1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Util
open Names
open Nameops
open Globnames
open Misctypes
open Glob_term
open Evar_kinds
(* Untyped intermediate terms, after ASTs and before constr. *)
let cases_pattern_loc c = c.CAst.loc
let cases_predicate_names tml =
List.flatten (List.map (function
| (tm,(na,None)) -> [na]
| (tm,(na,Some (_,(_,nal)))) -> na::nal) tml)
let mkGApp ?loc p t = CAst.make ?loc @@
match p.CAst.v with
| GApp (f,l) -> GApp (f,l@[t])
| _ -> GApp (p,[t])
let map_glob_decl_left_to_right f (na,k,obd,ty) =
let comp1 = Option.map f obd in
let comp2 = f ty in
(na,k,comp1,comp2)
let binding_kind_eq bk1 bk2 = match bk1, bk2 with
| Decl_kinds.Explicit, Decl_kinds.Explicit -> true
| Decl_kinds.Implicit, Decl_kinds.Implicit -> true
| (Decl_kinds.Explicit | Decl_kinds.Implicit), _ -> false
let case_style_eq s1 s2 = match s1, s2 with
| LetStyle, LetStyle -> true
| IfStyle, IfStyle -> true
| LetPatternStyle, LetPatternStyle -> true
| MatchStyle, MatchStyle -> true
| RegularStyle, RegularStyle -> true
| (LetStyle | IfStyle | LetPatternStyle | MatchStyle | RegularStyle), _ -> false
let rec cases_pattern_eq { CAst.v = p1} { CAst.v = p2 } = match p1, p2 with
| PatVar na1, PatVar na2 -> Name.equal na1 na2
| PatCstr (c1, pl1, na1), PatCstr (c2, pl2, na2) ->
eq_constructor c1 c2 && List.equal cases_pattern_eq pl1 pl2 &&
Name.equal na1 na2
| (PatVar _ | PatCstr _), _ -> false
let cast_type_eq eq t1 t2 = match t1, t2 with
| CastConv t1, CastConv t2 -> eq t1 t2
| CastVM t1, CastVM t2 -> eq t1 t2
| CastCoerce, CastCoerce -> true
| CastNative t1, CastNative t2 -> eq t1 t2
| (CastConv _ | CastVM _ | CastCoerce | CastNative _), _ -> false
let matching_var_kind_eq k1 k2 = match k1, k2 with
| FirstOrderPatVar ido1, FirstOrderPatVar ido2 -> Id.equal ido1 ido2
| SecondOrderPatVar id1, SecondOrderPatVar id2 -> Id.equal id1 id2
| (FirstOrderPatVar _ | SecondOrderPatVar _), _ -> false
let tomatch_tuple_eq f (c1, p1) (c2, p2) =
let eqp (_, (i1, na1)) (_, (i2, na2)) =
eq_ind i1 i2 && List.equal Name.equal na1 na2
in
let eq_pred (n1, o1) (n2, o2) = Name.equal n1 n2 && Option.equal eqp o1 o2 in
f c1 c2 && eq_pred p1 p2
and cases_clause_eq f (_, (id1, p1, c1)) (_, (id2, p2, c2)) =
List.equal Id.equal id1 id2 && List.equal cases_pattern_eq p1 p2 && f c1 c2
let glob_decl_eq f (na1, bk1, c1, t1) (na2, bk2, c2, t2) =
Name.equal na1 na2 && binding_kind_eq bk1 bk2 &&
Option.equal f c1 c2 && f t1 t2
let fix_recursion_order_eq f o1 o2 = match o1, o2 with
| GStructRec, GStructRec -> true
| GWfRec c1, GWfRec c2 -> f c1 c2
| GMeasureRec (c1, o1), GMeasureRec (c2, o2) ->
f c1 c2 && Option.equal f o1 o2
| (GStructRec | GWfRec _ | GMeasureRec _), _ -> false
let fix_kind_eq f k1 k2 = match k1, k2 with
| GFix (a1, i1), GFix (a2, i2) ->
let eq (i1, o1) (i2, o2) =
Option.equal Int.equal i1 i2 && fix_recursion_order_eq f o1 o2
in
Int.equal i1 i2 && Array.equal eq a1 a1
| GCoFix i1, GCoFix i2 -> Int.equal i1 i2
| (GFix _ | GCoFix _), _ -> false
let instance_eq f (x1,c1) (x2,c2) =
Id.equal x1 x2 && f c1 c2
let mk_glob_constr_eq f { CAst.v = c1 } { CAst.v = c2 } = match c1, c2 with
| GRef (gr1, _), GRef (gr2, _) -> eq_gr gr1 gr2
| GVar id1, GVar id2 -> Id.equal id1 id2
| GEvar (id1, arg1), GEvar (id2, arg2) ->
Id.equal id1 id2 && List.equal (instance_eq f) arg1 arg2
| GPatVar k1, GPatVar k2 -> matching_var_kind_eq k1 k2
| GApp (f1, arg1), GApp (f2, arg2) ->
f f1 f2 && List.equal f arg1 arg2
| GLambda (na1, bk1, t1, c1), GLambda (na2, bk2, t2, c2) ->
Name.equal na1 na2 && binding_kind_eq bk1 bk2 && f t1 t2 && f c1 c2
| GProd (na1, bk1, t1, c1), GProd (na2, bk2, t2, c2) ->
Name.equal na1 na2 && binding_kind_eq bk1 bk2 && f t1 t2 && f c1 c2
| GLetIn (na1, b1, t1, c1), GLetIn (na2, b2, t2, c2) ->
Name.equal na1 na2 && f b1 b2 && Option.equal f t1 t2 && f c1 c2
| GCases (st1, c1, tp1, cl1), GCases (st2, c2, tp2, cl2) ->
case_style_eq st1 st2 && Option.equal f c1 c2 &&
List.equal (tomatch_tuple_eq f) tp1 tp2 &&
List.equal (cases_clause_eq f) cl1 cl2
| GLetTuple (na1, (n1, p1), c1, t1), GLetTuple (na2, (n2, p2), c2, t2) ->
List.equal Name.equal na1 na2 && Name.equal n1 n2 &&
Option.equal f p1 p2 && f c1 c2 && f t1 t2
| GIf (m1, (pat1, p1), c1, t1), GIf (m2, (pat2, p2), c2, t2) ->
f m1 m2 && Name.equal pat1 pat2 &&
Option.equal f p1 p2 && f c1 c2 && f t1 t2
| GRec (kn1, id1, decl1, c1, t1), GRec (kn2, id2, decl2, c2, t2) ->
fix_kind_eq f kn1 kn2 && Array.equal Id.equal id1 id2 &&
Array.equal (fun l1 l2 -> List.equal (glob_decl_eq f) l1 l2) decl1 decl2 &&
Array.equal f c1 c2 && Array.equal f t1 t2
| GSort s1, GSort s2 -> Miscops.glob_sort_eq s1 s2
| GHole (kn1, nam1, gn1), GHole (kn2, nam2, gn2) ->
Option.equal (==) gn1 gn2 (** Only thing sensible *) &&
Miscops.intro_pattern_naming_eq nam1 nam2
| GCast (c1, t1), GCast (c2, t2) ->
f c1 c2 && cast_type_eq f t1 t2
| (GRef _ | GVar _ | GEvar _ | GPatVar _ | GApp _ | GLambda _ | GProd _ | GLetIn _ |
GCases _ | GLetTuple _ | GIf _ | GRec _ | GSort _ | GHole _ | GCast _), _ -> false
let rec glob_constr_eq c = mk_glob_constr_eq glob_constr_eq c
let map_glob_constr_left_to_right f = CAst.map (function
| GApp (g,args) ->
let comp1 = f g in
let comp2 = Util.List.map_left f args in
GApp (comp1,comp2)
| GLambda (na,bk,ty,c) ->
let comp1 = f ty in
let comp2 = f c in
GLambda (na,bk,comp1,comp2)
| GProd (na,bk,ty,c) ->
let comp1 = f ty in
let comp2 = f c in
GProd (na,bk,comp1,comp2)
| GLetIn (na,b,t,c) ->
let comp1 = f b in
let compt = Option.map f t in
let comp2 = f c in
GLetIn (na,comp1,compt,comp2)
| GCases (sty,rtntypopt,tml,pl) ->
let comp1 = Option.map f rtntypopt in
let comp2 = Util.List.map_left (fun (tm,x) -> (f tm,x)) tml in
let comp3 = Util.List.map_left (fun (loc,(idl,p,c)) -> (loc,(idl,p,f c))) pl in
GCases (sty,comp1,comp2,comp3)
| GLetTuple (nal,(na,po),b,c) ->
let comp1 = Option.map f po in
let comp2 = f b in
let comp3 = f c in
GLetTuple (nal,(na,comp1),comp2,comp3)
| GIf (c,(na,po),b1,b2) ->
let comp1 = Option.map f po in
let comp2 = f b1 in
let comp3 = f b2 in
GIf (f c,(na,comp1),comp2,comp3)
| GRec (fk,idl,bl,tyl,bv) ->
let comp1 = Array.map (Util.List.map_left (map_glob_decl_left_to_right f)) bl in
let comp2 = Array.map f tyl in
let comp3 = Array.map f bv in
GRec (fk,idl,comp1,comp2,comp3)
| GCast (c,k) ->
let comp1 = f c in
let comp2 = Miscops.map_cast_type f k in
GCast (comp1,comp2)
| (GVar _ | GSort _ | GHole _ | GRef _ | GEvar _ | GPatVar _) as x -> x
)
let map_glob_constr = map_glob_constr_left_to_right
let fold_return_type f acc (na,tyopt) = Option.fold_left f acc tyopt
let fold_glob_constr f acc = CAst.with_val (function
| GVar _ -> acc
| GApp (c,args) -> List.fold_left f (f acc c) args
| GLambda (_,_,b,c) | GProd (_,_,b,c) ->
f (f acc b) c
| GLetIn (_,b,t,c) ->
f (Option.fold_left f (f acc b) t) c
| GCases (_,rtntypopt,tml,pl) ->
let fold_pattern acc (_,(idl,p,c)) = f acc c in
List.fold_left fold_pattern
(List.fold_left f (Option.fold_left f acc rtntypopt) (List.map fst tml))
pl
| GLetTuple (_,rtntyp,b,c) ->
f (f (fold_return_type f acc rtntyp) b) c
| GIf (c,rtntyp,b1,b2) ->
f (f (f (fold_return_type f acc rtntyp) c) b1) b2
| GRec (_,_,bl,tyl,bv) ->
let acc = Array.fold_left
(List.fold_left (fun acc (na,k,bbd,bty) ->
f (Option.fold_left f acc bbd) bty)) acc bl in
Array.fold_left f (Array.fold_left f acc tyl) bv
| GCast (c,k) ->
let acc = match k with
| CastConv t | CastVM t | CastNative t -> f acc t | CastCoerce -> acc in
f acc c
| (GSort _ | GHole _ | GRef _ | GEvar _ | GPatVar _) -> acc
)
let fold_return_type_with_binders f g v acc (na,tyopt) =
Option.fold_left (f (Name.fold_right g na v)) acc tyopt
let fold_glob_constr_with_binders g f v acc = CAst.(with_val (function
| GVar _ -> acc
| GApp (c,args) -> List.fold_left (f v) (f v acc c) args
| GLambda (na,_,b,c) | GProd (na,_,b,c) ->
f (Name.fold_right g na v) (f v acc b) c
| GLetIn (na,b,t,c) ->
f (Name.fold_right g na v) (Option.fold_left (f v) (f v acc b) t) c
| GCases (_,rtntypopt,tml,pl) ->
let fold_pattern acc (_,(idl,p,c)) = f (List.fold_right g idl v) acc c in
let fold_tomatch (v',acc) (tm,(na,onal)) =
(Option.fold_left (fun v'' (_,(_,nal)) -> List.fold_right (Name.fold_right g) nal v'')
(Name.fold_right g na v') onal,
f v acc tm) in
let (v',acc) = List.fold_left fold_tomatch (v,acc) tml in
let acc = Option.fold_left (f v') acc rtntypopt in
List.fold_left fold_pattern acc pl
| GLetTuple (nal,rtntyp,b,c) ->
f v (f v (fold_return_type_with_binders f g v acc rtntyp) b) c
| GIf (c,rtntyp,b1,b2) ->
f v (f v (f v (fold_return_type_with_binders f g v acc rtntyp) c) b1) b2
| GRec (_,idl,bll,tyl,bv) ->
let f' i acc fid =
let v,acc =
List.fold_left
(fun (v,acc) (na,k,bbd,bty) ->
(Name.fold_right g na v, f v (Option.fold_left (f v) acc bbd) bty))
(v,acc)
bll.(i) in
f (Array.fold_right g idl v) (f v acc tyl.(i)) (bv.(i)) in
Array.fold_left_i f' acc idl
| GCast (c,k) ->
let acc = match k with
| CastConv t | CastVM t | CastNative t -> f v acc t | CastCoerce -> acc in
f v acc c
| (GSort _ | GHole _ | GRef _ | GEvar _ | GPatVar _) -> acc))
let iter_glob_constr f = fold_glob_constr (fun () -> f) ()
let occur_glob_constr id =
let open CAst in
let rec occur barred acc = function
| { loc ; v = GVar id' } -> Id.equal id id'
| c ->
(* [g] looks if [id] appears in a binding position, in which
case, we don't have to look in the corresponding subterm *)
let g id' barred = barred || Id.equal id id' in
let f barred acc c = acc || not barred && occur false acc c in
fold_glob_constr_with_binders g f barred acc c in
occur false false
let free_glob_vars =
let open CAst in
let rec vars bound vs = function
| { loc ; v = GVar id' } -> if Id.Set.mem id' bound then vs else Id.Set.add id' vs
| c -> fold_glob_constr_with_binders Id.Set.add vars bound vs c in
fun rt ->
let vs = vars Id.Set.empty Id.Set.empty rt in
Id.Set.elements vs
let glob_visible_short_qualid c =
let rec aux acc = function
| { CAst.v = GRef (c,_) } ->
let qualid = Nametab.shortest_qualid_of_global Id.Set.empty c in
let dir,id = Libnames.repr_qualid qualid in
if DirPath.is_empty dir then id :: acc else acc
| c ->
fold_glob_constr aux acc c
in aux [] c
let warn_variable_collision =
let open Pp in
CWarnings.create ~name:"variable-collision" ~category:"ltac"
(fun name ->
strbrk "Collision between bound variables of name " ++ pr_id name)
let add_and_check_ident id set =
if Id.Set.mem id set then warn_variable_collision id;
Id.Set.add id set
let bound_glob_vars =
let rec vars bound =
fold_glob_constr_with_binders
(fun id () -> bound := add_and_check_ident id !bound)
(fun () () -> vars bound)
() ()
in
fun rt ->
let bound = ref Id.Set.empty in
vars bound rt;
!bound
(** Mapping of names in binders *)
(* spiwack: I used a smartmap-style kind of mapping here, because the
operation will be the identity almost all of the time (with any
term outside of Ltac to begin with). But to be honest, there would
probably be no significant penalty in doing reallocation as
pattern-matching expressions are usually rather small. *)
let map_inpattern_binders f ((loc,(id,nal)) as x) =
let r = CList.smartmap f nal in
if r == nal then x
else loc,(id,r)
let map_tomatch_binders f ((c,(na,inp)) as x) : tomatch_tuple =
let r = Option.smartmap (fun p -> map_inpattern_binders f p) inp in
if r == inp then x
else c,(f na, r)
let rec map_case_pattern_binders f = CAst.map (function
| PatVar na as x ->
let r = f na in
if r == na then x
else PatVar r
| PatCstr (c,ps,na) as x ->
let rna = f na in
let rps =
CList.smartmap (fun p -> map_case_pattern_binders f p) ps
in
if rna == na && rps == ps then x
else PatCstr(c,rps,rna)
)
let map_cases_branch_binders f ((loc,(il,cll,rhs)) as x) : cases_clause =
(* spiwack: not sure if I must do something with the list of idents.
It is intended to be a superset of the free variable of the
right-hand side, if I understand correctly. But I'm not sure when
or how they are used. *)
let r = List.smartmap (fun cl -> map_case_pattern_binders f cl) cll in
if r == cll then x
else loc,(il,r,rhs)
let map_pattern_binders f tomatch branches =
CList.smartmap (fun tm -> map_tomatch_binders f tm) tomatch,
CList.smartmap (fun br -> map_cases_branch_binders f br) branches
(** /mapping of names in binders *)
let map_tomatch f (c,pp) : tomatch_tuple = f c , pp
let map_cases_branch f (loc,(il,cll,rhs)) : cases_clause =
loc , (il , cll , f rhs)
let map_pattern f tomatch branches =
List.map (fun tm -> map_tomatch f tm) tomatch,
List.map (fun br -> map_cases_branch f br) branches
let loc_of_glob_constr c = c.CAst.loc
(**********************************************************************)
(* Alpha-renaming *)
let collide_id l id = List.exists (fun (id',id'') -> Id.equal id id' || Id.equal id id'') l
let test_id l id = if collide_id l id then raise Not_found
let test_na l na = Name.iter (test_id l) na
let update_subst na l =
let in_range id l = List.exists (fun (_,id') -> Id.equal id id') l in
let l' = Name.fold_right Id.List.remove_assoc na l in
Name.fold_right
(fun id _ ->
if in_range id l' then
let id' = Namegen.next_ident_away_from id (fun id' -> in_range id' l') in
Name id', (id,id')::l
else na,l)
na (na,l)
exception UnsoundRenaming
let rename_var l id =
try
let id' = Id.List.assoc id l in
(* Check that no other earlier binding hide the one found *)
let _,(id'',_) = List.extract_first (fun (_,id) -> Id.equal id id') l in
if Id.equal id id'' then id' else raise UnsoundRenaming
with Not_found ->
if List.exists (fun (_,id') -> Id.equal id id') l then raise UnsoundRenaming
else id
let rec rename_glob_vars l c = CAst.map_with_loc (fun ?loc -> function
| GVar id as r ->
let id' = rename_var l id in
if id == id' then r else GVar id'
| GRef (VarRef id,_) as r ->
if List.exists (fun (_,id') -> Id.equal id id') l then raise UnsoundRenaming
else r
| GProd (na,bk,t,c) ->
let na',l' = update_subst na l in
GProd (na,bk,rename_glob_vars l t,rename_glob_vars l' c)
| GLambda (na,bk,t,c) ->
let na',l' = update_subst na l in
GLambda (na',bk,rename_glob_vars l t,rename_glob_vars l' c)
| GLetIn (na,b,t,c) ->
let na',l' = update_subst na l in
GLetIn (na',rename_glob_vars l b,Option.map (rename_glob_vars l) t,rename_glob_vars l' c)
(* Lazy strategy: we fail if a collision with renaming occurs, rather than renaming further *)
| GCases (ci,po,tomatchl,cls) ->
let test_pred_pat (na,ino) =
test_na l na; Option.iter (fun (_,(_,nal)) -> List.iter (test_na l) nal) ino in
let test_clause idl = List.iter (test_id l) idl in
let po = Option.map (rename_glob_vars l) po in
let tomatchl = Util.List.map_left (fun (tm,x) -> test_pred_pat x; (rename_glob_vars l tm,x)) tomatchl in
let cls = Util.List.map_left (fun (loc,(idl,p,c)) -> test_clause idl; (loc,(idl,p,rename_glob_vars l c))) cls in
GCases (ci,po,tomatchl,cls)
| GLetTuple (nal,(na,po),c,b) ->
List.iter (test_na l) (na::nal);
GLetTuple (nal,(na,Option.map (rename_glob_vars l) po),
rename_glob_vars l c,rename_glob_vars l b)
| GIf (c,(na,po),b1,b2) ->
test_na l na;
GIf (rename_glob_vars l c,(na,Option.map (rename_glob_vars l) po),
rename_glob_vars l b1,rename_glob_vars l b2)
| GRec (k,idl,decls,bs,ts) ->
Array.iter (test_id l) idl;
GRec (k,idl,
Array.map (List.map (fun (na,k,bbd,bty) ->
test_na l na; (na,k,Option.map (rename_glob_vars l) bbd,rename_glob_vars l bty))) decls,
Array.map (rename_glob_vars l) bs,
Array.map (rename_glob_vars l) ts)
| _ -> (map_glob_constr (rename_glob_vars l) c).CAst.v
) c
(**********************************************************************)
(* Conversion from glob_constr to cases pattern, if possible *)
let rec cases_pattern_of_glob_constr na = CAst.map (function
| GVar id ->
begin match na with
| Name _ ->
(* Unable to manage the presence of both an alias and a variable *)
raise Not_found
| Anonymous -> PatVar (Name id)
end
| GHole (_,_,_) -> PatVar na
| GRef (ConstructRef cstr,_) -> PatCstr (cstr,[],na)
| GApp ( { CAst.v = GRef (ConstructRef cstr,_) }, l) ->
PatCstr (cstr,List.map (cases_pattern_of_glob_constr Anonymous) l,na)
| _ -> raise Not_found
)
(* Turn a closed cases pattern into a glob_constr *)
let rec glob_constr_of_closed_cases_pattern_aux x = CAst.map_with_loc (fun ?loc -> function
| PatCstr (cstr,[],Anonymous) -> GRef (ConstructRef cstr,None)
| PatCstr (cstr,l,Anonymous) ->
let ref = CAst.make ?loc @@ GRef (ConstructRef cstr,None) in
GApp (ref, List.map glob_constr_of_closed_cases_pattern_aux l)
| _ -> raise Not_found
) x
let glob_constr_of_closed_cases_pattern = function
| { CAst.loc ; v = PatCstr (cstr,l,na) } ->
na,glob_constr_of_closed_cases_pattern_aux (CAst.make ?loc @@ PatCstr (cstr,l,Anonymous))
| _ ->
raise Not_found
|