1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2013 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Pp
open Errors
open Term
open Vars
open Environ
open Reduction
open Univ
open Declarations
open Names
open Inductive
open Util
open Nativecode
open Nativevalues
open Nativelambda
(** This module implements normalization by evaluation to OCaml code *)
let evars_of_evar_map evd =
{ evars_val = Evd.existential_opt_value evd;
evars_typ = Evd.existential_type evd;
evars_metas = Evd.meta_type evd }
exception Find_at of int
let invert_tag cst tag reloc_tbl =
try
for j = 0 to Array.length reloc_tbl - 1 do
let tagj,arity = reloc_tbl.(j) in
if Int.equal tag tagj && (cst && Int.equal arity 0 || not(cst || Int.equal arity 0)) then
raise (Find_at j)
else ()
done;raise Not_found
with Find_at j -> (j+1)
let decompose_prod env t =
let (name,dom,codom as res) = destProd (whd_betadeltaiota env t) in
match name with
| Anonymous -> (Name (id_of_string "x"),dom,codom)
| _ -> res
let app_type env c =
let t = whd_betadeltaiota env c in
try destApp t with DestKO -> (t,[||])
let find_rectype_a env c =
let (t, l) = app_type env c in
match kind_of_term t with
| Ind ind -> (ind, l)
| _ -> raise Not_found
(* Instantiate inductives and parameters in constructor type *)
let type_constructor mind mib typ params =
let s = ind_subst mind mib in
let ctyp = substl s typ in
let nparams = Array.length params in
if Int.equal nparams 0 then ctyp
else
let _,ctyp = decompose_prod_n nparams ctyp in
substl (List.rev (Array.to_list params)) ctyp
let construct_of_constr_notnative const env tag (mind, _ as ind) allargs =
let mib,mip = lookup_mind_specif env ind in
let nparams = mib.mind_nparams in
let params = Array.sub allargs 0 nparams in
try
if const then
let ctyp = type_constructor mind mib (mip.mind_nf_lc.(0)) params in
retroknowledge Retroknowledge.get_vm_decompile_constant_info env (mkInd ind) tag, ctyp
else
raise Not_found
with Not_found ->
let i = invert_tag const tag mip.mind_reloc_tbl in
let ctyp = type_constructor mind mib (mip.mind_nf_lc.(i-1)) params in
(mkApp(mkConstruct(ind,i), params), ctyp)
let construct_of_constr const env tag typ =
let t, l = app_type env typ in
match kind_of_term t with
| Ind ind ->
construct_of_constr_notnative const env tag ind l
| _ -> assert false
let construct_of_constr_const env tag typ =
fst (construct_of_constr true env tag typ)
let construct_of_constr_block = construct_of_constr false
let build_branches_type env (mind,_ as _ind) mib mip params dep p =
let rtbl = mip.mind_reloc_tbl in
(* [build_one_branch i cty] construit le type de la ieme branche (commence
a 0) et les lambda correspondant aux realargs *)
let build_one_branch i cty =
let typi = type_constructor mind mib cty params in
let decl,indapp = Term.decompose_prod typi in
let ind,cargs = find_rectype_a env indapp in
let nparams = Array.length params in
let carity = snd (rtbl.(i)) in
let crealargs = Array.sub cargs nparams (Array.length cargs - nparams) in
let codom =
let papp = mkApp(lift (List.length decl) p,crealargs) in
if dep then
let cstr = ith_constructor_of_inductive ind (i+1) in
let relargs = Array.init carity (fun i -> mkRel (carity-i)) in
let dep_cstr = mkApp(mkApp(mkConstruct cstr,params),relargs) in
mkApp(papp,[|dep_cstr|])
else papp
in
decl, codom
in Array.mapi build_one_branch mip.mind_nf_lc
let build_case_type dep p realargs c =
if dep then mkApp(mkApp(p, realargs), [|c|])
else mkApp(p, realargs)
(* TODO move this function *)
let type_of_rel env n =
let (_,_,ty) = lookup_rel n env in
lift n ty
let type_of_prop = mkSort type1_sort
let type_of_sort s =
match s with
| Prop _ -> type_of_prop
| Type u -> mkType (Univ.super u)
let type_of_var env id =
try let (_,_,ty) = lookup_named id env in ty
with Not_found ->
anomaly ~label:"type_of_var" (str "variable " ++ Id.print id ++ str " unbound")
let sort_of_product env domsort rangsort =
match (domsort, rangsort) with
(* Product rule (s,Prop,Prop) *)
| (_, Prop Null) -> rangsort
(* Product rule (Prop/Set,Set,Set) *)
| (Prop _, Prop Pos) -> rangsort
(* Product rule (Type,Set,?) *)
| (Type u1, Prop Pos) ->
begin match engagement env with
| Some ImpredicativeSet ->
(* Rule is (Type,Set,Set) in the Set-impredicative calculus *)
rangsort
| _ ->
(* Rule is (Type_i,Set,Type_i) in the Set-predicative calculus *)
Type (sup u1 type0_univ)
end
(* Product rule (Prop,Type_i,Type_i) *)
| (Prop Pos, Type u2) -> Type (sup type0_univ u2)
(* Product rule (Prop,Type_i,Type_i) *)
| (Prop Null, Type _) -> rangsort
(* Product rule (Type_i,Type_i,Type_i) *)
| (Type u1, Type u2) -> Type (sup u1 u2)
(* normalisation of values *)
let branch_of_switch lvl ans bs =
let tbl = ans.asw_reloc in
let branch i =
let tag,arity = tbl.(i) in
let ci =
if Int.equal arity 0 then mk_const tag
else mk_block tag (mk_rels_accu lvl arity) in
bs ci in
Array.init (Array.length tbl) branch
let rec nf_val env v typ =
match kind_of_value v with
| Vaccu accu -> nf_accu env accu
| Vfun f ->
let lvl = nb_rel env in
let name,dom,codom =
try decompose_prod env typ
with DestKO ->
Errors.anomaly
(Pp.strbrk "Returned a functional value in a type not recognized as a product type.")
in
let env = push_rel (name,None,dom) env in
let body = nf_val env (f (mk_rel_accu lvl)) codom in
mkLambda(name,dom,body)
| Vconst n -> construct_of_constr_const env n typ
| Vblock b ->
let capp,ctyp = construct_of_constr_block env (block_tag b) typ in
let args = nf_bargs env b ctyp in
mkApp(capp,args)
and nf_type env v =
match kind_of_value v with
| Vaccu accu -> nf_accu env accu
| _ -> assert false
and nf_type_sort env v =
match kind_of_value v with
| Vaccu accu ->
let t,s = nf_accu_type env accu in
let s = try destSort s with DestKO -> assert false in
t, s
| _ -> assert false
and nf_accu env accu =
let atom = atom_of_accu accu in
if Int.equal (accu_nargs accu) 0 then nf_atom env atom
else
let a,typ = nf_atom_type env atom in
let _, args = nf_args env accu typ in
mkApp(a,Array.of_list args)
and nf_accu_type env accu =
let atom = atom_of_accu accu in
if Int.equal (accu_nargs accu) 0 then nf_atom_type env atom
else
let a,typ = nf_atom_type env atom in
let t, args = nf_args env accu typ in
mkApp(a,Array.of_list args), t
and nf_args env accu t =
let aux arg (t,l) =
let _,dom,codom =
try decompose_prod env t with
DestKO ->
Errors.anomaly
(Pp.strbrk "Returned a functional value in a type not recognized as a product type.")
in
let c = nf_val env arg dom in
(subst1 c codom, c::l)
in
let t,l = List.fold_right aux (args_of_accu accu) (t,[]) in
t, List.rev l
and nf_bargs env b t =
let t = ref t in
let len = block_size b in
Array.init len
(fun i ->
let _,dom,codom =
try decompose_prod env !t with
DestKO ->
Errors.anomaly
(Pp.strbrk "Returned a functional value in a type not recognized as a product type.")
in
let c = nf_val env (block_field b i) dom in
t := subst1 c codom; c)
and nf_atom env atom =
match atom with
| Arel i -> mkRel (nb_rel env - i)
| Aconstant cst -> mkConst cst
| Aind ind -> mkInd ind
| Asort s -> mkSort s
| Avar id -> mkVar id
| Aprod(n,dom,codom) ->
let dom = nf_type env dom in
let vn = mk_rel_accu (nb_rel env) in
let env = push_rel (n,None,dom) env in
let codom = nf_type env (codom vn) in
mkProd(n,dom,codom)
| Ameta (mv,_) -> mkMeta mv
| Aevar (ev,_) -> mkEvar ev
| _ -> fst (nf_atom_type env atom)
and nf_atom_type env atom =
match atom with
| Arel i ->
let n = (nb_rel env - i) in
mkRel n, type_of_rel env n
| Aconstant cst ->
mkConst cst, Typeops.type_of_constant env cst
| Aind ind ->
mkInd ind, Inductiveops.type_of_inductive env ind
| Asort s ->
mkSort s, type_of_sort s
| Avar id ->
mkVar id, type_of_var env id
| Acase(ans,accu,p,bs) ->
let a,ta = nf_accu_type env accu in
let (mind,_ as ind),allargs = find_rectype_a env ta in
let (mib,mip) = Inductive.lookup_mind_specif env ind in
let nparams = mib.mind_nparams in
let params,realargs = Array.chop nparams allargs in
let pT =
hnf_prod_applist env
(Inductiveops.type_of_inductive env ind) (Array.to_list params) in
let pT = whd_betadeltaiota env pT in
let dep, p = nf_predicate env ind mip params p pT in
(* Calcul du type des branches *)
let btypes = build_branches_type env ind mib mip params dep p in
(* calcul des branches *)
let bsw = branch_of_switch (nb_rel env) ans bs in
let mkbranch i v =
let decl,codom = btypes.(i) in
let env =
List.fold_right
(fun (name,t) env -> push_rel (name,None,t) env) decl env in
let b = nf_val env v codom in
compose_lam decl b
in
let branchs = Array.mapi mkbranch bsw in
let tcase = build_case_type dep p realargs a in
let ci = ans.asw_ci in
mkCase(ci, p, a, branchs), tcase
| Afix(tt,ft,rp,s) ->
let tt = Array.map (nf_type env) tt in
let name = Array.map (fun _ -> (Name (id_of_string "Ffix"))) tt in
let lvl = nb_rel env in
let fargs = mk_rels_accu lvl (Array.length ft) in
let env = push_rec_types (name,tt,[||]) env in
let ft = Array.mapi (fun i v -> nf_val env (napply v fargs) tt.(i)) ft in
mkFix((rp,s),(name,tt,ft)), tt.(s)
| Acofix(tt,ft,s,_) | Acofixe(tt,ft,s,_) ->
let tt = Array.map (nf_type env) tt in
let name = Array.map (fun _ -> (Name (id_of_string "Fcofix"))) tt in
let lvl = nb_rel env in
let fargs = mk_rels_accu lvl (Array.length ft) in
let env = push_rec_types (name,tt,[||]) env in
let ft = Array.mapi (fun i v -> nf_val env (napply v fargs) tt.(i)) ft in
mkCoFix(s,(name,tt,ft)), tt.(s)
| Aprod(n,dom,codom) ->
let dom,s1 = nf_type_sort env dom in
let vn = mk_rel_accu (nb_rel env) in
let env = push_rel (n,None,dom) env in
let codom,s2 = nf_type_sort env (codom vn) in
mkProd(n,dom,codom), mkSort (sort_of_product env s1 s2)
| Aevar(ev,ty) ->
let ty = nf_type env ty in
mkEvar ev, ty
| Ameta(mv,ty) ->
let ty = nf_type env ty in
mkMeta mv, ty
and nf_predicate env ind mip params v pT =
match kind_of_value v, kind_of_term pT with
| Vfun f, Prod _ ->
let k = nb_rel env in
let vb = f (mk_rel_accu k) in
let name,dom,codom =
try decompose_prod env pT with
DestKO ->
Errors.anomaly
(Pp.strbrk "Returned a functional value in a type not recognized as a product type.")
in
let dep,body =
nf_predicate (push_rel (name,None,dom) env) ind mip params vb codom in
dep, mkLambda(name,dom,body)
| Vfun f, _ ->
let k = nb_rel env in
let vb = f (mk_rel_accu k) in
let name = Name (id_of_string "c") in
let n = mip.mind_nrealargs in
let rargs = Array.init n (fun i -> mkRel (n-i)) in
let params = if Int.equal n 0 then params else Array.map (lift n) params in
let dom = mkApp(mkInd ind,Array.append params rargs) in
let body = nf_type (push_rel (name,None,dom) env) vb in
true, mkLambda(name,dom,body)
| _, _ -> false, nf_type env v
let native_norm env sigma c ty =
if !Flags.no_native_compiler then
error "Native_compute reduction has been disabled"
else
let penv = Environ.pre_env env in
(*
Format.eprintf "Numbers of free variables (named): %i\n" (List.length vl1);
Format.eprintf "Numbers of free variables (rel): %i\n" (List.length vl2);
*)
let ml_filename, prefix = Nativelib.get_ml_filename () in
let code, upd = mk_norm_code penv sigma prefix c in
match Nativelib.compile ml_filename code with
| 0,fn ->
if !Flags.debug then Pp.msg_debug (Pp.str "Running norm ...");
let t0 = Sys.time () in
Nativelib.call_linker ~fatal:true prefix fn (Some upd);
let t1 = Sys.time () in
let time_info = Format.sprintf "Evaluation done in %.5f@." (t1 -. t0) in
if !Flags.debug then Pp.msg_debug (Pp.str time_info);
let res = nf_val env !Nativelib.rt1 ty in
let t2 = Sys.time () in
let time_info = Format.sprintf "Reification done in %.5f@." (t2 -. t1) in
if !Flags.debug then Pp.msg_debug (Pp.str time_info);
res
| _ -> anomaly (Pp.str "Compilation failure")
|