1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open CErrors
open Util
open Names
open Globnames
open Nameops
open Term
open Constr
open Glob_term
open Pp
open Mod_subst
open Misctypes
open Decl_kinds
open Pattern
open Environ
let case_info_pattern_eq i1 i2 =
i1.cip_style == i2.cip_style &&
Option.equal eq_ind i1.cip_ind i2.cip_ind &&
Option.equal (List.equal (==)) i1.cip_ind_tags i2.cip_ind_tags &&
i1.cip_extensible == i2.cip_extensible
let rec constr_pattern_eq p1 p2 = match p1, p2 with
| PRef r1, PRef r2 -> eq_gr r1 r2
| PVar v1, PVar v2 -> Id.equal v1 v2
| PEvar (ev1, ctx1), PEvar (ev2, ctx2) ->
Evar.equal ev1 ev2 && Array.equal constr_pattern_eq ctx1 ctx2
| PRel i1, PRel i2 ->
Int.equal i1 i2
| PApp (t1, arg1), PApp (t2, arg2) ->
constr_pattern_eq t1 t2 && Array.equal constr_pattern_eq arg1 arg2
| PSoApp (id1, arg1), PSoApp (id2, arg2) ->
Id.equal id1 id2 && List.equal constr_pattern_eq arg1 arg2
| PLambda (v1, t1, b1), PLambda (v2, t2, b2) ->
Name.equal v1 v2 && constr_pattern_eq t1 t2 && constr_pattern_eq b1 b2
| PProd (v1, t1, b1), PProd (v2, t2, b2) ->
Name.equal v1 v2 && constr_pattern_eq t1 t2 && constr_pattern_eq b1 b2
| PLetIn (v1, b1, t1, c1), PLetIn (v2, b2, t2, c2) ->
Name.equal v1 v2 && constr_pattern_eq b1 b2 &&
Option.equal constr_pattern_eq t1 t2 && constr_pattern_eq c1 c2
| PSort s1, PSort s2 -> Miscops.glob_sort_eq s1 s2
| PMeta m1, PMeta m2 -> Option.equal Id.equal m1 m2
| PIf (t1, l1, r1), PIf (t2, l2, r2) ->
constr_pattern_eq t1 t2 && constr_pattern_eq l1 l2 && constr_pattern_eq r1 r2
| PCase (info1, p1, r1, l1), PCase (info2, p2, r2, l2) ->
case_info_pattern_eq info1 info2 &&
constr_pattern_eq p1 p2 &&
constr_pattern_eq r1 r2 &&
List.equal pattern_eq l1 l2
| PFix ((ln1,i1),f1), PFix ((ln2,i2),f2) ->
Array.equal Int.equal ln1 ln2 && Int.equal i1 i2 && rec_declaration_eq f1 f2
| PCoFix (i1,f1), PCoFix (i2,f2) ->
Int.equal i1 i2 && rec_declaration_eq f1 f2
| PProj (p1, t1), PProj (p2, t2) ->
Projection.equal p1 p2 && constr_pattern_eq t1 t2
| (PRef _ | PVar _ | PEvar _ | PRel _ | PApp _ | PSoApp _
| PLambda _ | PProd _ | PLetIn _ | PSort _ | PMeta _
| PIf _ | PCase _ | PFix _ | PCoFix _ | PProj _), _ -> false
(** FIXME: fixpoint and cofixpoint should be relativized to pattern *)
and pattern_eq (i1, j1, p1) (i2, j2, p2) =
Int.equal i1 i2 && List.equal (==) j1 j2 && constr_pattern_eq p1 p2
and rec_declaration_eq (n1, c1, r1) (n2, c2, r2) =
Array.equal Name.equal n1 n2 &&
Array.equal constr_pattern_eq c1 c2 &&
Array.equal constr_pattern_eq r1 r2
let rec occur_meta_pattern = function
| PApp (f,args) ->
(occur_meta_pattern f) || (Array.exists occur_meta_pattern args)
| PProj (_,arg) -> occur_meta_pattern arg
| PLambda (na,t,c) -> (occur_meta_pattern t) || (occur_meta_pattern c)
| PProd (na,t,c) -> (occur_meta_pattern t) || (occur_meta_pattern c)
| PLetIn (na,b,t,c) ->
Option.fold_left (fun b t -> b || occur_meta_pattern t) (occur_meta_pattern b) t || (occur_meta_pattern c)
| PIf (c,c1,c2) ->
(occur_meta_pattern c) ||
(occur_meta_pattern c1) || (occur_meta_pattern c2)
| PCase(_,p,c,br) ->
(occur_meta_pattern p) ||
(occur_meta_pattern c) ||
(List.exists (fun (_,_,p) -> occur_meta_pattern p) br)
| PMeta _ | PSoApp _ -> true
| PEvar _ | PVar _ | PRef _ | PRel _ | PSort _ | PFix _ | PCoFix _ -> false
let rec occurn_pattern n = function
| PRel p -> Int.equal n p
| PApp (f,args) ->
(occurn_pattern n f) || (Array.exists (occurn_pattern n) args)
| PProj (_,arg) -> occurn_pattern n arg
| PLambda (na,t,c) -> (occurn_pattern n t) || (occurn_pattern (n+1) c)
| PProd (na,t,c) -> (occurn_pattern n t) || (occurn_pattern (n+1) c)
| PLetIn (na,b,t,c) ->
Option.fold_left (fun b t -> b || occurn_pattern n t) (occurn_pattern n b) t ||
(occurn_pattern (n+1) c)
| PIf (c,c1,c2) ->
(occurn_pattern n c) ||
(occurn_pattern n c1) || (occurn_pattern n c2)
| PCase(_,p,c,br) ->
(occurn_pattern n p) ||
(occurn_pattern n c) ||
(List.exists (fun (_,_,p) -> occurn_pattern n p) br)
| PMeta _ | PSoApp _ -> true
| PEvar (_,args) -> Array.exists (occurn_pattern n) args
| PVar _ | PRef _ | PSort _ -> false
| PFix (_,(_,tl,bl)) ->
Array.exists (occurn_pattern n) tl || Array.exists (occurn_pattern (n+Array.length tl)) bl
| PCoFix (_,(_,tl,bl)) ->
Array.exists (occurn_pattern n) tl || Array.exists (occurn_pattern (n+Array.length tl)) bl
let noccurn_pattern n c = not (occurn_pattern n c)
exception BoundPattern;;
let rec head_pattern_bound t =
match t with
| PProd (_,_,b) -> head_pattern_bound b
| PLetIn (_,_,_,b) -> head_pattern_bound b
| PApp (c,args) -> head_pattern_bound c
| PIf (c,_,_) -> head_pattern_bound c
| PCase (_,p,c,br) -> head_pattern_bound c
| PRef r -> r
| PVar id -> VarRef id
| PEvar _ | PRel _ | PMeta _ | PSoApp _ | PSort _ | PFix _ | PProj _
-> raise BoundPattern
(* Perhaps they were arguments, but we don't beta-reduce *)
| PLambda _ -> raise BoundPattern
| PCoFix _ -> anomaly ~label:"head_pattern_bound" (Pp.str "not a type.")
let head_of_constr_reference sigma c = match EConstr.kind sigma c with
| Const (sp,_) -> ConstRef sp
| Construct (sp,_) -> ConstructRef sp
| Ind (sp,_) -> IndRef sp
| Var id -> VarRef id
| _ -> anomaly (Pp.str "Not a rigid reference.")
let pattern_of_constr env sigma t =
let rec pattern_of_constr env t =
let open Context.Rel.Declaration in
match kind t with
| Rel n -> PRel n
| Meta n -> PMeta (Some (Id.of_string ("META" ^ string_of_int n)))
| Var id -> PVar id
| Sort (Prop Null) -> PSort GProp
| Sort (Prop Pos) -> PSort GSet
| Sort (Type _) -> PSort (GType [])
| Cast (c,_,_) -> pattern_of_constr env c
| LetIn (na,c,t,b) -> PLetIn (na,pattern_of_constr env c,Some (pattern_of_constr env t),
pattern_of_constr (push_rel (LocalDef (na,c,t)) env) b)
| Prod (na,c,b) -> PProd (na,pattern_of_constr env c,
pattern_of_constr (push_rel (LocalAssum (na, c)) env) b)
| Lambda (na,c,b) -> PLambda (na,pattern_of_constr env c,
pattern_of_constr (push_rel (LocalAssum (na, c)) env) b)
| App (f,a) ->
(match
match kind f with
| Evar (evk,args) ->
(match snd (Evd.evar_source evk sigma) with
Evar_kinds.MatchingVar (Evar_kinds.SecondOrderPatVar id) -> Some id
| _ -> None)
| _ -> None
with
| Some n -> PSoApp (n,Array.to_list (Array.map (pattern_of_constr env) a))
| None -> PApp (pattern_of_constr env f,Array.map (pattern_of_constr env) a))
| Const (sp,u) -> PRef (ConstRef (Constant.make1 (Constant.canonical sp)))
| Ind (sp,u) -> PRef (canonical_gr (IndRef sp))
| Construct (sp,u) -> PRef (canonical_gr (ConstructRef sp))
| Proj (p, c) ->
pattern_of_constr env (EConstr.Unsafe.to_constr (Retyping.expand_projection env sigma p (EConstr.of_constr c) []))
| Evar (evk,ctxt as ev) ->
(match snd (Evd.evar_source evk sigma) with
| Evar_kinds.MatchingVar (Evar_kinds.FirstOrderPatVar id) ->
PMeta (Some id)
| Evar_kinds.GoalEvar | Evar_kinds.VarInstance _ ->
(* These are the two evar kinds used for existing goals *)
(* see Proofview.mark_in_evm *)
if Evd.is_defined sigma evk then pattern_of_constr env (Evd.existential_value0 sigma ev)
else PEvar (evk,Array.map (pattern_of_constr env) ctxt)
| Evar_kinds.MatchingVar (Evar_kinds.SecondOrderPatVar ido) -> assert false
| _ ->
PMeta None)
| Case (ci,p,a,br) ->
let cip =
{ cip_style = ci.ci_pp_info.style;
cip_ind = Some ci.ci_ind;
cip_ind_tags = Some ci.ci_pp_info.ind_tags;
cip_extensible = false }
in
let branch_of_constr i c =
(i, ci.ci_pp_info.cstr_tags.(i), pattern_of_constr env c)
in
PCase (cip, pattern_of_constr env p, pattern_of_constr env a,
Array.to_list (Array.mapi branch_of_constr br))
| Fix (lni,(lna,tl,bl)) ->
let push env na2 c2 = push_rel (LocalAssum (na2,c2)) env in
let env' = Array.fold_left2 push env lna tl in
PFix (lni,(lna,Array.map (pattern_of_constr env) tl,
Array.map (pattern_of_constr env') bl))
| CoFix (ln,(lna,tl,bl)) ->
let push env na2 c2 = push_rel (LocalAssum (na2,c2)) env in
let env' = Array.fold_left2 push env lna tl in
PCoFix (ln,(lna,Array.map (pattern_of_constr env) tl,
Array.map (pattern_of_constr env') bl)) in
pattern_of_constr env t
(* To process patterns, we need a translation without typing at all. *)
let map_pattern_with_binders g f l = function
| PApp (p,pl) -> PApp (f l p, Array.map (f l) pl)
| PSoApp (n,pl) -> PSoApp (n, List.map (f l) pl)
| PLambda (n,a,b) -> PLambda (n,f l a,f (g n l) b)
| PProd (n,a,b) -> PProd (n,f l a,f (g n l) b)
| PLetIn (n,a,t,b) -> PLetIn (n,f l a,Option.map (f l) t,f (g n l) b)
| PIf (c,b1,b2) -> PIf (f l c,f l b1,f l b2)
| PCase (ci,po,p,pl) ->
PCase (ci,f l po,f l p, List.map (fun (i,n,c) -> (i,n,f l c)) pl)
| PProj (p,pc) -> PProj (p, f l pc)
| PFix (lni,(lna,tl,bl)) ->
let l' = Array.fold_left (fun l na -> g na l) l lna in
PFix (lni,(lna,Array.map (f l) tl,Array.map (f l') bl))
| PCoFix (ln,(lna,tl,bl)) ->
let l' = Array.fold_left (fun l na -> g na l) l lna in
PCoFix (ln,(lna,Array.map (f l) tl,Array.map (f l') bl))
(* Non recursive *)
| (PVar _ | PEvar _ | PRel _ | PRef _ | PSort _ | PMeta _ as x) -> x
let error_instantiate_pattern id l =
let is = match l with
| [_] -> "is"
| _ -> "are"
in
user_err (str "Cannot substitute the term bound to " ++ Id.print id
++ strbrk " in pattern because the term refers to " ++ pr_enum Id.print l
++ strbrk " which " ++ str is ++ strbrk " not bound in the pattern.")
let instantiate_pattern env sigma lvar c =
let open EConstr in
let open Vars in
let rec aux vars = function
| PVar id as x ->
(try
let ctx,c = Id.Map.find id lvar in
try
let inst =
List.map
(fun id -> mkRel (List.index Name.equal (Name id) vars))
ctx
in
let c = substl inst c in
(** FIXME: Stupid workaround to pattern_of_constr being evar sensitive *)
let c = Evarutil.nf_evar sigma c in
pattern_of_constr env sigma (EConstr.Unsafe.to_constr c)
with Not_found (* List.index failed *) ->
let vars =
List.map_filter (function Name id -> Some id | _ -> None) vars in
error_instantiate_pattern id (List.subtract Id.equal ctx vars)
with Not_found (* Map.find failed *) ->
x)
| c ->
map_pattern_with_binders (fun id vars -> id::vars) aux vars c in
aux [] c
let rec liftn_pattern k n = function
| PRel i as x -> if i >= n then PRel (i+k) else x
| c -> map_pattern_with_binders (fun _ -> succ) (liftn_pattern k) n c
let lift_pattern k = liftn_pattern k 1
let rec subst_pattern subst pat =
match pat with
| PRef ref ->
let ref',t = subst_global subst ref in
if ref' == ref then pat else
pattern_of_constr (Global.env()) Evd.empty t
| PVar _
| PEvar _
| PRel _ -> pat
| PProj (p,c) ->
let p' = Projection.map (fun p ->
destConstRef (fst (subst_global subst (ConstRef p)))) p in
let c' = subst_pattern subst c in
if p' == p && c' == c then pat else
PProj(p',c')
| PApp (f,args) ->
let f' = subst_pattern subst f in
let args' = Array.smartmap (subst_pattern subst) args in
if f' == f && args' == args then pat else
PApp (f',args')
| PSoApp (i,args) ->
let args' = List.smartmap (subst_pattern subst) args in
if args' == args then pat else
PSoApp (i,args')
| PLambda (name,c1,c2) ->
let c1' = subst_pattern subst c1 in
let c2' = subst_pattern subst c2 in
if c1' == c1 && c2' == c2 then pat else
PLambda (name,c1',c2')
| PProd (name,c1,c2) ->
let c1' = subst_pattern subst c1 in
let c2' = subst_pattern subst c2 in
if c1' == c1 && c2' == c2 then pat else
PProd (name,c1',c2')
| PLetIn (name,c1,t,c2) ->
let c1' = subst_pattern subst c1 in
let t' = Option.smartmap (subst_pattern subst) t in
let c2' = subst_pattern subst c2 in
if c1' == c1 && t' == t && c2' == c2 then pat else
PLetIn (name,c1',t',c2')
| PSort _
| PMeta _ -> pat
| PIf (c,c1,c2) ->
let c' = subst_pattern subst c in
let c1' = subst_pattern subst c1 in
let c2' = subst_pattern subst c2 in
if c' == c && c1' == c1 && c2' == c2 then pat else
PIf (c',c1',c2')
| PCase (cip,typ,c,branches) ->
let ind = cip.cip_ind in
let ind' = Option.smartmap (subst_ind subst) ind in
let cip' = if ind' == ind then cip else { cip with cip_ind = ind' } in
let typ' = subst_pattern subst typ in
let c' = subst_pattern subst c in
let subst_branch ((i,n,c) as br) =
let c' = subst_pattern subst c in
if c' == c then br else (i,n,c')
in
let branches' = List.smartmap subst_branch branches in
if cip' == cip && typ' == typ && c' == c && branches' == branches
then pat
else PCase(cip', typ', c', branches')
| PFix (lni,(lna,tl,bl)) ->
let tl' = Array.smartmap (subst_pattern subst) tl in
let bl' = Array.smartmap (subst_pattern subst) bl in
if bl' == bl && tl' == tl then pat
else PFix (lni,(lna,tl',bl'))
| PCoFix (ln,(lna,tl,bl)) ->
let tl' = Array.smartmap (subst_pattern subst) tl in
let bl' = Array.smartmap (subst_pattern subst) bl in
if bl' == bl && tl' == tl then pat
else PCoFix (ln,(lna,tl',bl'))
let mkPLetIn na b t c = PLetIn(na,b,t,c)
let mkPProd na t u = PProd(na,t,u)
let mkPLambda na t b = PLambda(na,t,b)
let mkPLambdaUntyped na b = PLambda(na,PMeta None,b)
let rev_it_mkPLambdaUntyped = List.fold_right mkPLambdaUntyped
let mkPProd_or_LetIn (na,_,bo,t) c =
match bo with
| None -> mkPProd na t c
| Some b -> mkPLetIn na b (Some t) c
let mkPLambda_or_LetIn (na,_,bo,t) c =
match bo with
| None -> mkPLambda na t c
| Some b -> mkPLetIn na b (Some t) c
let it_mkPProd_or_LetIn = List.fold_left (fun c d -> mkPProd_or_LetIn d c)
let it_mkPLambda_or_LetIn = List.fold_left (fun c d -> mkPLambda_or_LetIn d c)
let err ?loc pp = user_err ?loc ~hdr:"pattern_of_glob_constr" pp
let warn_cast_in_pattern =
CWarnings.create ~name:"cast-in-pattern" ~category:"automation"
(fun () -> Pp.strbrk "Casts are ignored in patterns")
let rec pat_of_raw metas vars = DAst.with_loc_val (fun ?loc -> function
| GVar id ->
(try PRel (List.index Name.equal (Name id) vars)
with Not_found -> PVar id)
| GPatVar (Evar_kinds.FirstOrderPatVar n) ->
metas := n::!metas; PMeta (Some n)
| GRef (gr,_) ->
PRef (canonical_gr gr)
(* Hack to avoid rewriting a complete interpretation of patterns *)
| GApp (c, cl) ->
begin match DAst.get c with
| GPatVar (Evar_kinds.SecondOrderPatVar n) ->
metas := n::!metas; PSoApp (n, List.map (pat_of_raw metas vars) cl)
| _ ->
PApp (pat_of_raw metas vars c,
Array.of_list (List.map (pat_of_raw metas vars) cl))
end
| GLambda (na,bk,c1,c2) ->
Name.iter (fun n -> metas := n::!metas) na;
PLambda (na, pat_of_raw metas vars c1,
pat_of_raw metas (na::vars) c2)
| GProd (na,bk,c1,c2) ->
Name.iter (fun n -> metas := n::!metas) na;
PProd (na, pat_of_raw metas vars c1,
pat_of_raw metas (na::vars) c2)
| GLetIn (na,c1,t,c2) ->
Name.iter (fun n -> metas := n::!metas) na;
PLetIn (na, pat_of_raw metas vars c1,
Option.map (pat_of_raw metas vars) t,
pat_of_raw metas (na::vars) c2)
| GSort s ->
PSort s
| GHole _ ->
PMeta None
| GCast (c,_) ->
warn_cast_in_pattern ();
pat_of_raw metas vars c
| GIf (c,(_,None),b1,b2) ->
PIf (pat_of_raw metas vars c,
pat_of_raw metas vars b1,pat_of_raw metas vars b2)
| GLetTuple (nal,(_,None),b,c) ->
let mkGLambda na c = DAst.make ?loc @@
GLambda (na,Explicit, DAst.make @@ GHole (Evar_kinds.InternalHole, IntroAnonymous, None),c) in
let c = List.fold_right mkGLambda nal c in
let cip =
{ cip_style = LetStyle;
cip_ind = None;
cip_ind_tags = None;
cip_extensible = false }
in
let tags = List.map (fun _ -> false) nal (* Approximation which can be without let-ins... *) in
PCase (cip, PMeta None, pat_of_raw metas vars b,
[0,tags,pat_of_raw metas vars c])
| GCases (sty,p,[c,(na,indnames)],brs) ->
let get_ind p = match DAst.get p with
| PatCstr((ind,_),_,_) -> Some ind
| _ -> None
in
let get_ind = function
| {CAst.v=(_,[p],_)}::_ -> get_ind p
| _ -> None
in
let ind_tags,ind = match indnames with
| Some {CAst.v=(ind,nal)} -> Some (List.length nal), Some ind
| None -> None, get_ind brs
in
let ext,brs = pats_of_glob_branches loc metas vars ind brs
in
let pred = match p,indnames with
| Some p, Some {CAst.v=(_,nal)} ->
let nvars = na :: List.rev nal @ vars in
rev_it_mkPLambdaUntyped nal (mkPLambdaUntyped na (pat_of_raw metas nvars p))
| None, _ -> PMeta None
| Some p, None ->
match DAst.get p with
| GHole _ -> PMeta None
| _ ->
user_err ?loc (strbrk "Clause \"in\" expected in patterns over \"match\" expressions with an explicit \"return\" clause.")
in
let info =
{ cip_style = sty;
cip_ind = ind;
cip_ind_tags = None;
cip_extensible = ext }
in
(* Nota : when we have a non-trivial predicate,
the inductive type is known. Same when we have at least
one non-trivial branch. These facts are used in [Constrextern]. *)
PCase (info, pred, pat_of_raw metas vars c, brs)
| GProj(p,c) ->
PProj(p, pat_of_raw metas vars c)
| GRec (GFix (ln,n), ids, decls, tl, cl) ->
if Array.exists (function (Some n, GStructRec) -> false | _ -> true) ln then
err ?loc (Pp.str "\"struct\" annotation is expected.")
else
let ln = Array.map (fst %> Option.get) ln in
let ctxtl = Array.map2 (pat_of_glob_in_context metas vars) decls tl in
let tl = Array.map (fun (ctx,tl) -> it_mkPProd_or_LetIn tl ctx) ctxtl in
let vars = Array.fold_left (fun vars na -> Name na::vars) vars ids in
let ctxtl = Array.map2 (pat_of_glob_in_context metas vars) decls cl in
let cl = Array.map (fun (ctx,cl) -> it_mkPLambda_or_LetIn cl ctx) ctxtl in
let names = Array.map (fun id -> Name id) ids in
PFix ((ln,n), (names, tl, cl))
| GRec (GCoFix n, ids, decls, tl, cl) ->
let ctxtl = Array.map2 (pat_of_glob_in_context metas vars) decls tl in
let tl = Array.map (fun (ctx,tl) -> it_mkPProd_or_LetIn tl ctx) ctxtl in
let vars = Array.fold_left (fun vars na -> Name na::vars) vars ids in
let ctxtl = Array.map2 (pat_of_glob_in_context metas vars) decls cl in
let cl = Array.map (fun (ctx,cl) -> it_mkPLambda_or_LetIn cl ctx) ctxtl in
let names = Array.map (fun id -> Name id) ids in
PCoFix (n, (names, tl, cl))
| GPatVar _ | GIf _ | GLetTuple _ | GCases _ | GEvar _ ->
err ?loc (Pp.str "Non supported pattern."))
and pat_of_glob_in_context metas vars decls c =
let rec aux acc vars = function
| (na,bk,b,t) :: decls ->
let decl = (na,bk,Option.map (pat_of_raw metas vars) b,pat_of_raw metas vars t) in
aux (decl::acc) (na::vars) decls
| [] ->
acc, pat_of_raw metas vars c
in aux [] vars decls
and pats_of_glob_branches loc metas vars ind brs =
let get_arg p = match DAst.get p with
| PatVar na ->
Name.iter (fun n -> metas := n::!metas) na;
na
| PatCstr(_,_,_) -> err ?loc:p.CAst.loc (Pp.str "Non supported pattern.")
in
let rec get_pat indexes = function
| [] -> false, []
| {CAst.loc=loc';v=(_,[p], br)} :: brs ->
begin match DAst.get p, DAst.get br, brs with
| PatVar Anonymous, GHole _, [] ->
true, [] (* ends with _ => _ *)
| PatCstr((indsp,j),lv,_), _, _ ->
let () = match ind with
| Some sp when eq_ind sp indsp -> ()
| _ ->
err ?loc (Pp.str "All constructors must be in the same inductive type.")
in
if Int.Set.mem (j-1) indexes then
err ?loc
(str "No unique branch for " ++ int j ++ str"-th constructor.");
let lna = List.map get_arg lv in
let vars' = List.rev lna @ vars in
let pat = rev_it_mkPLambdaUntyped lna (pat_of_raw metas vars' br) in
let ext,pats = get_pat (Int.Set.add (j-1) indexes) brs in
let tags = List.map (fun _ -> false) lv (* approximation, w/o let-in *) in
ext, ((j-1, tags, pat) :: pats)
| _ ->
err ?loc:loc' (Pp.str "Non supported pattern.")
end
| {CAst.loc;v=(_,_,_)} :: _ -> err ?loc (Pp.str "Non supported pattern.")
in
get_pat Int.Set.empty brs
let pattern_of_glob_constr c =
let metas = ref [] in
let p = pat_of_raw metas [] c in
(!metas,p)
|