
{uj_val=lam_it ccl' sign; uj_type=prod_it s' sign}
(*************************************************************************)
(* Main pretyping function *)
let pretype_ref isevars env ref =
let c = constr_of_global ref in
make_judge c (Retyping.get_type_of env Evd.empty c)
let pretype_sort = function
| RProp c -> judge_of_prop_contents c
| RType _ -> judge_of_new_Type ()
(* [pretype tycon env isevars lvar lmeta cstr] attempts to type [cstr] *)
(* in environment [env], with existential variables [(evars_of isevars)] and *)
(* the type constraint tycon *)
let rec pretype tycon env isevars lvar = function
| RRef (loc,ref) ->
inh_conv_coerce_to_tycon loc env isevars
(pretype_ref isevars env ref)
tycon
| RVar (loc, id) ->
inh_conv_coerce_to_tycon loc env isevars
(pretype_id loc env lvar id)
tycon
| REvar (loc, ev, instopt) ->
(* Ne faudrait-il pas s'assurer que hyps est bien un
sous-contexte du contexte courant, et qu'il n'y a pas de Rel "caché" *)
let hyps = evar_context (Evd.map (evars_of !isevars) ev) in
let args = match instopt with
| None -> instance_from_named_context hyps
| Some inst -> failwith "Evar subtitutions not implemented" in
let c = mkEvar (ev, args) in
let j = (Retyping.get_judgment_of env (evars_of !isevars) c) in
inh_conv_coerce_to_tycon loc env isevars j tycon
| RPatVar (loc,(someta,n)) ->
anomaly "Found a pattern variable in a rawterm to type"
| RHole (loc,k) ->
let ty =
match tycon with
| Some ty -> ty
| None ->
e_new_evar isevars env ~src:(loc,InternalHole) (new_Type ()) in
{ uj_val = e_new_evar isevars env ~src:(loc,k) ty; uj_type = ty }
| RRec (loc,fixkind,names,bl,lar,vdef) ->
let rec type_bl env ctxt = function
[] -> ctxt
| (na,None,ty)::bl ->
let ty' = pretype_type empty_valcon env isevars lvar ty in
let dcl = (na,None,ty'.utj_val) in
type_bl (push_rel dcl env) (add_rel_decl dcl ctxt) bl
| (na,Some bd,ty)::bl ->
let ty' = pretype_type empty_valcon env isevars lvar ty in
let bd' = pretype (mk_tycon ty'.utj_val) env isevars lvar ty in
let dcl = (na,Some bd'.uj_val,ty'.utj_val) in
type_bl (push_rel dcl env) (add_rel_decl dcl ctxt) bl in
let ctxtv = Array.map (type_bl env empty_rel_context) bl in
let larj =
array_map2
(fun e ar ->
pretype_type empty_valcon (push_rel_context e env) isevars lvar ar)
ctxtv lar in
let lara = Array.map (fun a -> a.utj_val) larj in
let ftys = array_map2 (fun e a -> it_mkProd_or_LetIn a e) ctxtv lara in
let nbfix = Array.length lar in
let names = Array.map (fun id -> Name id) names in
(* Note: bodies are not used by push_rec_types, so [||] is safe *)
let newenv = push_rec_types (names,ftys,[||]) env in
let vdefj =
array_map2_i
(fun i ctxt def ->
(* we lift nbfix times the type in tycon, because of
* the nbfix variables pushed to newenv *)
let (ctxt,ty) =
decompose_prod_n_assum (rel_context_length ctxt)
(lift nbfix ftys.(i)) in
let nenv = push_rel_context ctxt newenv in
let j = pretype (mk_tycon ty) nenv isevars lvar def in
{ uj_val = it_mkLambda_or_LetIn j.uj_val ctxt;
uj_type = it_mkProd_or_LetIn j.uj_type ctxt })
ctxtv vdef in
evar_type_fixpoint loc env isevars names ftys vdefj;
let fixj =
match fixkind with
| RFix (vn,i as vni) ->
let fix = (vni,(names,ftys,Array.map j_val vdefj)) in
(try check_fix env fix with e -> Stdpp.raise_with_loc loc e);
make_judge (mkFix fix) ftys.(i)
| RCoFix i ->
let cofix = (i,(names,ftys,Array.map j_val vdefj)) in
(try check_cofix env cofix with e -> Stdpp.raise_with_loc loc e);
make_judge (mkCoFix cofix) ftys.(i) in
inh_conv_coerce_to_tycon loc env isevars fixj tycon
| RSort (loc,s) ->
inh_conv_coerce_to_tycon loc env isevars (pretype_sort s) tycon
| RApp (loc,f,args) ->
let fj = pretype empty_tycon env isevars lvar f in
let floc = loc_of_rawconstr f in
let rec apply_rec env n resj = function
| [] -> resj
| c::rest ->
let argloc = loc_of_rawconstr c in
let resj = evd_comb1 (inh_app_fun env) isevars resj in
let resty =
whd_betadeltaiota env (evars_of !isevars) resj.uj_type in
match kind_of_term resty with
| Prod (na,c1,c2) ->
let hj = pretype (mk_tycon c1) env isevars lvar c in
let newresj =
{ uj_val = applist (j_val resj, [j_val hj]);
uj_type = subst1 hj.uj_val c2 } in
apply_rec env (n+1) newresj rest
| _ ->
let hj = pretype empty_tycon env isevars lvar c in
error_cant_apply_not_functional_loc
(join_loc floc argloc) env (evars_of !isevars)
resj [hj]
in let resj = apply_rec env 1 fj args in
(*
let apply_one_arg (floc,tycon,jl) c =
let (dom,rng) = split_tycon floc env isevars tycon in
let cj = pretype dom env isevars lvar c in
let rng_tycon =
option_app (subst1 cj.uj_val) rng in
let argloc = loc_of_rawconstr c in
(join_loc floc argloc,rng_tycon,(argloc,cj)::jl) in
let _,_,jl =
List.fold_left apply_one_arg (floc,mk_tycon j.uj_type,[]) args in
let jl = List.rev jl in
let resj = inh_apply_rel_list loc env isevars jl (floc,j) tycon in
*)
inh_conv_coerce_to_tycon loc env isevars resj tycon
| RLambda(loc,name,c1,c2) ->
let (name',dom,rng) = evd_comb1 (split_tycon loc env) isevars tycon in
let dom_valcon = valcon_of_tycon dom in
let j = pretype_type dom_valcon env isevars lvar c1 in
let var = (name,None,j.utj_val) in
let j' = pretype rng (push_rel var env) isevars lvar c2 in
judge_of_abstraction env name j j'
| RProd(loc,name,c1,c2) ->
let j = pretype_type empty_valcon env isevars lvar c1 in
let var = (name,j.utj_val) in
let env' = push_rel_assum var env in
let j' = pretype_type empty_valcon env' isevars lvar c2 in
let resj =
try judge_of_product env name j j'
with TypeError _ as e -> Stdpp.raise_with_loc loc e in
inh_conv_coerce_to_tycon loc env isevars resj tycon
| RLetIn(loc,name,c1,c2) ->
let j = pretype empty_tycon env isevars lvar c1 in
let t = refresh_universes j.uj_type in
let var = (name,Some j.uj_val,t) in
let tycon = option_app (lift 1) tycon in
let j' = pretype tycon (push_rel var env) isevars lvar c2 in
{ uj_val = mkLetIn (name, j.uj_val, t, j'.uj_val) ;
uj_type = subst1 j.uj_val j'.uj_type }
| RLetTuple (loc,nal,(na,po),c,d) ->
let cj = pretype empty_tycon env isevars lvar c in
let (IndType (indf,realargs)) =
try find_rectype env (evars_of !isevars) cj.uj_type
with Not_found ->
let cloc = loc_of_rawconstr c in
error_case_not_inductive_loc cloc env (evars_of !isevars) cj
in
let cstrs = get_constructors env indf in
if Array.length cstrs <> 1 then
user_err_loc (loc,"",str "Destructing let is only for inductive types with one constructor");
let cs = cstrs.(0) in
if List.length nal <> cs.cs_nargs then
user_err_loc (loc,"", str "Destructing let on this type expects " ++ int cs.cs_nargs ++ str " variables");
let fsign = List.map2 (fun na (_,c,t) -> (na,c,t))
(List.rev nal) cs.cs_args in
let env_f = push_rels fsign env in
(* Make dependencies from arity signature impossible *)
let arsgn,_ = get_arity env indf in
let arsgn = List.map (fun (_,b,t) -> (Anonymous,b,t)) arsgn in
let psign = (na,None,build_dependent_inductive env indf)::arsgn in
let nar = List.length arsgn in
(match po with
| Some p ->
let env_p = push_rels psign env in
let pj = pretype_type empty_valcon env_p isevars lvar p in
let ccl = nf_evar (evars_of !isevars) pj.utj_val in
let psign = make_arity_signature env true indf in (* with names *)
let p = it_mkLambda_or_LetIn ccl psign in
let inst =
(Array.to_list cs.cs_concl_realargs)
@[build_dependent_constructor cs] in
let lp = lift cs.cs_nargs p in
let fty = hnf_lam_applist env (evars_of !isevars) lp inst in
let fj = pretype (mk_tycon fty) env_f isevars lvar d in
let f = it_mkLambda_or_LetIn fj.uj_val fsign in
let v =
let mis,_ = dest_ind_family indf in
let ci = make_default_case_info env LetStyle mis in
mkCase (ci, p, cj.uj_val,[|f|]) in
{ uj_val = v; uj_type = substl (realargs@[cj.uj_val]) ccl }
| None ->
let tycon = option_app (lift cs.cs_nargs) tycon in
let fj = pretype tycon env_f isevars lvar d in
let f = it_mkLambda_or_LetIn fj.uj_val fsign in
let ccl = nf_evar (evars_of !isevars) fj.uj_type in
let ccl =
if noccur_between 1 cs.cs_nargs ccl then
lift (- cs.cs_nargs) ccl
else
error_cant_find_case_type_loc loc env (evars_of !isevars)
cj.uj_val in
let p = it_mkLambda_or_LetIn (lift (nar+1) ccl) psign in
let v =
let mis,_ = dest_ind_family indf in
let ci = make_default_case_info env LetStyle mis in
mkCase (ci, p, cj.uj_val,[|f|] )
in
{ uj_val = v; uj_type = ccl })
| RIf (loc,c,(na,po),b1,b2) ->
let cj = pretype empty_tycon env isevars lvar c in
let (IndType (indf,realargs)) =
try find_rectype env (evars_of !isevars) cj.uj_type
with Not_found ->
let cloc = loc_of_rawconstr c in
error_case_not_inductive_loc cloc env (evars_of !isevars) cj in
let cstrs = get_constructors env indf in
if Array.length cstrs <> 2 then
user_err_loc (loc,"",
str "If is only for inductive types with two constructors");
(* Make dependencies from arity signature impossible *)
let arsgn,_ = get_arity env indf in
let arsgn = List.map (fun (_,b,t) -> (Anonymous,b,t)) arsgn in
let nar = List.length arsgn in
let psign = (na,None,build_dependent_inductive env indf)::arsgn in
let pred,p = match po with
| Some p ->
let env_p = push_rels psign env in
let pj = pretype_type empty_valcon env_p isevars lvar p in
let ccl = nf_evar (evars_of !isevars) pj.utj_val in
let pred = it_mkLambda_or_LetIn ccl psign in
pred, lift (- nar) (beta_applist (pred,[cj.uj_val]))
| None ->
let p = match tycon with
| Some ty -> ty
| None ->
e_new_evar isevars env ~src:(loc,InternalHole) (new_Type ())
in
it_mkLambda_or_LetIn (lift (nar+1) p) psign, p in
let f cs b =
let n = rel_context_length cs.cs_args in
let pi = liftn n 2 pred in
let pi = beta_applist (pi, [build_dependent_constructor cs]) in
let csgn = List.map (fun (_,b,t) -> (Anonymous,b,t)) cs.cs_args in
let env_c = push_rels csgn env in
let bj = pretype (Some pi) env_c isevars lvar b in
it_mkLambda_or_LetIn bj.uj_val cs.cs_args in
let b1 = f cstrs.(0) b1 in
let b2 = f cstrs.(1) b2 in
let pred = nf_evar (evars_of !isevars) pred in
let p = nf_evar (evars_of !isevars) p in
let v =
let mis,_ = dest_ind_family indf in
let ci = make_default_case_info env IfStyle mis in
mkCase (ci, pred, cj.uj_val, [|b1;b2|])
in
{ uj_val = v; uj_type = p }
| RCases (loc,po,tml,eqns) ->
Cases.compile_cases loc
((fun vtyc env -> pretype vtyc env isevars lvar),isevars)
tycon env (* loc *) (po,tml,eqns)
| RCast(loc,c,k,t) ->
let tj = pretype_type empty_tycon env isevars lvar t in
let cj = pretype (mk_tycon tj.utj_val) env isevars lvar c in
(* User Casts are for helping pretyping, experimentally not to be kept*)
(* ... except for Correctness *)
let v = mkCast (cj.uj_val, k, tj.utj_val) in
let cj = { uj_val = v; uj_type = tj.utj_val } in
inh_conv_coerce_to_tycon loc env isevars cj tycon
| RDynamic (loc,d) ->
if (tag d) = "constr" then
let c = constr_out d in
let j = (Retyping.get_judgment_of env (evars_of !isevars) c) in
j
(*inh_conv_coerce_to_tycon loc env isevars j tycon*)
else
user_err_loc (loc,"pretype",(str "Not a constr tagged Dynamic"))
(* [pretype_type valcon env isevars lvar c] coerces [c] into a type *)
and pretype_type valcon env isevars lvar = function
| RHole loc ->
(match valcon with
| Some v ->
let s =
let sigma = evars_of !isevars in
let t = Retyping.get_type_of env sigma v in
match kind_of_term (whd_betadeltaiota env sigma t) with
| Sort s -> s
| Evar v when is_Type (existential_type sigma v) ->
evd_comb1 (define_evar_as_sort) isevars v
| _ -> anomaly "Found a type constraint which is not a type"
in
{ utj_val = v;
utj_type = s }
| None ->
let s = new_Type_sort () in
{ utj_val = e_new_evar isevars env ~src:loc (mkSort s);
utj_type = s})
| c ->
let j = pretype empty_tycon env isevars lvar c in
let loc = loc_of_rawconstr c in
let tj = evd_comb1 (inh_coerce_to_sort loc env) isevars j in
match valcon with
| None -> tj
| Some v ->
if e_cumul env isevars v tj.utj_val then tj
else
error_unexpected_type_loc
(loc_of_rawconstr c) env (evars_of !isevars) tj.utj_val v
type typing_constraint = OfType of types option | IsType
let pretype_gen isevars env lvar kind c =
let c' = match kind with
| OfType exptyp ->
let tycon = match exptyp with None -> empty_tycon | Some t -> mk_tycon t in
(pretype tycon env isevars lvar c).uj_val
| IsType ->
(pretype_type empty_valcon env isevars lvar c).utj_val in
nf_evar (evars_of !isevars) c'
(* [check_evars] fails if some unresolved evar remains *)
(* it assumes that the defined existentials have already been substituted
(should be done in unsafe_infer and unsafe_infer_type) *)
let check_evars env initial_sigma isevars c =
let sigma = evars_of !isevars in
let rec proc_rec c =
match kind_of_term c with
| Evar (ev,args) ->
assert (Evd.in_dom sigma ev);
if not (Evd.in_dom initial_sigma ev) then
let (loc,k) = evar_source ev !isevars in
error_unsolvable_implicit loc env sigma k
| _ -> iter_constr proc_rec c
in
proc_rec c(*;
let (_,pbs) = get_conv_pbs !isevars (fun _ -> true) in
if pbs <> [] then begin
pperrnl
(str"TYPING OF "++Termops.print_constr_env env c++fnl()++
prlist_with_sep fnl
(fun (pb,c1,c2) ->
Termops.print_constr c1 ++
(if pb=Reduction.CUMUL then str " <="++ spc()
else str" =="++spc()) ++
Termops.print_constr c2)
pbs ++ fnl())
end*)
(* TODO: comment faire remonter l'information si le typage a resolu des
variables du sigma original. il faudrait que la fonction de typage
retourne aussi le nouveau sigma...
*)
let understand_judgment sigma env c =
let isevars = ref (create_evar_defs sigma) in
let j = pretype empty_tycon env isevars ([],[]) c in
let j = j_nf_evar (evars_of !isevars) j in
check_evars env sigma isevars (mkCast(j.uj_val,DEFAULTcast, j.uj_type));
j
(* Raw calls to the unsafe inference machine: boolean says if we must
fail on unresolved evars; the unsafe_judgment list allows us to
extend env with some bindings *)
let ise_pretype_gen fail_evar sigma env lvar kind c =
let isevars = ref (create_evar_defs sigma) in
let c = pretype_gen isevars env lvar kind c in
if fail_evar then check_evars env sigma isevars c;
(!isevars, c)
(** Entry points of the high-level type synthesis algorithm *)
type var_map = (identifier * unsafe_judgment) list
type unbound_ltac_var_map = (identifier * identifier option) list
let understand_gen kind sigma env c =
snd (ise_pretype_gen true sigma env ([],[]) kind c)
let understand sigma env ?expected_type:exptyp c =
snd (ise_pretype_gen true sigma env ([],[]) (OfType exptyp) c)
let understand_type sigma env c =
snd (ise_pretype_gen true sigma env ([],[]) IsType c)
let understand_ltac sigma env lvar kind c =
ise_pretype_gen false sigma env lvar kind c
let understand_tcc sigma env ?expected_type:exptyp c =
let evars,c = ise_pretype_gen false sigma env ([],[]) (OfType exptyp) c in
evars_of evars,c
(** Miscellaneous interpretation functions *)
let interp_sort = function
| RProp c -> Prop c
| RType _ -> new_Type_sort ()
let interp_elimination_sort = function
| RProp Null -> InProp
| RProp Pos -> InSet
| RType _ -> InType
|