aboutsummaryrefslogtreecommitdiffhomepage
path: root/pretyping/inductiveops.ml
blob: 6bf4813c2e29b414adfa02f80ff897d4a28bcf42 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(* $Id$ *)

open Util
open Names
open Univ
open Term
open Termops
open Sign
open Declarations
open Environ
open Reductionops

(* [inductive_family] = [inductive_instance] applied to global parameters *)
type inductive_family = inductive * constr list

let make_ind_family (mis, params) = (mis,params)
let dest_ind_family (mis,params) = (mis,params)

let liftn_inductive_family n d (mis,params) =
  (mis, List.map (liftn n d) params)
let lift_inductive_family n = liftn_inductive_family n 1

let substnl_ind_family l n (mis,params) =
  (mis, List.map (substnl l n) params)


type inductive_type = IndType of inductive_family * constr list

let make_ind_type (indf, realargs) = IndType (indf,realargs)
let dest_ind_type (IndType (indf,realargs)) = (indf,realargs)

let liftn_inductive_type n d (IndType (indf, realargs)) =
  IndType (liftn_inductive_family n d indf, List.map (liftn n d) realargs)
let lift_inductive_type n = liftn_inductive_type n 1

let substnl_ind_type l n (IndType (indf,realargs)) =
  IndType (substnl_ind_family l n indf, List.map (substnl l n) realargs)

let mkAppliedInd (IndType ((ind,params), realargs)) =
  applist (mkInd ind,params@realargs)


let mis_is_recursive_subset listind mip = 
  let rec one_is_rec rvec = 
    List.exists
      (function
	 | Mrec i       -> List.mem i listind 
         | Imbr(_,lvec) -> one_is_rec lvec
         | Norec        -> false
         | Param _      -> false) rvec
  in 
  array_exists one_is_rec mip.mind_listrec

let mis_is_recursive (mib,mip) =
  mis_is_recursive_subset (interval 0 (mib.mind_ntypes-1)) mip

let mis_nf_constructor_type (ind,mib,mip) j =
  let specif = mip.mind_nf_lc
  and ntypes = mib.mind_ntypes
  and nconstr = Array.length mip.mind_consnames in
  let make_Ik k = mkInd ((fst ind),ntypes-k-1) in 
  if j > nconstr then error "Not enough constructors in the type";
  substl (list_tabulate make_Ik ntypes) specif.(j-1)

(* Annotation for cases *)
let make_case_info env ind style pats_source =
  let (mib,mip) = Inductive.lookup_mind_specif env ind in
  let print_info =
    { cnames    = mip.mind_consnames;
      ind_nargs = mip.mind_nrealargs;
      style     = style;
      source    =pats_source } in
  { ci_ind     = ind;
    ci_npar    = mip.mind_nparams;
    ci_pp_info = print_info }

let make_default_case_info env ind =
  let (mib,mip) = Inductive.lookup_mind_specif env ind in
  make_case_info env ind None
    (Array.map (fun _ -> RegularPat) mip.mind_consnames)

(*s Useful functions *)

type constructor_summary = {
  cs_cstr : constructor;
  cs_params : constr list;
  cs_nargs : int;
  cs_args : rel_context;
  cs_concl_realargs : constr array
}

let lift_constructor n cs = {
  cs_cstr = cs.cs_cstr;
  cs_params = List.map (lift n) cs.cs_params;
  cs_nargs = cs.cs_nargs;
  cs_args = lift_rel_context n cs.cs_args;
  cs_concl_realargs = Array.map (liftn n (cs.cs_nargs+1)) cs.cs_concl_realargs
}

let instantiate_params t args sign =
  let rec inst s t = function
    | ((_,None,_)::ctxt,a::args) ->
	(match kind_of_term t with
	   | Prod(_,_,t) -> inst (a::s) t (ctxt,args)
	   | _ -> anomaly"instantiate_params: type, ctxt and args mismatch")
    | ((_,(Some b),_)::ctxt,args) -> 
	(match kind_of_term t with
	   | LetIn(_,_,_,t) -> inst ((substl s b)::s) t (ctxt,args)
	   | _ -> anomaly"instantiate_params: type, ctxt and args mismatch")
    | [], [] -> substl s t
    | _ -> anomaly"instantiate_params: type, ctxt and args mismatch"
  in inst [] t (List.rev sign,args)

let get_constructor (ind,mib,mip,params) j =
  assert (j <= Array.length mip.mind_consnames);
  let typi = mis_nf_constructor_type (ind,mib,mip) j in
  let typi = instantiate_params typi params mip.mind_params_ctxt in
  let (args,ccl) = decompose_prod_assum typi in
  let (_,allargs) = decompose_app ccl in
  let (_,vargs) = list_chop mip.mind_nparams allargs in
  { cs_cstr = ith_constructor_of_inductive ind j;
    cs_params = params;
    cs_nargs = rel_context_length args;
    cs_args = args;
    cs_concl_realargs = Array.of_list vargs }

let get_constructors env (ind,params) =
  let (mib,mip) = Inductive.lookup_mind_specif env ind in
  Array.init (Array.length mip.mind_consnames)
    (fun j -> get_constructor (ind,mib,mip,params) (j+1))

let get_arity env (ind,params) =
  let (mib,mip) = Inductive.lookup_mind_specif env ind in
  let arity = body_of_type mip.mind_nf_arity in
  destArity (prod_applist arity params)

(* Functions to build standard types related to inductive *)
let local_rels =
  let rec relrec acc n = function (* more recent arg in front *)
    | [] -> acc
    | (_,None,_)::l -> relrec (mkRel n :: acc) (n+1) l
    | (_,Some _,_)::l -> relrec acc (n+1) l
  in relrec [] 1

let build_dependent_constructor cs =
  applist
    (mkConstruct cs.cs_cstr,
     (List.map (lift cs.cs_nargs) cs.cs_params)@(local_rels cs.cs_args))

let build_dependent_inductive env ((ind, params) as indf) =
  let arsign,_ = get_arity env indf in
  let (mib,mip) = Inductive.lookup_mind_specif env ind in
  let nrealargs = mip.mind_nrealargs in
  applist 
    (mkInd ind,
     (List.map (lift nrealargs) params)@(local_rels arsign))

(* builds the arity of an elimination predicate in sort [s] *)

let make_arity_signature env dep indf =
  let (arsign,_) = get_arity env indf in
  if dep then
    (* We need names everywhere *)
    name_context env
      ((Anonymous,None,build_dependent_inductive env indf)::arsign)
      (* Costly: would be better to name one for all at definition time *)
  else
    (* No need to enforce names *)
    arsign

let make_arity env dep indf s = mkArity (make_arity_signature env dep indf, s)

(* [p] is the predicate and [cs] a constructor summary *)
let build_branch_type env dep p cs =
  let base = appvect (lift cs.cs_nargs p, cs.cs_concl_realargs) in
  if dep then
    it_mkProd_or_LetIn_name env
      (applist (base,[build_dependent_constructor cs]))
      cs.cs_args
  else
    it_mkProd_or_LetIn base cs.cs_args

(**************************************************)

exception Induc

let extract_mrectype t =
  let (t, l) = decompose_app t in
  match kind_of_term t with
    | Ind ind -> (ind, l)
    | _ -> raise Induc

let find_mrectype env sigma c =
  let (t, l) = decompose_app (whd_betadeltaiota env sigma c) in
  match kind_of_term t with
    | Ind ind -> (ind, l)
    | _ -> raise Induc

let find_rectype env sigma c =
  let (t, l) = decompose_app (whd_betadeltaiota env sigma c) in
  match kind_of_term t with
    | Ind ind ->
        let (mib,mip) = Inductive.lookup_mind_specif env ind in
        let (par,rargs) = list_chop mip.mind_nparams l in
        IndType((ind, par),rargs)
    | _ -> raise Induc

let find_inductive env sigma c =
  let (t, l) = decompose_app (whd_betadeltaiota env sigma c) in
  match kind_of_term t with
    | Ind ind
        when (fst (Inductive.lookup_mind_specif env ind)).mind_finite ->
        (ind, l)
    | _ -> raise Induc

let find_coinductive env sigma c =
  let (t, l) = decompose_app (whd_betadeltaiota env sigma c) in
  match kind_of_term t with
    | Ind ind
        when not (fst (Inductive.lookup_mind_specif env ind)).mind_finite ->
        (ind, l)
    | _ -> raise Induc


(***********************************************)
(* find appropriate names for pattern variables. Useful in the
   Case tactic. *)

let is_dep_arity env kelim predty t = 
  let rec srec (pt,t) =
    let pt' = whd_betadeltaiota env Evd.empty pt in
    let t' = whd_betadeltaiota env Evd.empty t in
    match kind_of_term pt', kind_of_term t' with
      | Prod (_,a1,a2), Prod (_,a1',a2') -> srec (a2,a2')
      | Prod (_,a1,a2), _ -> true
      | _ -> false in 
  srec (predty,t)

let is_dep env predty (ind,args) =
  let (mib,mip) = Inductive.lookup_mind_specif env ind in
  let params = fst (list_chop mip.mind_nparams args) in
  let kelim = mip.mind_kelim in
  let arsign,s = get_arity env (ind,params) in
  let glob_t = it_mkProd_or_LetIn (mkSort s) arsign in
  is_dep_arity env kelim predty glob_t


let set_names env n brty =
  let (ctxt,cl) = decompose_prod_n_assum n brty in
  it_mkProd_or_LetIn_name env cl ctxt

let set_pattern_names env ind brv =
  let (_,mip) = Inductive.lookup_mind_specif env ind in
  let arities =
    Array.map
      (fun c -> List.length (fst (decompose_prod c)) - mip.mind_nparams)
      mip.mind_nf_lc in
  array_map2 (set_names env) arities brv


let type_case_branches_with_names env indspec pj c =
  let (lbrty,conclty,_) = Inductive.type_case_branches env indspec pj c in
  if is_dep env pj.uj_type indspec then
    (set_pattern_names env (fst indspec) lbrty, conclty)
  else (lbrty, conclty)

(***********************************************)
(* Guard condition *)

(* A function which checks that a term well typed verifies both
   syntactic conditions *)

let control_only_guard env = 
  let rec control_rec c = match kind_of_term c with
    | Rel _ | Var _    -> ()
    | Sort _ | Meta _ -> ()
    | Ind _       -> ()
    | Construct _ -> ()
    | Const _        -> ()
    | CoFix (_,(_,tys,bds) as cofix) ->
	Inductive.check_cofix env cofix;
	Array.iter control_rec tys;
	Array.iter control_rec bds;
    | Fix (_,(_,tys,bds) as fix) ->
	Inductive.check_fix env fix; 
	Array.iter control_rec tys;
	Array.iter control_rec bds;
    | Case(_,p,c,b) ->control_rec p;control_rec c;Array.iter control_rec b
    | Evar (_,cl)         -> Array.iter control_rec cl
    | App (_,cl)         -> Array.iter control_rec cl
    | Cast (c1,c2)       -> control_rec c1; control_rec c2
    | Prod (_,c1,c2)     -> control_rec c1; control_rec c2
    | Lambda (_,c1,c2)   -> control_rec c1; control_rec c2
    | LetIn (_,c1,c2,c3) -> control_rec c1; control_rec c2; control_rec c3
  in 
  control_rec