aboutsummaryrefslogtreecommitdiffhomepage
path: root/pretyping/pattern.ml
blob: 01ccd27fa31fb5665723cffcfef1b70c04de17a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(* $Id$ *)

open Util
open Names
open Term
open Reduction
open Rawterm
open Environ

type constr_pattern =
  | PRef of global_reference
  | PVar of identifier
  | PEvar of existential_key
  | PRel of int
  | PApp of constr_pattern * constr_pattern array
  | PSoApp of int * constr_pattern list
  | PLambda of name * constr_pattern * constr_pattern
  | PProd of name * constr_pattern * constr_pattern
  | PLetIn of name * constr_pattern * constr_pattern
  | PSort of rawsort
  | PMeta of int option
  | PCase of constr_pattern option * constr_pattern * constr_pattern array
  | PFix of fixpoint
  | PCoFix of cofixpoint

let rec occur_meta_pattern = function
  | PApp (f,args) ->
      (occur_meta_pattern f) or (array_exists occur_meta_pattern args)
  | PLambda (na,t,c)  -> (occur_meta_pattern t) or (occur_meta_pattern c)
  | PProd (na,t,c)  -> (occur_meta_pattern t) or (occur_meta_pattern c)
  | PLetIn (na,t,c)  -> (occur_meta_pattern t) or (occur_meta_pattern c)
  | PCase(None,c,br)   ->
      (occur_meta_pattern c) or (array_exists occur_meta_pattern br)
  | PCase(Some p,c,br) ->
      (occur_meta_pattern p) or
      (occur_meta_pattern c) or (array_exists occur_meta_pattern br)
  | PMeta _ | PSoApp _ -> true
  | PEvar _ | PVar _ | PRef _ | PRel _ | PSort _ | PFix _ | PCoFix _ -> false

type constr_label =
  | ConstNode of section_path
  | IndNode of inductive_path
  | CstrNode of constructor_path
  | VarNode of identifier
  | SectionVarNode of section_path
(*
  | ... 
*)

exception BoundPattern;;

let label_of_ref = function
  | ConstRef sp     -> ConstNode sp
  | IndRef sp       -> IndNode sp
  | ConstructRef sp -> CstrNode sp
  | VarRef sp       -> SectionVarNode sp

let rec head_pattern_bound t =
  match t with
    | PProd (_,_,b)  -> head_pattern_bound b 
    | PLetIn (_,_,b) -> head_pattern_bound b 
    | PApp (c,args)  -> head_pattern_bound c
    | PCase (p,c,br) -> head_pattern_bound c
    | PRef r         -> label_of_ref r
    | PVar id        -> VarNode id
    | PEvar _ | PRel _ | PMeta _ | PSoApp _  | PSort _ | PFix _
	-> raise BoundPattern
    (* Perhaps they were arguments, but we don't beta-reduce *)
    | PLambda _ -> raise BoundPattern
    | PCoFix _ -> anomaly "head_pattern_bound: not a type"

let head_of_constr_reference c = match kind_of_term c with
  | IsConst (sp,_) -> ConstNode sp
  | IsMutConstruct (sp,_) -> CstrNode sp
  | IsMutInd (sp,_) -> IndNode sp
  | IsVar id -> VarNode id
  | _ -> anomaly "Not a rigid reference"


(* Second part : Given a term with second-order variables in it,
   represented by Meta's, and possibly applied using [SOAPP] to
   terms, this function will perform second-order, binding-preserving,
   matching, in the case where the pattern is a pattern in the sense
   of Dale Miller.

   ALGORITHM:

   Given a pattern, we decompose it, flattening Cast's and apply's,
   recursing on all operators, and pushing the name of the binder each
   time we descend a binder.

   When we reach a first-order variable, we ask that the corresponding
   term's free-rels all be higher than the depth of the current stack.

   When we reach a second-order application, we ask that the
   intersection of the free-rels of the term and the current stack be
   contained in the arguments of the application, and in that case, we
   construct a LAMBDA with the names on the stack.

 *)

exception PatternMatchingFailure

let constrain ((n : int),(m : constr)) sigma =
  if List.mem_assoc n sigma then
    if eq_constr m (List.assoc n sigma) then sigma
    else raise PatternMatchingFailure
  else 
    (n,m)::sigma
    
let build_lambda toabstract stk (m : constr) = 
  let rec buildrec m p_0 p_1 = match p_0,p_1 with 
    | (_, []) -> m
    | (n, (na,t)::tl) -> 
	if List.mem n toabstract then
          buildrec (mkLambda (na,t,m)) (n+1) tl
        else 
	  buildrec (pop m) (n+1) tl
  in 
  buildrec m 1 stk

let memb_metavars m n =
  match (m,n) with
    | (None, _)     -> true
    | (Some mvs, n) -> List.mem n mvs

let eq_context ctxt1 ctxt2 = array_for_all2 eq_constr ctxt1 ctxt2

let matches_core convert pat c = 
  let rec sorec stk sigma p t =
    let cT = strip_outer_cast t in
    match p,kind_of_term cT with
      | PSoApp (n,args),m ->
	  let relargs =
	    List.map
	      (function
		 | PRel n -> n
		 | _ -> error "Only bound indices are currently allowed in second order pattern matching")
	      args in
	  let frels = Intset.elements (free_rels cT) in
	  if list_subset frels relargs then
	    constrain (n,build_lambda relargs stk cT) sigma
	  else
	    raise PatternMatchingFailure

      | PMeta (Some n), m ->
	  let depth = List.length stk in
	  let frels = Intset.elements (free_rels cT) in
          if List.for_all (fun i -> i > depth) frels then
	    constrain (n,lift (-depth) cT) sigma
          else 
	    raise PatternMatchingFailure

      | PMeta None, m -> sigma

      | PRef (VarRef sp1), IsVar v2 when basename sp1 = v2 -> sigma

      | PVar v1, IsVar v2 when v1 = v2 -> sigma

      | PRef ref, _ when Declare.constr_of_reference Evd.empty (Global.env()) ref = cT -> sigma

      | PRel n1, IsRel n2 when n1 = n2 -> sigma

      | PSort (RProp c1), IsSort (Prop c2) when c1 = c2 -> sigma

      | PSort RType, IsSort (Type _) -> sigma

      | PApp (c1,arg1), IsApp (c2,arg2) ->
        (try array_fold_left2 (sorec stk) (sorec stk sigma c1 c2) arg1 arg2
         with Invalid_argument _ -> raise PatternMatchingFailure)

      | PProd (na1,c1,d1), IsProd(na2,c2,d2) ->
	  sorec ((na2,c2)::stk) (sorec stk sigma c1 c2) d1 d2

      | PLambda (na1,c1,d1), IsLambda(na2,c2,d2) ->
	  sorec ((na2,c2)::stk) (sorec stk sigma c1 c2) d1 d2

      | PLetIn (na1,c1,d1), IsLetIn(na2,c2,t2,d2) ->
	  sorec ((na2,t2)::stk) (sorec stk sigma c1 c2) d1 d2

      | PRef (ConstRef _ as ref), _ when convert <> None ->
	  let (env,evars) = out_some convert in
	  let c = Declare.constr_of_reference Evd.empty env ref in
	  if is_conv env evars c cT then sigma
	  else raise PatternMatchingFailure

      | PCase (_,a1,br1), IsMutCase (_,_,a2,br2) ->
	  (* On ne teste pas le prédicat *)
          if (Array.length br1) = (Array.length br2) then
  	    array_fold_left2 (sorec stk) (sorec stk sigma a1 a2) br1 br2
          else
            raise PatternMatchingFailure
      (* À faire *)
      |	PFix f0, IsFix f1 when f0 = f1 -> sigma
      |	PCoFix c0, IsCoFix c1 when c0 = c1 -> sigma
      | _ -> raise PatternMatchingFailure

  in 
  Sort.list (fun (a,_) (b,_) -> a<b) (sorec [] [] pat c)

let matches = matches_core None

(* To skip to the next occurrence *)
exception NextOccurrence of int

(* Tells if it is an authorized occurrence *)
let authorized_occ nocc mres =
  if nocc = 0 then mres
  else raise (NextOccurrence nocc)

(* Tries matches according to the occurrence *)
let rec try_matches nocc pat = function
  | [] -> raise (NextOccurrence nocc)
  | c::tl ->
    (try authorized_occ nocc (matches pat c) with
    | PatternMatchingFailure -> (try_matches nocc pat tl)
    | NextOccurrence nocc -> (try_matches (nocc - 1) pat tl))

(* Tries to match a subterm of [c] with [pat] *)
let rec sub_match nocc pat c =
  match kind_of_term c with
  | IsCast (c1,c2) ->
    (try authorized_occ nocc ((matches pat c), mkMeta (-1)) with
    | PatternMatchingFailure ->
      let (lm,lc) = try_sub_match nocc pat [c1] in
      (lm,mkCast (List.hd lc, c2))
    | NextOccurrence nocc ->
      let (lm,lc) = try_sub_match (nocc - 1) pat [c1] in
      (lm,mkCast (List.hd lc, c2)))
  | IsLambda (x,c1,c2) ->
    (try authorized_occ nocc ((matches pat c), mkMeta (-1)) with
    | PatternMatchingFailure ->
      let (lm,lc) = try_sub_match nocc pat [c1;c2] in
      (lm,mkLambda (x,List.hd lc,List.nth lc 1))
    | NextOccurrence nocc ->
      let (lm,lc) = try_sub_match (nocc - 1) pat [c1;c2] in
      (lm,mkLambda (x,List.hd lc,List.nth lc 1)))
  | IsProd (x,c1,c2) ->
    (try authorized_occ nocc ((matches pat c), mkMeta (-1)) with
    | PatternMatchingFailure ->
      let (lm,lc) = try_sub_match nocc pat [c1;c2] in
      (lm,mkProd (x,List.hd lc,List.nth lc 1))
    | NextOccurrence nocc ->
      let (lm,lc) = try_sub_match (nocc - 1) pat [c1;c2] in
      (lm,mkProd (x,List.hd lc,List.nth lc 1)))
  | IsLetIn (x,c1,t2,c2) ->
    (try authorized_occ nocc ((matches pat c), mkMeta (-1)) with
    | PatternMatchingFailure ->
      let (lm,lc) = try_sub_match nocc pat [c1;t2;c2] in
      (lm,mkLetIn (x,List.hd lc,List.nth lc 1,List.nth lc 2))
    | NextOccurrence nocc ->
      let (lm,lc) = try_sub_match (nocc - 1) pat [c1;t2;c2] in
      (lm,mkLetIn (x,List.hd lc,List.nth lc 1,List.nth lc 2)))
  | IsApp (c1,lc) ->
    (try authorized_occ nocc ((matches pat c), mkMeta (-1)) with
    | PatternMatchingFailure ->
      let (lm,le) = try_sub_match nocc pat (c1::(Array.to_list lc)) in
      (lm,mkApp (List.hd le, Array.of_list (List.tl le)))
    | NextOccurrence nocc ->
      let (lm,le) = try_sub_match (nocc - 1) pat (c1::(Array.to_list lc)) in
      (lm,mkApp (List.hd le, Array.of_list (List.tl le))))
  | IsMutCase (ci,hd,c1,lc) ->
    (try authorized_occ nocc ((matches pat c), mkMeta (-1)) with
    | PatternMatchingFailure ->
      let (lm,le) = try_sub_match nocc pat (c1::Array.to_list lc) in
      (lm,mkMutCaseL (ci,hd,List.hd le,List.tl le))
    | NextOccurrence nocc ->
      let (lm,le) = try_sub_match (nocc - 1) pat (c1::Array.to_list lc) in
      (lm,mkMutCaseL (ci,hd,List.hd le,List.tl le)))
  | IsMutConstruct _ | IsFix _ | IsMutInd _|IsCoFix _ |IsEvar _|IsConst _
  | IsRel _|IsMeta _|IsVar _|IsSort _ ->
    (try authorized_occ nocc ((matches pat c),mkMeta (-1)) with
    | PatternMatchingFailure -> raise (NextOccurrence nocc)
    | NextOccurrence nocc -> raise (NextOccurrence (nocc - 1)))

(* Tries [sub_match] for all terms in the list *)
and try_sub_match nocc pat lc =
  let rec try_sub_match_rec nocc pat lacc = function
    | [] -> raise (NextOccurrence nocc)
    | c::tl ->
      (try 
         let (lm,ce) = sub_match nocc pat c in
         (lm,lacc@(ce::tl))
       with
      | NextOccurrence nocc -> try_sub_match_rec nocc pat (lacc@[c]) tl) in
  try_sub_match_rec nocc pat [] lc

let is_matching pat n =
  try let _ = matches pat n in true
  with PatternMatchingFailure -> false

let matches_conv env sigma = matches_core (Some (env,sigma))

let is_matching_conv env sigma pat n =
  try let _ = matches_conv env sigma pat n in true
  with PatternMatchingFailure -> false

let rec pattern_of_constr t =
  match kind_of_term t with
    | IsRel n  -> PRel n
    | IsMeta n -> PMeta (Some n)
    | IsVar id -> PVar id
    | IsSort (Prop c) -> PSort (RProp c)
    | IsSort (Type _) -> PSort RType
    | IsCast (c,_)      -> pattern_of_constr c
    | IsLetIn (na,c,_,b) -> PLetIn (na,pattern_of_constr c,pattern_of_constr b)
    | IsProd (na,c,b)   -> PProd (na,pattern_of_constr c,pattern_of_constr b)
    | IsLambda (na,c,b) -> PLambda (na,pattern_of_constr c,pattern_of_constr b)
    | IsApp (f,a) -> PApp (pattern_of_constr f,Array.map pattern_of_constr a)
    | IsConst (sp,ctxt)         -> pattern_of_ref (ConstRef sp) ctxt
    | IsMutInd (sp,ctxt)        -> pattern_of_ref (IndRef sp) ctxt
    | IsMutConstruct (sp,ctxt) -> pattern_of_ref (ConstructRef sp) ctxt
    | IsEvar (n,ctxt) ->
	if ctxt = [||] then PEvar n
	else PApp (PEvar n, Array.map pattern_of_constr ctxt)
    | IsMutCase (ci,p,a,br) ->
	PCase (Some (pattern_of_constr p),pattern_of_constr a,
	       Array.map pattern_of_constr br)
    | IsFix f -> PFix f
    | IsCoFix _ ->
	error "pattern_of_constr: (co)fix currently not supported"

and pattern_of_ref ref inst =
  let args = Declare.extract_instance ref inst in
  let f = PRef ref in
  if args = [||] then f else PApp (f, Array.map pattern_of_constr args)