1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* This file contains the syntax-directed part of the type inference
algorithm introduced by Murthy in Coq V5.10, 1995; the type
inference algorithm was initially developed in a file named trad.ml
which formerly contained a simple concrete-to-abstract syntax
translation function introduced in CoC V4.10 for implementing the
"exact" tactic, 1989 *)
(* Support for typing term in Ltac environment by David Delahaye, 2000 *)
(* Type inference algorithm made a functor of the coercion and
pattern-matching compilation by Matthieu Sozeau, March 2006 *)
(* Fixpoint guard index computation by Pierre Letouzey, July 2007 *)
(* Structural maintainer: Hugo Herbelin *)
(* Secondary maintenance: collective *)
open Pp
open Errors
open Util
open Names
open Evd
open Term
open Vars
open Context
open Termops
open Reductionops
open Environ
open Type_errors
open Typeops
open Globnames
open Nameops
open Evarutil
open Pretype_errors
open Glob_term
open Glob_ops
open Evarconv
open Pattern
open Misctypes
type typing_constraint = OfType of types | IsType | WithoutTypeConstraint
type var_map = constr_under_binders Id.Map.t
type unbound_ltac_var_map = Genarg.tlevel Genarg.generic_argument Id.Map.t
type ltac_var_map = var_map * unbound_ltac_var_map
type glob_constr_ltac_closure = ltac_var_map * glob_constr
type pure_open_constr = evar_map * constr
(************************************************************************)
(* This concerns Cases *)
open Inductive
open Inductiveops
(************************************************************************)
(* An auxiliary function for searching for fixpoint guard indexes *)
exception Found of int array
let search_guard loc env possible_indexes fixdefs =
(* Standard situation with only one possibility for each fix. *)
(* We treat it separately in order to get proper error msg. *)
let is_singleton = function [_] -> true | _ -> false in
if List.for_all is_singleton possible_indexes then
let indexes = Array.of_list (List.map List.hd possible_indexes) in
let fix = ((indexes, 0),fixdefs) in
(try check_fix env fix
with reraise ->
let e = Errors.push reraise in Loc.raise loc e);
indexes
else
(* we now search recursively amoungst all combinations *)
(try
List.iter
(fun l ->
let indexes = Array.of_list l in
let fix = ((indexes, 0),fixdefs) in
try check_fix env fix; raise (Found indexes)
with TypeError _ -> ())
(List.combinations possible_indexes);
let errmsg = "Cannot guess decreasing argument of fix." in
user_err_loc (loc,"search_guard", Pp.str errmsg)
with Found indexes -> indexes)
(* To embed constr in glob_constr *)
let ((constr_in : constr -> Dyn.t),
(constr_out : Dyn.t -> constr)) = Dyn.create "constr"
(** Miscellaneous interpretation functions *)
let interp_sort = function
| GProp -> Prop Null
| GSet -> Prop Pos
| GType _ -> new_Type_sort ()
let interp_elimination_sort = function
| GProp -> InProp
| GSet -> InSet
| GType _ -> InType
type inference_flags = {
use_typeclasses : bool;
use_unif_heuristics : bool;
use_hook : (env -> evar_map -> evar -> constr) option;
fail_evar : bool;
expand_evars : bool
}
let apply_typeclasses env evdref fail_evar =
evdref := Typeclasses.resolve_typeclasses
~filter:(if Flags.is_program_mode ()
then Typeclasses.no_goals_or_obligations else Typeclasses.no_goals)
~split:true ~fail:fail_evar env !evdref;
if Flags.is_program_mode () then (* Try optionally solving the obligations *)
evdref := Typeclasses.resolve_typeclasses
~filter:Typeclasses.all_evars ~split:true ~fail:false env !evdref
let apply_inference_hook hook initial_sigma evdref =
evdref := fold_undefined (fun evk evi sigma ->
if not (Evd.mem initial_sigma evk) &&
is_undefined sigma evk (* i.e. not defined by side-effect *)
then
try
let c = hook sigma evk in
Evd.define evk c sigma
with Exit ->
sigma
else
sigma) !evdref !evdref
let apply_heuristics env evdref fail_evar =
(* Resolve eagerly, potentially making wrong choices *)
try evdref := consider_remaining_unif_problems
~ts:(Typeclasses.classes_transparent_state ()) env !evdref
with e when Errors.noncritical e ->
let e = Errors.push e in if fail_evar then raise e
let check_typeclasses_instances_are_solved env sigma =
(* Naive way, call resolution again with failure flag *)
apply_typeclasses env (ref sigma) true
let check_extra_evars_are_solved env initial_sigma sigma =
Evd.fold_undefined
(fun evk evi () ->
if not (Evd.mem initial_sigma evk) then
let (loc,k) = evar_source evk sigma in
match k with
| Evar_kinds.ImplicitArg (gr, (i, id), false) -> ()
| _ ->
let evi = nf_evar_info sigma (Evd.find_undefined sigma evk) in
error_unsolvable_implicit loc env sigma evi k None) sigma ()
let check_evars_are_solved env initial_sigma sigma =
check_typeclasses_instances_are_solved env sigma;
check_problems_are_solved sigma;
check_extra_evars_are_solved env initial_sigma sigma
(* Try typeclasses, hooks, unification heuristics ... *)
let solve_remaining_evars flags env initial_sigma sigma =
let evdref = ref sigma in
if flags.use_typeclasses then apply_typeclasses env evdref false;
if Option.has_some flags.use_hook then
apply_inference_hook (Option.get flags.use_hook env) initial_sigma evdref;
if flags.use_unif_heuristics then apply_heuristics env evdref false;
if flags.fail_evar then check_evars_are_solved env initial_sigma !evdref;
!evdref
let process_inference_flags flags env initial_sigma (sigma,c) =
let sigma = solve_remaining_evars flags env initial_sigma sigma in
let c = if flags.expand_evars then nf_evar sigma c else c in
sigma,c
(* Allow references to syntaxically inexistent variables (i.e., if applied on an inductive) *)
let allow_anonymous_refs = ref false
let evd_comb0 f evdref =
let (evd',x) = f !evdref in
evdref := evd';
x
let evd_comb1 f evdref x =
let (evd',y) = f !evdref x in
evdref := evd';
y
let evd_comb2 f evdref x y =
let (evd',z) = f !evdref x y in
evdref := evd';
z
(* Utilisé pour inférer le prédicat des Cases *)
(* Semble exagérement fort *)
(* Faudra préférer une unification entre les types de toutes les clauses *)
(* et autoriser des ? à rester dans le résultat de l'unification *)
let evar_type_fixpoint loc env evdref lna lar vdefj =
let lt = Array.length vdefj in
if Int.equal (Array.length lar) lt then
for i = 0 to lt-1 do
if not (e_cumul env evdref (vdefj.(i)).uj_type
(lift lt lar.(i))) then
error_ill_typed_rec_body_loc loc env !evdref
i lna vdefj lar
done
(* coerce to tycon if any *)
let inh_conv_coerce_to_tycon resolve_tc loc env evdref j = function
| None -> j
| Some t ->
evd_comb2 (Coercion.inh_conv_coerce_to resolve_tc loc env) evdref j t
(* used to enforce a name in Lambda when the type constraints itself
is named, hence possibly dependent *)
let orelse_name name name' = match name with
| Anonymous -> name'
| _ -> name
let invert_ltac_bound_name env id0 id =
try mkRel (pi1 (lookup_rel_id id (rel_context env)))
with Not_found ->
errorlabstrm "" (str "Ltac variable " ++ pr_id id0 ++
str " depends on pattern variable name " ++ pr_id id ++
str " which is not bound in current context.")
let protected_get_type_of env sigma c =
try Retyping.get_type_of ~lax:true env sigma c
with Retyping.RetypeError _ ->
errorlabstrm ""
(str "Cannot reinterpret " ++ quote (print_constr c) ++
str " in the current environment.")
let pretype_id loc env sigma (lvar,unbndltacvars) id =
(* Look for the binder of [id] *)
try
let (n,_,typ) = lookup_rel_id id (rel_context env) in
{ uj_val = mkRel n; uj_type = lift n typ }
with Not_found ->
(* Check if [id] is an ltac variable *)
try
let (ids,c) = Id.Map.find id lvar in
let subst = List.map (invert_ltac_bound_name env id) ids in
let c = substl subst c in
{ uj_val = c; uj_type = protected_get_type_of env sigma c }
with Not_found ->
(* Check if [id] is a section or goal variable *)
try
let (_,_,typ) = lookup_named id env in
{ uj_val = mkVar id; uj_type = typ }
with Not_found ->
(* [id] not found, build nice error message if [id] yet known from ltac *)
if Id.Map.mem id unbndltacvars then
user_err_loc (loc,"",
str "Variable " ++ pr_id id ++ str " should be bound to a term.")
else
(* [id] not found, standard error message *)
error_var_not_found_loc loc id
let evar_kind_of_term sigma c =
kind_of_term (whd_evar sigma c)
(*************************************************************************)
(* Main pretyping function *)
let pretype_ref loc evdref env = function
| VarRef id ->
(* Section variable *)
(try let (_,_,ty) = lookup_named id env in make_judge (mkVar id) ty
with Not_found ->
(* This may happen if env is a goal env and section variables have
been cleared - section variables should be different from goal
variables *)
Pretype_errors.error_var_not_found_loc loc id)
| ref ->
let c = constr_of_global ref in
make_judge c (Retyping.get_type_of env Evd.empty c)
let pretype_sort evdref = function
| GProp -> judge_of_prop
| GSet -> judge_of_set
| GType _ -> evd_comb0 judge_of_new_Type evdref
let new_type_evar evdref env loc =
evd_comb0 (fun evd -> Evarutil.new_type_evar evd env ~src:(loc,Evar_kinds.InternalHole)) evdref
let (f_genarg_interp, genarg_interp_hook) = Hook.make ()
(* [pretype tycon env evdref lvar lmeta cstr] attempts to type [cstr] *)
(* in environment [env], with existential variables [evdref] and *)
(* the type constraint tycon *)
let rec pretype resolve_tc (tycon : type_constraint) env evdref lvar t =
let inh_conv_coerce_to_tycon = inh_conv_coerce_to_tycon resolve_tc in
let pretype_type = pretype_type resolve_tc in
let pretype = pretype resolve_tc in
match t with
| GRef (loc,ref) ->
inh_conv_coerce_to_tycon loc env evdref
(pretype_ref loc evdref env ref)
tycon
| GVar (loc, id) ->
inh_conv_coerce_to_tycon loc env evdref
(pretype_id loc env !evdref lvar id)
tycon
| GEvar (loc, evk, instopt) ->
(* Ne faudrait-il pas s'assurer que hyps est bien un
sous-contexte du contexte courant, et qu'il n'y a pas de Rel "caché" *)
let hyps = evar_filtered_context (Evd.find !evdref evk) in
let args = match instopt with
| None -> Array.of_list (instance_from_named_context hyps)
| Some inst -> failwith "Evar subtitutions not implemented" in
let c = mkEvar (evk, args) in
let j = (Retyping.get_judgment_of env !evdref c) in
inh_conv_coerce_to_tycon loc env evdref j tycon
| GPatVar (loc,(someta,n)) ->
let ty =
match tycon with
| Some ty -> ty
| None -> new_type_evar evdref env loc in
let k = Evar_kinds.MatchingVar (someta,n) in
{ uj_val = e_new_evar evdref env ~src:(loc,k) ty; uj_type = ty }
| GHole (loc, k, None) ->
let ty =
match tycon with
| Some ty -> ty
| None ->
new_type_evar evdref env loc in
{ uj_val = e_new_evar evdref env ~src:(loc,k) ty; uj_type = ty }
| GHole (loc, k, Some arg) ->
let ty =
match tycon with
| Some ty -> ty
| None ->
new_type_evar evdref env loc in
let ist = snd lvar in
let (c, sigma) = Hook.get f_genarg_interp ty env !evdref ist arg in
let () = evdref := sigma in
{ uj_val = c; uj_type = ty }
| GRec (loc,fixkind,names,bl,lar,vdef) ->
let rec type_bl env ctxt = function
[] -> ctxt
| (na,bk,None,ty)::bl ->
let ty' = pretype_type empty_valcon env evdref lvar ty in
let dcl = (na,None,ty'.utj_val) in
type_bl (push_rel dcl env) (add_rel_decl dcl ctxt) bl
| (na,bk,Some bd,ty)::bl ->
let ty' = pretype_type empty_valcon env evdref lvar ty in
let bd' = pretype (mk_tycon ty'.utj_val) env evdref lvar ty in
let dcl = (na,Some bd'.uj_val,ty'.utj_val) in
type_bl (push_rel dcl env) (add_rel_decl dcl ctxt) bl in
let ctxtv = Array.map (type_bl env empty_rel_context) bl in
let larj =
Array.map2
(fun e ar ->
pretype_type empty_valcon (push_rel_context e env) evdref lvar ar)
ctxtv lar in
let lara = Array.map (fun a -> a.utj_val) larj in
let ftys = Array.map2 (fun e a -> it_mkProd_or_LetIn a e) ctxtv lara in
let nbfix = Array.length lar in
let names = Array.map (fun id -> Name id) names in
let _ =
match tycon with
| Some t ->
let fixi = match fixkind with
| GFix (vn,i) -> i
| GCoFix i -> i
in e_conv env evdref ftys.(fixi) t
| None -> true
in
(* Note: bodies are not used by push_rec_types, so [||] is safe *)
let newenv = push_rec_types (names,ftys,[||]) env in
let vdefj =
Array.map2_i
(fun i ctxt def ->
(* we lift nbfix times the type in tycon, because of
* the nbfix variables pushed to newenv *)
let (ctxt,ty) =
decompose_prod_n_assum (rel_context_length ctxt)
(lift nbfix ftys.(i)) in
let nenv = push_rel_context ctxt newenv in
let j = pretype (mk_tycon ty) nenv evdref lvar def in
{ uj_val = it_mkLambda_or_LetIn j.uj_val ctxt;
uj_type = it_mkProd_or_LetIn j.uj_type ctxt })
ctxtv vdef in
evar_type_fixpoint loc env evdref names ftys vdefj;
let ftys = Array.map (nf_evar !evdref) ftys in
let fdefs = Array.map (fun x -> nf_evar !evdref (j_val x)) vdefj in
let fixj = match fixkind with
| GFix (vn,i) ->
(* First, let's find the guard indexes. *)
(* If recursive argument was not given by user, we try all args.
An earlier approach was to look only for inductive arguments,
but doing it properly involves delta-reduction, and it finally
doesn't seem worth the effort (except for huge mutual
fixpoints ?) *)
let possible_indexes =
Array.to_list (Array.mapi
(fun i (n,_) -> match n with
| Some n -> [n]
| None -> List.map_i (fun i _ -> i) 0 ctxtv.(i))
vn)
in
let fixdecls = (names,ftys,fdefs) in
let indexes = search_guard loc env possible_indexes fixdecls in
make_judge (mkFix ((indexes,i),fixdecls)) ftys.(i)
| GCoFix i ->
let cofix = (i,(names,ftys,fdefs)) in
(try check_cofix env cofix
with reraise ->
let e = Errors.push reraise in Loc.raise loc e);
make_judge (mkCoFix cofix) ftys.(i)
in
inh_conv_coerce_to_tycon loc env evdref fixj tycon
| GSort (loc,s) ->
let j = pretype_sort evdref s in
inh_conv_coerce_to_tycon loc env evdref j tycon
| GApp (loc,f,args) ->
let fj = pretype empty_tycon env evdref lvar f in
let floc = loc_of_glob_constr f in
let length = List.length args in
let candargs =
(* Bidirectional typechecking hint:
parameters of a constructor are completely determined
by a typing constraint *)
if Flags.is_program_mode () && length > 0 && isConstruct fj.uj_val then
match tycon with
| None -> []
| Some ty ->
let (ind, i) = destConstruct fj.uj_val in
let npars = inductive_nparams ind in
if Int.equal npars 0 then []
else
try
(* Does not treat partially applied constructors. *)
let ty = evd_comb1 (Coercion.inh_coerce_to_prod loc env) evdref ty in
let IndType (indf, args) = find_rectype env !evdref ty in
let (ind',pars) = dest_ind_family indf in
if eq_ind ind ind' then pars
else (* Let the usual code throw an error *) []
with Not_found -> []
else []
in
let rec apply_rec env n resj candargs = function
| [] -> resj
| c::rest ->
let argloc = loc_of_glob_constr c in
let resj = evd_comb1 (Coercion.inh_app_fun resolve_tc env) evdref resj in
let resty = whd_betadeltaiota env !evdref resj.uj_type in
match kind_of_term resty with
| Prod (na,c1,c2) ->
let hj = pretype (mk_tycon c1) env evdref lvar c in
let candargs, ujval =
match candargs with
| [] -> [], j_val hj
| arg :: args ->
if e_conv env evdref (j_val hj) arg then
args, nf_evar !evdref (j_val hj)
else [], j_val hj
in
let value, typ = applist (j_val resj, [ujval]), subst1 ujval c2 in
apply_rec env (n+1)
{ uj_val = value;
uj_type = typ }
candargs rest
| _ ->
let hj = pretype empty_tycon env evdref lvar c in
error_cant_apply_not_functional_loc
(Loc.merge floc argloc) env !evdref
resj [hj]
in
let resj = apply_rec env 1 fj candargs args in
let resj =
match evar_kind_of_term !evdref resj.uj_val with
| App (f,args) ->
let f = whd_evar !evdref f in
begin match kind_of_term f with
| Ind _ | Const _
when isInd f || has_polymorphic_type (destConst f)
->
let sigma = !evdref in
let c = mkApp (f,Array.map (whd_evar sigma) args) in
let t = Retyping.get_type_of env sigma c in
make_judge c (* use this for keeping evars: resj.uj_val *) t
| _ -> resj end
| _ -> resj in
inh_conv_coerce_to_tycon loc env evdref resj tycon
| GLambda(loc,name,bk,c1,c2) ->
let tycon' = evd_comb1
(fun evd tycon ->
match tycon with
| None -> evd, tycon
| Some ty ->
let evd, ty' = Coercion.inh_coerce_to_prod loc env evd ty in
evd, Some ty')
evdref tycon
in
let (name',dom,rng) = evd_comb1 (split_tycon loc env) evdref tycon' in
let dom_valcon = valcon_of_tycon dom in
let j = pretype_type dom_valcon env evdref lvar c1 in
let var = (name,None,j.utj_val) in
let j' = pretype rng (push_rel var env) evdref lvar c2 in
let resj = judge_of_abstraction env (orelse_name name name') j j' in
inh_conv_coerce_to_tycon loc env evdref resj tycon
| GProd(loc,name,bk,c1,c2) ->
let j = pretype_type empty_valcon env evdref lvar c1 in
let j' = match name with
| Anonymous ->
let j = pretype_type empty_valcon env evdref lvar c2 in
{ j with utj_val = lift 1 j.utj_val }
| Name _ ->
let var = (name,j.utj_val) in
let env' = push_rel_assum var env in
pretype_type empty_valcon env' evdref lvar c2
in
let resj =
try judge_of_product env name j j'
with TypeError _ as e -> let e = Errors.push e in Loc.raise loc e in
inh_conv_coerce_to_tycon loc env evdref resj tycon
| GLetIn(loc,name,c1,c2) ->
let j =
match c1 with
| GCast (loc, c, CastConv t) ->
let tj = pretype_type empty_valcon env evdref lvar t in
pretype (mk_tycon tj.utj_val) env evdref lvar c
| _ -> pretype empty_tycon env evdref lvar c1
in
let t = refresh_universes j.uj_type in
let var = (name,Some j.uj_val,t) in
let tycon = lift_tycon 1 tycon in
let j' = pretype tycon (push_rel var env) evdref lvar c2 in
{ uj_val = mkLetIn (name, j.uj_val, t, j'.uj_val) ;
uj_type = subst1 j.uj_val j'.uj_type }
| GLetTuple (loc,nal,(na,po),c,d) ->
let cj = pretype empty_tycon env evdref lvar c in
let (IndType (indf,realargs)) =
try find_rectype env !evdref cj.uj_type
with Not_found ->
let cloc = loc_of_glob_constr c in
error_case_not_inductive_loc cloc env !evdref cj
in
let cstrs = get_constructors env indf in
if not (Int.equal (Array.length cstrs) 1) then
user_err_loc (loc,"",str "Destructing let is only for inductive types" ++
str " with one constructor.");
let cs = cstrs.(0) in
if not (Int.equal (List.length nal) cs.cs_nargs) then
user_err_loc (loc,"", str "Destructing let on this type expects " ++
int cs.cs_nargs ++ str " variables.");
let fsign = List.map2 (fun na (_,c,t) -> (na,c,t))
(List.rev nal) cs.cs_args in
let env_f = push_rel_context fsign env in
(* Make dependencies from arity signature impossible *)
let arsgn =
let arsgn,_ = get_arity env indf in
if not !allow_anonymous_refs then
List.map (fun (_,b,t) -> (Anonymous,b,t)) arsgn
else arsgn
in
let psign = (na,None,build_dependent_inductive env indf)::arsgn in
let nar = List.length arsgn in
(match po with
| Some p ->
let env_p = push_rel_context psign env in
let pj = pretype_type empty_valcon env_p evdref lvar p in
let ccl = nf_evar !evdref pj.utj_val in
let psign = make_arity_signature env true indf in (* with names *)
let p = it_mkLambda_or_LetIn ccl psign in
let inst =
(Array.to_list cs.cs_concl_realargs)
@[build_dependent_constructor cs] in
let lp = lift cs.cs_nargs p in
let fty = hnf_lam_applist env !evdref lp inst in
let fj = pretype (mk_tycon fty) env_f evdref lvar d in
let f = it_mkLambda_or_LetIn fj.uj_val fsign in
let v =
let ind,_ = dest_ind_family indf in
let ci = make_case_info env ind LetStyle in
Typing.check_allowed_sort env !evdref ind cj.uj_val p;
mkCase (ci, p, cj.uj_val,[|f|]) in
{ uj_val = v; uj_type = substl (realargs@[cj.uj_val]) ccl }
| None ->
let tycon = lift_tycon cs.cs_nargs tycon in
let fj = pretype tycon env_f evdref lvar d in
let f = it_mkLambda_or_LetIn fj.uj_val fsign in
let ccl = nf_evar !evdref fj.uj_type in
let ccl =
if noccur_between 1 cs.cs_nargs ccl then
lift (- cs.cs_nargs) ccl
else
error_cant_find_case_type_loc loc env !evdref
cj.uj_val in
let ccl = refresh_universes ccl in
let p = it_mkLambda_or_LetIn (lift (nar+1) ccl) psign in
let v =
let ind,_ = dest_ind_family indf in
let ci = make_case_info env ind LetStyle in
Typing.check_allowed_sort env !evdref ind cj.uj_val p;
mkCase (ci, p, cj.uj_val,[|f|])
in { uj_val = v; uj_type = ccl })
| GIf (loc,c,(na,po),b1,b2) ->
let cj = pretype empty_tycon env evdref lvar c in
let (IndType (indf,realargs)) =
try find_rectype env !evdref cj.uj_type
with Not_found ->
let cloc = loc_of_glob_constr c in
error_case_not_inductive_loc cloc env !evdref cj in
let cstrs = get_constructors env indf in
if not (Int.equal (Array.length cstrs) 2) then
user_err_loc (loc,"",
str "If is only for inductive types with two constructors.");
let arsgn =
let arsgn,_ = get_arity env indf in
if not !allow_anonymous_refs then
(* Make dependencies from arity signature impossible *)
List.map (fun (_,b,t) -> (Anonymous,b,t)) arsgn
else arsgn
in
let nar = List.length arsgn in
let psign = (na,None,build_dependent_inductive env indf)::arsgn in
let pred,p = match po with
| Some p ->
let env_p = push_rel_context psign env in
let pj = pretype_type empty_valcon env_p evdref lvar p in
let ccl = nf_evar !evdref pj.utj_val in
let pred = it_mkLambda_or_LetIn ccl psign in
let typ = lift (- nar) (beta_applist (pred,[cj.uj_val])) in
pred, typ
| None ->
let p = match tycon with
| Some ty -> ty
| None -> new_type_evar evdref env loc
in
it_mkLambda_or_LetIn (lift (nar+1) p) psign, p in
let pred = nf_evar !evdref pred in
let p = nf_evar !evdref p in
let f cs b =
let n = rel_context_length cs.cs_args in
let pi = lift n pred in (* liftn n 2 pred ? *)
let pi = beta_applist (pi, [build_dependent_constructor cs]) in
let csgn =
if not !allow_anonymous_refs then
List.map (fun (_,b,t) -> (Anonymous,b,t)) cs.cs_args
else
List.map
(fun (n, b, t) ->
match n with
Name _ -> (n, b, t)
| Anonymous -> (Name (Id.of_string "H"), b, t))
cs.cs_args
in
let env_c = push_rel_context csgn env in
let bj = pretype (mk_tycon pi) env_c evdref lvar b in
it_mkLambda_or_LetIn bj.uj_val cs.cs_args in
let b1 = f cstrs.(0) b1 in
let b2 = f cstrs.(1) b2 in
let v =
let ind,_ = dest_ind_family indf in
let ci = make_case_info env ind IfStyle in
let pred = nf_evar !evdref pred in
Typing.check_allowed_sort env !evdref ind cj.uj_val pred;
mkCase (ci, pred, cj.uj_val, [|b1;b2|])
in
{ uj_val = v; uj_type = p }
| GCases (loc,sty,po,tml,eqns) ->
Cases.compile_cases loc sty
((fun vtyc env evdref -> pretype vtyc env evdref lvar),evdref)
tycon env (* loc *) (po,tml,eqns)
| GCast (loc,c,k) ->
let cj =
match k with
| CastCoerce ->
let cj = pretype empty_tycon env evdref lvar c in
evd_comb1 (Coercion.inh_coerce_to_base loc env) evdref cj
| CastConv t | CastVM t | CastNative t ->
let k = (match k with CastVM _ -> VMcast | CastNative _ -> NATIVEcast | _ -> DEFAULTcast) in
let tj = pretype_type empty_valcon env evdref lvar t in
let tval = nf_evar !evdref tj.utj_val in
let cj = match k with
| VMcast ->
let cj = pretype empty_tycon env evdref lvar c in
let cty = nf_evar !evdref cj.uj_type and tval = nf_evar !evdref tj.utj_val in
if not (occur_existential cty || occur_existential tval) then
begin
try
ignore (Reduction.vm_conv Reduction.CUMUL env cty tval); cj
with Reduction.NotConvertible ->
error_actual_type_loc loc env !evdref cj tval
(ConversionFailed (env,cty,tval))
end
else user_err_loc (loc,"",str "Cannot check cast with vm: " ++
str "unresolved arguments remain.")
| NATIVEcast ->
let cj = pretype empty_tycon env evdref lvar c in
let cty = nf_evar !evdref cj.uj_type and
tval = nf_evar !evdref tj.utj_val in
let evars = Nativenorm.evars_of_evar_map !evdref in
begin
try
ignore
(Nativeconv.native_conv Reduction.CUMUL evars env cty tval);
cj
with Reduction.NotConvertible ->
error_actual_type_loc loc env !evdref cj tval
(ConversionFailed (env,cty,tval))
end
| _ ->
pretype (mk_tycon tval) env evdref lvar c
in
let v = mkCast (cj.uj_val, k, tval) in
{ uj_val = v; uj_type = tval }
in inh_conv_coerce_to_tycon loc env evdref cj tycon
(* [pretype_type valcon env evdref lvar c] coerces [c] into a type *)
and pretype_type resolve_tc valcon env evdref lvar = function
| GHole (loc, knd, None) ->
(match valcon with
| Some v ->
let s =
let sigma = !evdref in
let t = Retyping.get_type_of env sigma v in
match kind_of_term (whd_betadeltaiota env sigma t) with
| Sort s -> s
| Evar ev when is_Type (existential_type sigma ev) ->
evd_comb1 (define_evar_as_sort) evdref ev
| _ -> anomaly (Pp.str "Found a type constraint which is not a type")
in
{ utj_val = v;
utj_type = s }
| None ->
let s = evd_comb0 new_sort_variable evdref in
{ utj_val = e_new_evar evdref env ~src:(loc, knd) (mkSort s);
utj_type = s})
| c ->
let j = pretype resolve_tc empty_tycon env evdref lvar c in
let loc = loc_of_glob_constr c in
let tj = evd_comb1 (Coercion.inh_coerce_to_sort loc env) evdref j in
match valcon with
| None -> tj
| Some v ->
if e_cumul env evdref v tj.utj_val then tj
else
error_unexpected_type_loc
(loc_of_glob_constr c) env !evdref tj.utj_val v
let ise_pretype_gen flags sigma env lvar kind c =
let evdref = ref sigma in
let c' = match kind with
| WithoutTypeConstraint ->
(pretype flags.use_typeclasses empty_tycon env evdref lvar c).uj_val
| OfType exptyp ->
(pretype flags.use_typeclasses (mk_tycon exptyp) env evdref lvar c).uj_val
| IsType ->
(pretype_type flags.use_typeclasses empty_valcon env evdref lvar c).utj_val
in
process_inference_flags flags env sigma (!evdref,c')
(* TODO: comment faire remonter l'information si le typage a resolu des
variables du sigma original. il faudrait que la fonction de typage
retourne aussi le nouveau sigma...
*)
let default_inference_flags fail = {
use_typeclasses = true;
use_unif_heuristics = true;
use_hook = None;
fail_evar = fail;
expand_evars = true }
let no_classes_no_fail_inference_flags = {
use_typeclasses = false;
use_unif_heuristics = true;
use_hook = None;
fail_evar = false;
expand_evars = true }
let all_and_fail_flags = default_inference_flags true
let all_no_fail_flags = default_inference_flags false
let empty_lvar : ltac_var_map = (Id.Map.empty, Id.Map.empty)
let on_judgment f j =
let c = mkCast(j.uj_val,DEFAULTcast, j.uj_type) in
let (c,_,t) = destCast (f c) in
{uj_val = c; uj_type = t}
let understand_judgment sigma env c =
let evdref = ref sigma in
let j = pretype true empty_tycon env evdref empty_lvar c in
on_judgment (fun c ->
snd (process_inference_flags all_and_fail_flags env sigma (!evdref,c))) j
let understand_judgment_tcc evdref env c =
let j = pretype true empty_tycon env evdref empty_lvar c in
on_judgment (fun c ->
let (evd,c) = process_inference_flags all_no_fail_flags env Evd.empty (!evdref,c) in
evdref := evd; c) j
(** Entry points of the high-level type synthesis algorithm *)
let understand
?(flags=all_and_fail_flags)
?(expected_type=WithoutTypeConstraint)
sigma env c =
snd (ise_pretype_gen flags sigma env empty_lvar expected_type c)
let understand_tcc ?(flags=all_no_fail_flags) sigma env ?(expected_type=WithoutTypeConstraint) c =
ise_pretype_gen flags sigma env empty_lvar expected_type c
let understand_tcc_evars ?(flags=all_no_fail_flags) evdref env ?(expected_type=WithoutTypeConstraint) c =
let sigma, c = ise_pretype_gen flags !evdref env empty_lvar expected_type c in
evdref := sigma;
c
let understand_ltac flags sigma env lvar kind c =
ise_pretype_gen flags sigma env lvar kind c
|