1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* File initially created by Christine Paulin, 1996 *)
(* This file builds various inductive schemes *)
open Pp
open CErrors
open Util
open Names
open Libnames
open Globnames
open Nameops
open Term
open Constr
open Vars
open Namegen
open Declarations
open Declareops
open Inductive
open Inductiveops
open Environ
open Reductionops
open Nametab
open Context.Rel.Declaration
type dep_flag = bool
(* Errors related to recursors building *)
type recursion_scheme_error =
| NotAllowedCaseAnalysis of (*isrec:*) bool * Sorts.t * pinductive
| NotMutualInScheme of inductive * inductive
| NotAllowedDependentAnalysis of (*isrec:*) bool * inductive
exception RecursionSchemeError of recursion_scheme_error
let named_hd env t na = named_hd env (Evd.from_env env) (EConstr.of_constr t) na
let name_assumption env = function
| LocalAssum (na,t) -> LocalAssum (named_hd env t na, t)
| LocalDef (na,c,t) -> LocalDef (named_hd env c na, c, t)
let mkLambda_or_LetIn_name env d b = mkLambda_or_LetIn (name_assumption env d) b
let mkProd_or_LetIn_name env d b = mkProd_or_LetIn (name_assumption env d) b
let mkLambda_name env (n,a,b) = mkLambda_or_LetIn_name env (LocalAssum (n,a)) b
let mkProd_name env (n,a,b) = mkProd_or_LetIn_name env (LocalAssum (n,a)) b
let it_mkProd_or_LetIn_name env b l = List.fold_left (fun c d -> mkProd_or_LetIn_name env d c) b l
let it_mkLambda_or_LetIn_name env b l = List.fold_left (fun c d -> mkLambda_or_LetIn_name env d c) b l
let make_prod_dep dep env = if dep then mkProd_name env else mkProd
let mkLambda_string s t c = mkLambda (Name (Id.of_string s), t, c)
(*******************************************)
(* Building curryfied elimination *)
(*******************************************)
let is_private mib =
match mib.mind_private with
| Some true -> true
| _ -> false
let check_privacy_block mib =
if is_private mib then
user_err (str"case analysis on a private inductive type")
(**********************************************************************)
(* Building case analysis schemes *)
(* Christine Paulin, 1996 *)
let mis_make_case_com dep env sigma (ind, u as pind) (mib,mip as specif) kind =
let lnamespar = Vars.subst_instance_context u mib.mind_params_ctxt in
let indf = make_ind_family(pind, Context.Rel.to_extended_list mkRel 0 lnamespar) in
let constrs = get_constructors env indf in
let projs = get_projections env indf in
let () = if Option.is_empty projs then check_privacy_block mib in
let () =
if not (Sorts.List.mem kind (elim_sorts specif)) then
raise
(RecursionSchemeError
(NotAllowedCaseAnalysis (false, fst (UnivGen.fresh_sort_in_family kind), pind)))
in
let ndepar = mip.mind_nrealdecls + 1 in
(* Pas génant car env ne sert pas à typer mais juste à renommer les Anonym *)
(* mais pas très joli ... (mais manque get_sort_of à ce niveau) *)
let env' = push_rel_context lnamespar env in
let rec add_branch env k =
if Int.equal k (Array.length mip.mind_consnames) then
let nbprod = k+1 in
let indf' = lift_inductive_family nbprod indf in
let arsign,_ = get_arity env indf' in
let depind = build_dependent_inductive env indf' in
let deparsign = LocalAssum (Anonymous,depind)::arsign in
let ci = make_case_info env (fst pind) RegularStyle in
let pbody =
appvect
(mkRel (ndepar + nbprod),
if dep then Context.Rel.to_extended_vect mkRel 0 deparsign
else Context.Rel.to_extended_vect mkRel 1 arsign) in
let p =
it_mkLambda_or_LetIn_name env'
((if dep then mkLambda_name env' else mkLambda)
(Anonymous,depind,pbody))
arsign
in
let obj =
match projs with
| None -> mkCase (ci, lift ndepar p, mkRel 1,
Termops.rel_vect ndepar k)
| Some ps ->
let term =
mkApp (mkRel 2,
Array.map
(fun p -> mkProj (Projection.make p true, mkRel 1)) ps) in
if dep then
let ty = mkApp (mkRel 3, [| mkRel 1 |]) in
mkCast (term, DEFAULTcast, ty)
else term
in
it_mkLambda_or_LetIn_name env' obj deparsign
else
let cs = lift_constructor (k+1) constrs.(k) in
let t = build_branch_type env sigma dep (mkRel (k+1)) cs in
mkLambda_string "f" t
(add_branch (push_rel (LocalAssum (Anonymous, t)) env) (k+1))
in
let (sigma, s) = Evd.fresh_sort_in_family ~rigid:Evd.univ_flexible_alg sigma kind in
let typP = make_arity env' sigma dep indf s in
let typP = EConstr.Unsafe.to_constr typP in
let c =
it_mkLambda_or_LetIn_name env
(mkLambda_string "P" typP
(add_branch (push_rel (LocalAssum (Anonymous,typP)) env') 0)) lnamespar
in
(sigma, c)
(* check if the type depends recursively on one of the inductive scheme *)
(**********************************************************************)
(* Building the recursive elimination *)
(* Christine Paulin, 1996 *)
(*
* t is the type of the constructor co and recargs is the information on
* the recursive calls. (It is assumed to be in form given by the user).
* build the type of the corresponding branch of the recurrence principle
* assuming f has this type, branch_rec gives also the term
* [x1]..[xk](f xi (F xi) ...) to be put in the corresponding branch of
* the case operation
* FPvect gives for each inductive definition if we want an elimination
* on it with which predicate and which recursive function.
*)
let type_rec_branch is_rec dep env sigma (vargs,depPvect,decP) tyi cs recargs =
let make_prod = make_prod_dep dep in
let nparams = List.length vargs in
let process_pos env depK pk =
let rec prec env i sign p =
let p',largs = whd_allnolet_stack env sigma (EConstr.of_constr p) in
let p' = EConstr.Unsafe.to_constr p' in
let largs = List.map EConstr.Unsafe.to_constr largs in
match kind p' with
| Prod (n,t,c) ->
let d = LocalAssum (n,t) in
make_prod env (n,t,prec (push_rel d env) (i+1) (d::sign) c)
| LetIn (n,b,t,c) when List.is_empty largs ->
let d = LocalDef (n,b,t) in
mkLetIn (n,b,t,prec (push_rel d env) (i+1) (d::sign) c)
| Ind (_,_) ->
let realargs = List.skipn nparams largs in
let base = applist (lift i pk,realargs) in
if depK then
Reduction.beta_appvect
base [|applist (mkRel (i+1), Context.Rel.to_extended_list mkRel 0 sign)|]
else
base
| _ ->
let t' = whd_all env sigma (EConstr.of_constr p) in
let t' = EConstr.Unsafe.to_constr t' in
if Constr.equal p' t' then assert false
else prec env i sign t'
in
prec env 0 []
in
let rec process_constr env i c recargs nhyps li =
if nhyps > 0 then match kind c with
| Prod (n,t,c_0) ->
let (optionpos,rest) =
match recargs with
| [] -> None,[]
| ra::rest ->
(match dest_recarg ra with
| Mrec (_,j) when is_rec -> (depPvect.(j),rest)
| Imbr _ -> (None,rest)
| _ -> (None, rest))
in
(match optionpos with
| None ->
make_prod env
(n,t,
process_constr (push_rel (LocalAssum (n,t)) env) (i+1) c_0 rest
(nhyps-1) (i::li))
| Some(dep',p) ->
let nP = lift (i+1+decP) p in
let env' = push_rel (LocalAssum (n,t)) env in
let t_0 = process_pos env' dep' nP (lift 1 t) in
make_prod_dep (dep || dep') env
(n,t,
mkArrow t_0
(process_constr
(push_rel (LocalAssum (Anonymous,t_0)) env')
(i+2) (lift 1 c_0) rest (nhyps-1) (i::li))))
| LetIn (n,b,t,c_0) ->
mkLetIn (n,b,t,
process_constr
(push_rel (LocalDef (n,b,t)) env)
(i+1) c_0 recargs (nhyps-1) li)
| _ -> assert false
else
if dep then
let realargs = List.rev_map (fun k -> mkRel (i-k)) li in
let params = List.map (lift i) vargs in
let co = applist (mkConstructU cs.cs_cstr,params@realargs) in
Reduction.beta_appvect c [|co|]
else c
in
let nhyps = List.length cs.cs_args in
let nP = match depPvect.(tyi) with
| Some(_,p) -> lift (nhyps+decP) p
| _ -> assert false in
let base = appvect (nP,cs.cs_concl_realargs) in
let c = it_mkProd_or_LetIn base cs.cs_args in
process_constr env 0 c recargs nhyps []
let make_rec_branch_arg env sigma (nparrec,fvect,decF) f cstr recargs =
let process_pos env fk =
let rec prec env i hyps p =
let p',largs = whd_allnolet_stack env sigma (EConstr.of_constr p) in
let p' = EConstr.Unsafe.to_constr p' in
let largs = List.map EConstr.Unsafe.to_constr largs in
match kind p' with
| Prod (n,t,c) ->
let d = LocalAssum (n,t) in
mkLambda_name env (n,t,prec (push_rel d env) (i+1) (d::hyps) c)
| LetIn (n,b,t,c) when List.is_empty largs ->
let d = LocalDef (n,b,t) in
mkLetIn (n,b,t,prec (push_rel d env) (i+1) (d::hyps) c)
| Ind _ ->
let realargs = List.skipn nparrec largs
and arg = appvect (mkRel (i+1), Context.Rel.to_extended_vect mkRel 0 hyps) in
applist(lift i fk,realargs@[arg])
| _ ->
let t' = whd_all env sigma (EConstr.of_constr p) in
let t' = EConstr.Unsafe.to_constr t' in
if Constr.equal t' p' then assert false
else prec env i hyps t'
in
prec env 0 []
in
(* ici, cstrprods est la liste des produits du constructeur instantié *)
let rec process_constr env i f = function
| (LocalAssum (n,t) as d)::cprest, recarg::rest ->
let optionpos =
match dest_recarg recarg with
| Norec -> None
| Imbr _ -> None
| Mrec (_,i) -> fvect.(i)
in
(match optionpos with
| None ->
mkLambda_name env
(n,t,process_constr (push_rel d env) (i+1)
(EConstr.Unsafe.to_constr (whd_beta Evd.empty (EConstr.of_constr (applist (lift 1 f, [(mkRel 1)])))))
(cprest,rest))
| Some(_,f_0) ->
let nF = lift (i+1+decF) f_0 in
let env' = push_rel d env in
let arg = process_pos env' nF (lift 1 t) in
mkLambda_name env
(n,t,process_constr env' (i+1)
(EConstr.Unsafe.to_constr (whd_beta Evd.empty (EConstr.of_constr (applist (lift 1 f, [(mkRel 1); arg])))))
(cprest,rest)))
| (LocalDef (n,c,t) as d)::cprest, rest ->
mkLetIn
(n,c,t,
process_constr (push_rel d env) (i+1) (lift 1 f)
(cprest,rest))
| [],[] -> f
| _,[] | [],_ -> anomaly (Pp.str "process_constr.")
in
process_constr env 0 f (List.rev cstr.cs_args, recargs)
(* Main function *)
let mis_make_indrec env sigma ?(force_mutual=false) listdepkind mib u =
let nparams = mib.mind_nparams in
let nparrec = mib.mind_nparams_rec in
let evdref = ref sigma in
let lnonparrec,lnamesparrec =
Termops.context_chop (nparams-nparrec) (Vars.subst_instance_context u mib.mind_params_ctxt) in
let nrec = List.length listdepkind in
let depPvec =
Array.make mib.mind_ntypes (None : (bool * constr) option) in
let _ =
let rec
assign k = function
| [] -> ()
| ((indi,u),mibi,mipi,dep,_)::rest ->
(Array.set depPvec (snd indi) (Some(dep,mkRel k));
assign (k-1) rest)
in
assign nrec listdepkind in
let recargsvec =
Array.map (fun mip -> mip.mind_recargs) mib.mind_packets in
(* recarg information for non recursive parameters *)
let rec recargparn l n =
if Int.equal n 0 then l else recargparn (mk_norec::l) (n-1) in
let recargpar = recargparn [] (nparams-nparrec) in
let make_one_rec p =
let makefix nbconstruct =
let rec mrec i ln ltyp ldef = function
| ((indi,u),mibi,mipi,dep,_)::rest ->
let tyi = snd indi in
let nctyi =
Array.length mipi.mind_consnames in (* nb constructeurs du type*)
(* arity in the context of the fixpoint, i.e.
P1..P_nrec f1..f_nbconstruct *)
let args = Context.Rel.to_extended_list mkRel (nrec+nbconstruct) lnamesparrec in
let indf = make_ind_family((indi,u),args) in
let arsign,_ = get_arity env indf in
let depind = build_dependent_inductive env indf in
let deparsign = LocalAssum (Anonymous,depind)::arsign in
let nonrecpar = Context.Rel.length lnonparrec in
let larsign = Context.Rel.length deparsign in
let ndepar = larsign - nonrecpar in
let dect = larsign+nrec+nbconstruct in
(* constructors in context of the Cases expr, i.e.
P1..P_nrec f1..f_nbconstruct F_1..F_nrec a_1..a_nar x:I *)
let args' = Context.Rel.to_extended_list mkRel (dect+nrec) lnamesparrec in
let args'' = Context.Rel.to_extended_list mkRel ndepar lnonparrec in
let indf' = make_ind_family((indi,u),args'@args'') in
let branches =
let constrs = get_constructors env indf' in
let fi = Termops.rel_vect (dect-i-nctyi) nctyi in
let vecfi = Array.map
(fun f -> appvect (f, Context.Rel.to_extended_vect mkRel ndepar lnonparrec))
fi
in
Array.map3
(make_rec_branch_arg env !evdref
(nparrec,depPvec,larsign))
vecfi constrs (dest_subterms recargsvec.(tyi))
in
let j = (match depPvec.(tyi) with
| Some (_,c) when isRel c -> destRel c
| _ -> assert false)
in
(* Predicate in the context of the case *)
let depind' = build_dependent_inductive env indf' in
let arsign',_ = get_arity env indf' in
let deparsign' = LocalAssum (Anonymous,depind')::arsign' in
let pargs =
let nrpar = Context.Rel.to_extended_list mkRel (2*ndepar) lnonparrec
and nrar = if dep then Context.Rel.to_extended_list mkRel 0 deparsign'
else Context.Rel.to_extended_list mkRel 1 arsign'
in nrpar@nrar
in
(* body of i-th component of the mutual fixpoint *)
let deftyi =
let ci = make_case_info env indi RegularStyle in
let concl = applist (mkRel (dect+j+ndepar),pargs) in
let pred =
it_mkLambda_or_LetIn_name env
((if dep then mkLambda_name env else mkLambda)
(Anonymous,depind',concl))
arsign'
in
let obj =
Inductiveops.make_case_or_project env !evdref indf ci (EConstr.of_constr pred)
(EConstr.mkRel 1) (Array.map EConstr.of_constr branches)
in
let obj = EConstr.to_constr !evdref obj in
it_mkLambda_or_LetIn_name env obj
(Termops.lift_rel_context nrec deparsign)
in
(* type of i-th component of the mutual fixpoint *)
let typtyi =
let concl =
let pargs = if dep then Context.Rel.to_extended_vect mkRel 0 deparsign
else Context.Rel.to_extended_vect mkRel 1 arsign
in appvect (mkRel (nbconstruct+ndepar+nonrecpar+j),pargs)
in it_mkProd_or_LetIn_name env
concl
deparsign
in
mrec (i+nctyi) (Context.Rel.nhyps arsign ::ln) (typtyi::ltyp)
(deftyi::ldef) rest
| [] ->
let fixn = Array.of_list (List.rev ln) in
let fixtyi = Array.of_list (List.rev ltyp) in
let fixdef = Array.of_list (List.rev ldef) in
let names = Array.make nrec (Name(Id.of_string "F")) in
mkFix ((fixn,p),(names,fixtyi,fixdef))
in
mrec 0 [] [] []
in
let rec make_branch env i = function
| ((indi,u),mibi,mipi,dep,_)::rest ->
let tyi = snd indi in
let nconstr = Array.length mipi.mind_consnames in
let rec onerec env j =
if Int.equal j nconstr then
make_branch env (i+j) rest
else
let recarg = (dest_subterms recargsvec.(tyi)).(j) in
let recarg = recargpar@recarg in
let vargs = Context.Rel.to_extended_list mkRel (nrec+i+j) lnamesparrec in
let cs = get_constructor ((indi,u),mibi,mipi,vargs) (j+1) in
let p_0 =
type_rec_branch
true dep env !evdref (vargs,depPvec,i+j) tyi cs recarg
in
mkLambda_string "f" p_0
(onerec (push_rel (LocalAssum (Anonymous,p_0)) env) (j+1))
in onerec env 0
| [] ->
makefix i listdepkind
in
let rec put_arity env i = function
| ((indi,u),_,_,dep,kinds)::rest ->
let indf = make_ind_family ((indi,u), Context.Rel.to_extended_list mkRel i lnamesparrec) in
let s =
Evarutil.evd_comb1 (Evd.fresh_sort_in_family ~rigid:Evd.univ_flexible_alg)
evdref kinds
in
let typP = make_arity env !evdref dep indf s in
let typP = EConstr.Unsafe.to_constr typP in
mkLambda_string "P" typP
(put_arity (push_rel (LocalAssum (Anonymous,typP)) env) (i+1) rest)
| [] ->
make_branch env 0 listdepkind
in
(* Body on make_one_rec *)
let ((indi,u),mibi,mipi,dep,kind) = List.nth listdepkind p in
if force_mutual || (mis_is_recursive_subset
(List.map (fun ((indi,u),_,_,_,_) -> snd indi) listdepkind)
mipi.mind_recargs)
then
let env' = push_rel_context lnamesparrec env in
it_mkLambda_or_LetIn_name env (put_arity env' 0 listdepkind)
lnamesparrec
else
let evd = !evdref in
let (evd, c) = mis_make_case_com dep env evd (indi,u) (mibi,mipi) kind in
evdref := evd; c
in
(* Body of mis_make_indrec *)
!evdref, List.init nrec make_one_rec
(**********************************************************************)
(* This builds elimination predicate for Case tactic *)
let build_case_analysis_scheme env sigma pity dep kind =
let (mib,mip) = lookup_mind_specif env (fst pity) in
if dep && not (Inductiveops.has_dependent_elim mib) then
raise (RecursionSchemeError (NotAllowedDependentAnalysis (false, fst pity)));
mis_make_case_com dep env sigma pity (mib,mip) kind
let is_in_prop mip =
match inductive_sort_family mip with
| InProp -> true
| _ -> false
let build_case_analysis_scheme_default env sigma pity kind =
let (mib,mip) = lookup_mind_specif env (fst pity) in
let dep = not (is_in_prop mip || not (Inductiveops.has_dependent_elim mib)) in
mis_make_case_com dep env sigma pity (mib,mip) kind
(**********************************************************************)
(* [modify_sort_scheme s rec] replaces the sort of the scheme
[rec] by [s] *)
let change_sort_arity sort =
let rec drec a = match kind a with
| Cast (c,_,_) -> drec c
| Prod (n,t,c) -> let s, c' = drec c in s, mkProd (n, t, c')
| LetIn (n,b,t,c) -> let s, c' = drec c in s, mkLetIn (n,b,t,c')
| Sort s -> s, mkSort sort
| _ -> assert false
in
drec
(* Change the sort in the type of an inductive definition, builds the
corresponding eta-expanded term *)
let weaken_sort_scheme env evd set sort npars term ty =
let evdref = ref evd in
let rec drec np elim =
match kind elim with
| Prod (n,t,c) ->
if Int.equal np 0 then
let osort, t' = change_sort_arity sort t in
evdref := (if set then Evd.set_eq_sort else Evd.set_leq_sort) env !evdref sort osort;
mkProd (n, t', c),
mkLambda (n, t', mkApp(term,Termops.rel_vect 0 (npars+1)))
else
let c',term' = drec (np-1) c in
mkProd (n, t, c'), mkLambda (n, t, term')
| LetIn (n,b,t,c) -> let c',term' = drec np c in
mkLetIn (n,b,t,c'), mkLetIn (n,b,t,term')
| _ -> anomaly ~label:"weaken_sort_scheme" (Pp.str "wrong elimination type.")
in
let ty, term = drec npars ty in
!evdref, ty, term
(**********************************************************************)
(* Interface to build complex Scheme *)
(* Check inductive types only occurs once
(otherwise we obtain a meaning less scheme) *)
let check_arities env listdepkind =
let _ = List.fold_left
(fun ln (((_,ni as mind),u),mibi,mipi,dep,kind) ->
let kelim = elim_sorts (mibi,mipi) in
if not (Sorts.List.mem kind kelim) then raise
(RecursionSchemeError
(NotAllowedCaseAnalysis (true, fst (UnivGen.fresh_sort_in_family kind),(mind,u))))
else if Int.List.mem ni ln then raise
(RecursionSchemeError (NotMutualInScheme (mind,mind)))
else ni::ln)
[] listdepkind
in true
let build_mutual_induction_scheme env sigma ?(force_mutual=false) = function
| ((mind,u),dep,s)::lrecspec ->
let (mib,mip) = lookup_mind_specif env mind in
if dep && not (Inductiveops.has_dependent_elim mib) then
raise (RecursionSchemeError (NotAllowedDependentAnalysis (true, mind)));
let (sp,tyi) = mind in
let listdepkind =
((mind,u),mib,mip,dep,s)::
(List.map
(function ((mind',u'),dep',s') ->
let (sp',_) = mind' in
if MutInd.equal sp sp' then
let (mibi',mipi') = lookup_mind_specif env mind' in
((mind',u'),mibi',mipi',dep',s')
else
raise (RecursionSchemeError (NotMutualInScheme (mind,mind'))))
lrecspec)
in
let _ = check_arities env listdepkind in
mis_make_indrec env sigma ~force_mutual listdepkind mib u
| _ -> anomaly (Pp.str "build_induction_scheme expects a non empty list of inductive types.")
let build_induction_scheme env sigma pind dep kind =
let (mib,mip) = lookup_mind_specif env (fst pind) in
if dep && not (Inductiveops.has_dependent_elim mib) then
raise (RecursionSchemeError (NotAllowedDependentAnalysis (true, fst pind)));
let sigma, l = mis_make_indrec env sigma [(pind,mib,mip,dep,kind)] mib (snd pind) in
sigma, List.hd l
(*s Eliminations. *)
let elimination_suffix = function
| InProp -> "_ind"
| InSet -> "_rec"
| InType -> "_rect"
let case_suffix = "_case"
let make_elimination_ident id s = add_suffix id (elimination_suffix s)
(* Look up function for the default elimination constant *)
let lookup_eliminator ind_sp s =
let kn,i = ind_sp in
let mp,dp,l = KerName.repr (MutInd.canonical kn) in
let ind_id = (Global.lookup_mind kn).mind_packets.(i).mind_typename in
let id = add_suffix ind_id (elimination_suffix s) in
(* Try first to get an eliminator defined in the same section as the *)
(* inductive type *)
try
let cst =Global.constant_of_delta_kn (KerName.make mp dp (Label.of_id id)) in
let _ = Global.lookup_constant cst in
ConstRef cst
with Not_found ->
(* Then try to get a user-defined eliminator in some other places *)
(* using short name (e.g. for "eq_rec") *)
try Nametab.locate (qualid_of_ident id)
with Not_found ->
user_err ~hdr:"default_elim"
(strbrk "Cannot find the elimination combinator " ++
Id.print id ++ strbrk ", the elimination of the inductive definition " ++
pr_global_env Id.Set.empty (IndRef ind_sp) ++
strbrk " on sort " ++ Termops.pr_sort_family s ++
strbrk " is probably not allowed.")
|