1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Pp
open Errors
open Util
open Names
open Nameops
open Term
open Vars
open Termops
open Environ
open Globnames
open Mod_subst
(** Generic filters *)
module Filter :
sig
type t
val equal : t -> t -> bool
val identity : t
val filter_list : t -> 'a list -> 'a list
val filter_array : t -> 'a array -> 'a array
val extend : int -> t -> t
val compose : t -> t -> t
val restrict_upon : t -> int -> (int -> bool) -> t option
val map_along : (bool -> 'a -> bool) -> t -> 'a list -> t
val make : bool list -> t
val repr : t -> bool list option
end =
struct
type t = bool list option
(** We guarantee through the interface that if a filter is [Some _] then it
contains at least one [false] somewhere. *)
let identity = None
let rec equal l1 l2 = match l1, l2 with
| [], [] -> true
| h1 :: l1, h2 :: l2 ->
(if h1 then h2 else not h2) && equal l1 l2
| _ -> false
let equal l1 l2 = match l1, l2 with
| None, None -> true
| Some _, None | None, Some _ -> false
| Some l1, Some l2 -> equal l1 l2
let rec is_identity = function
| [] -> true
| true :: l -> is_identity l
| false :: _ -> false
let normalize f = if is_identity f then None else Some f
let filter_list f l = match f with
| None -> l
| Some f -> CList.filter_with f l
let filter_array f v = match f with
| None -> v
| Some f -> CArray.filter_with f v
let rec extend n l =
if n = 0 then l
else extend (pred n) (true :: l)
let extend n = function
| None -> None
| Some f -> Some (extend n f)
let compose f1 f2 = match f1 with
| None -> f2
| Some f1 ->
match f2 with
| None -> None
| Some f2 -> normalize (CList.filter_with f1 f2)
let apply_subfilter filter subfilter =
let len = Array.length subfilter in
let fold b (i, ans) =
if b then
let () = assert (0 <= i) in
(pred i, Array.unsafe_get subfilter i :: ans)
else
(i, false :: ans)
in
snd (List.fold_right fold filter (pred len, []))
let restrict_upon f len p =
let newfilter = Array.init len p in
if Array.for_all (fun id -> id) newfilter then None
else
(** In both cases we statically know that the argument will contain at
least one [false] *)
let nf = match f with
| None -> Some (Array.to_list newfilter)
| Some f -> Some (apply_subfilter f newfilter)
in
Some nf
let map_along f flt l =
let ans = match flt with
| None -> List.map (fun x -> f true x) l
| Some flt -> List.map2 f flt l
in
normalize ans
let make l = normalize l
let repr f = f
end
(* The kinds of existential variables are now defined in [Evar_kinds] *)
(* The type of mappings for existential variables *)
module Dummy = struct end
module Store = Store.Make(Dummy)
type evar = Term.existential_key
let string_of_existential evk = "?" ^ string_of_int (Evar.repr evk)
type evar_body =
| Evar_empty
| Evar_defined of constr
type evar_info = {
evar_concl : constr;
evar_hyps : named_context_val;
evar_body : evar_body;
evar_filter : Filter.t;
evar_source : Evar_kinds.t Loc.located;
evar_candidates : constr list option; (* if not None, list of allowed instances *)
evar_extra : Store.t }
let make_evar hyps ccl = {
evar_concl = ccl;
evar_hyps = hyps;
evar_body = Evar_empty;
evar_filter = Filter.identity;
evar_source = (Loc.ghost,Evar_kinds.InternalHole);
evar_candidates = None;
evar_extra = Store.empty
}
let instance_mismatch () =
anomaly (Pp.str "Signature and its instance do not match")
let evar_concl evi = evi.evar_concl
let evar_filter evi = evi.evar_filter
let evar_body evi = evi.evar_body
let evar_context evi = named_context_of_val evi.evar_hyps
let evar_filtered_context evi =
Filter.filter_list (evar_filter evi) (evar_context evi)
let evar_hyps evi = evi.evar_hyps
let evar_filtered_hyps evi = match Filter.repr (evar_filter evi) with
| None -> evar_hyps evi
| Some filter ->
let rec make_hyps filter ctxt = match filter, ctxt with
| [], [] -> empty_named_context_val
| false :: filter, _ :: ctxt -> make_hyps filter ctxt
| true :: filter, decl :: ctxt ->
let hyps = make_hyps filter ctxt in
push_named_context_val decl hyps
| _ -> instance_mismatch ()
in
make_hyps filter (evar_context evi)
let evar_env evi = Global.env_of_context evi.evar_hyps
let evar_filtered_env evi = match Filter.repr (evar_filter evi) with
| None -> evar_env evi
| Some filter ->
let rec make_env filter ctxt = match filter, ctxt with
| [], [] -> reset_context (Global.env ())
| false :: filter, _ :: ctxt -> make_env filter ctxt
| true :: filter, decl :: ctxt ->
let env = make_env filter ctxt in
push_named decl env
| _ -> instance_mismatch ()
in
make_env filter (evar_context evi)
let eq_evar_body b1 b2 = match b1, b2 with
| Evar_empty, Evar_empty -> true
| Evar_defined t1, Evar_defined t2 -> eq_constr t1 t2
| _ -> false
let eq_evar_info ei1 ei2 =
ei1 == ei2 ||
eq_constr ei1.evar_concl ei2.evar_concl &&
eq_named_context_val (ei1.evar_hyps) (ei2.evar_hyps) &&
eq_evar_body ei1.evar_body ei2.evar_body
(** ppedrot: [eq_constr] may be a bit too permissive here *)
let map_evar_body f = function
| Evar_empty -> Evar_empty
| Evar_defined d -> Evar_defined (f d)
let map_evar_info f evi =
{evi with
evar_body = map_evar_body f evi.evar_body;
evar_hyps = map_named_val f evi.evar_hyps;
evar_concl = f evi.evar_concl;
evar_candidates = Option.map (List.map f) evi.evar_candidates }
(* spiwack: Revised hierarchy :
- Evar.Map ( Maps of existential_keys )
- EvarInfoMap ( .t = evar_info Evar.Map.t * evar_info Evar.Map )
- EvarMap ( .t = EvarInfoMap.t * sort_constraints )
- evar_map (exported)
*)
(* This exception is raised by *.existential_value *)
exception NotInstantiatedEvar
(* Note: let-in contributes to the instance *)
let make_evar_instance_array info args =
let len = Array.length args in
let rec instrec filter ctxt i = match filter, ctxt with
| [], [] ->
if Int.equal i len then []
else instance_mismatch ()
| false :: filter, _ :: ctxt ->
instrec filter ctxt i
| true :: filter, (id, _, _) :: ctxt ->
if i < len then
let c = Array.unsafe_get args i in
if isVarId id c then instrec filter ctxt (succ i)
else (id, c) :: instrec filter ctxt (succ i)
else instance_mismatch ()
| _ -> instance_mismatch ()
in
match Filter.repr (evar_filter info) with
| None ->
let map i (id, _, _) =
if (i < len) then (id, Array.unsafe_get args i)
else instance_mismatch ()
in
List.map_i map 0 (evar_context info)
| Some filter ->
instrec filter (evar_context info) 0
let instantiate_evar_array info c args =
let inst = make_evar_instance_array info args in
match inst with
| [] -> c
| _ -> replace_vars inst c
module StringOrd = struct type t = string let compare = String.compare end
module UNameMap = struct
include Map.Make(StringOrd)
let union s t =
merge (fun k l r ->
match l, r with
| Some _, _ -> l
| _, _ -> r) s t
let diff ext orig =
fold (fun u v acc ->
if mem u orig then acc
else add u v acc)
ext empty
end
(* 2nd part used to check consistency on the fly. *)
type evar_universe_context =
{ uctx_names : Univ.Level.t UNameMap.t;
uctx_local : Univ.universe_context_set; (** The local context of variables *)
uctx_univ_variables : Universes.universe_opt_subst;
(** The local universes that are unification variables *)
uctx_univ_algebraic : Univ.universe_set;
(** The subset of unification variables that
can be instantiated with algebraic universes as they appear in types
and universe instances only. *)
uctx_universes : Univ.universes; (** The current graph extended with the local constraints *)
uctx_initial_universes : Univ.universes; (** The graph at the creation of the evar_map *)
}
let empty_evar_universe_context =
{ uctx_names = UNameMap.empty;
uctx_local = Univ.ContextSet.empty;
uctx_univ_variables = Univ.LMap.empty;
uctx_univ_algebraic = Univ.LSet.empty;
uctx_universes = Univ.initial_universes;
uctx_initial_universes = Univ.initial_universes }
let evar_universe_context_from e =
let u = universes e in
{empty_evar_universe_context with
uctx_universes = u; uctx_initial_universes = u}
let is_empty_evar_universe_context ctx =
Univ.ContextSet.is_empty ctx.uctx_local &&
Univ.LMap.is_empty ctx.uctx_univ_variables
let union_evar_universe_context ctx ctx' =
if ctx == ctx' then ctx
else if is_empty_evar_universe_context ctx' then ctx
else
let local =
if ctx.uctx_local == ctx'.uctx_local then ctx.uctx_local
else Univ.ContextSet.union ctx.uctx_local ctx'.uctx_local
in
let names =
if ctx.uctx_names = ctx.uctx_names then ctx.uctx_names
else UNameMap.union ctx.uctx_names ctx'.uctx_names
in
{ uctx_names = names;
uctx_local = local;
uctx_univ_variables =
Univ.LMap.subst_union ctx.uctx_univ_variables ctx'.uctx_univ_variables;
uctx_univ_algebraic =
Univ.LSet.union ctx.uctx_univ_algebraic ctx'.uctx_univ_algebraic;
uctx_initial_universes = ctx.uctx_initial_universes;
uctx_universes =
if local == ctx.uctx_local then ctx.uctx_universes
else
let cstrsr = Univ.ContextSet.constraints ctx'.uctx_local in
Univ.merge_constraints cstrsr ctx.uctx_universes }
(* let union_evar_universe_context_key = Profile.declare_profile "union_evar_universe_context";; *)
(* let union_evar_universe_context = *)
(* Profile.profile2 union_evar_universe_context_key union_evar_universe_context;; *)
let diff_evar_universe_context ctx' ctx =
if ctx == ctx' then empty_evar_universe_context
else
let local = Univ.ContextSet.diff ctx'.uctx_local ctx.uctx_local in
let names = UNameMap.diff ctx'.uctx_names ctx.uctx_names in
{ uctx_names = names;
uctx_local = local;
uctx_univ_variables =
Univ.LMap.diff ctx'.uctx_univ_variables ctx.uctx_univ_variables;
uctx_univ_algebraic =
Univ.LSet.diff ctx'.uctx_univ_algebraic ctx.uctx_univ_algebraic;
uctx_universes = ctx.uctx_initial_universes;
uctx_initial_universes = ctx.uctx_initial_universes }
(* let diff_evar_universe_context_key = Profile.declare_profile "diff_evar_universe_context";; *)
(* let diff_evar_universe_context = *)
(* Profile.profile2 diff_evar_universe_context_key diff_evar_universe_context;; *)
type 'a in_evar_universe_context = 'a * evar_universe_context
let evar_universe_context_set ctx = ctx.uctx_local
let evar_universe_context_constraints ctx = snd ctx.uctx_local
let evar_context_universe_context ctx = Univ.ContextSet.to_context ctx.uctx_local
let evar_universe_context_of ctx = { empty_evar_universe_context with uctx_local = ctx }
let evar_universe_context_subst ctx = ctx.uctx_univ_variables
let instantiate_variable l b v =
(* let b = Univ.subst_large_constraint (Univ.Universe.make l) Univ.type0m_univ b in *)
(* if Univ.univ_depends (Univ.Universe.make l) b then *)
(* error ("Occur-check in universe variable instantiation") *)
(* else *) v := Univ.LMap.add l (Some b) !v
exception UniversesDiffer
let process_universe_constraints univs vars alg cstrs =
let vars = ref vars in
let normalize = Universes.normalize_universe_opt_subst vars in
let rec unify_universes fo l d r local =
let l = normalize l and r = normalize r in
if Univ.Universe.equal l r then local
else
let varinfo x =
match Univ.Universe.level x with
| None -> Inl x
| Some l -> Inr (l, Univ.LMap.mem l !vars, Univ.LSet.mem l alg)
in
if d == Universes.ULe then
if Univ.check_leq univs l r then
(** Keep Prop/Set <= var around if var might be instantiated by prop or set
later. *)
if Univ.Universe.is_level l then
match Univ.Universe.level r with
| Some r ->
Univ.Constraint.add (Option.get (Univ.Universe.level l),Univ.Le,r) local
| _ -> local
else local
else
match Univ.Universe.level r with
| None -> error ("Algebraic universe on the right")
| Some rl ->
if Univ.Level.is_small rl then
let levels = Univ.Universe.levels l in
Univ.LSet.fold (fun l local ->
if Univ.Level.is_small l || Univ.LMap.mem l !vars then
Univ.enforce_eq (Univ.Universe.make l) r local
else raise (Univ.UniverseInconsistency (Univ.Le, Univ.Universe.make l, r, None)))
levels local
else
Univ.enforce_leq l r local
else if d == Universes.ULub then
match varinfo l, varinfo r with
| (Inr (l, true, _), Inr (r, _, _))
| (Inr (r, _, _), Inr (l, true, _)) ->
instantiate_variable l (Univ.Universe.make r) vars;
Univ.enforce_eq_level l r local
| Inr (_, _, _), Inr (_, _, _) ->
unify_universes true l Universes.UEq r local
| _, _ -> assert false
else (* d = Universes.UEq *)
match varinfo l, varinfo r with
| Inr (l', lloc, _), Inr (r', rloc, _) ->
let () =
if lloc then
instantiate_variable l' r vars
else if rloc then
instantiate_variable r' l vars
else if not (Univ.check_eq univs l r) then
(* Two rigid/global levels, none of them being local,
one of them being Prop/Set, disallow *)
if Univ.Level.is_small l' || Univ.Level.is_small r' then
raise (Univ.UniverseInconsistency (Univ.Eq, l, r, None))
else
if fo then
raise UniversesDiffer
in
Univ.enforce_eq_level l' r' local
| _, _ (* One of the two is algebraic or global *) ->
if Univ.check_eq univs l r then local
else raise (Univ.UniverseInconsistency (Univ.Eq, l, r, None))
in
let local =
Universes.Constraints.fold (fun (l,d,r) local -> unify_universes false l d r local)
cstrs Univ.Constraint.empty
in
!vars, local
let add_constraints_context ctx cstrs =
let univs, local = ctx.uctx_local in
let cstrs' = Univ.Constraint.fold (fun (l,d,r) acc ->
let l = Univ.Universe.make l and r = Univ.Universe.make r in
let cstr' =
if d == Univ.Lt then (Univ.Universe.super l, Universes.ULe, r)
else (l, (if d == Univ.Le then Universes.ULe else Universes.UEq), r)
in Universes.Constraints.add cstr' acc)
cstrs Universes.Constraints.empty
in
let vars, local' =
process_universe_constraints ctx.uctx_universes
ctx.uctx_univ_variables ctx.uctx_univ_algebraic
cstrs'
in
{ ctx with uctx_local = (univs, Univ.Constraint.union local local');
uctx_univ_variables = vars;
uctx_universes = Univ.merge_constraints cstrs ctx.uctx_universes }
(* let addconstrkey = Profile.declare_profile "add_constraints_context";; *)
(* let add_constraints_context = Profile.profile2 addconstrkey add_constraints_context;; *)
let add_universe_constraints_context ctx cstrs =
let univs, local = ctx.uctx_local in
let vars, local' =
process_universe_constraints ctx.uctx_universes
ctx.uctx_univ_variables ctx.uctx_univ_algebraic
cstrs
in
{ ctx with uctx_local = (univs, Univ.Constraint.union local local');
uctx_univ_variables = vars;
uctx_universes = Univ.merge_constraints local' ctx.uctx_universes }
(* let addunivconstrkey = Profile.declare_profile "add_universe_constraints_context";; *)
(* let add_universe_constraints_context = *)
(* Profile.profile2 addunivconstrkey add_universe_constraints_context;; *)
(*******************************************************************)
(* Metamaps *)
(*******************************************************************)
(* Constraints for existential variables *)
(*******************************************************************)
type 'a freelisted = {
rebus : 'a;
freemetas : Int.Set.t }
(* Collects all metavars appearing in a constr *)
let metavars_of c =
let rec collrec acc c =
match kind_of_term c with
| Meta mv -> Int.Set.add mv acc
| _ -> fold_constr collrec acc c
in
collrec Int.Set.empty c
let mk_freelisted c =
{ rebus = c; freemetas = metavars_of c }
let map_fl f cfl = { cfl with rebus=f cfl.rebus }
(* Status of an instance found by unification wrt to the meta it solves:
- a supertype of the meta (e.g. the solution to ?X <= T is a supertype of ?X)
- a subtype of the meta (e.g. the solution to T <= ?X is a supertype of ?X)
- a term that can be eta-expanded n times while still being a solution
(e.g. the solution [P] to [?X u v = P u v] can be eta-expanded twice)
*)
type instance_constraint = IsSuperType | IsSubType | Conv
let eq_instance_constraint c1 c2 = c1 == c2
(* Status of the unification of the type of an instance against the type of
the meta it instantiates:
- CoerceToType means that the unification of types has not been done
and that a coercion can still be inserted: the meta should not be
substituted freely (this happens for instance given via the
"with" binding clause).
- TypeProcessed means that the information obtainable from the
unification of types has been extracted.
- TypeNotProcessed means that the unification of types has not been
done but it is known that no coercion may be inserted: the meta
can be substituted freely.
*)
type instance_typing_status =
CoerceToType | TypeNotProcessed | TypeProcessed
(* Status of an instance together with the status of its type unification *)
type instance_status = instance_constraint * instance_typing_status
(* Clausal environments *)
type clbinding =
| Cltyp of Name.t * constr freelisted
| Clval of Name.t * (constr freelisted * instance_status) * constr freelisted
let map_clb f = function
| Cltyp (na,cfl) -> Cltyp (na,map_fl f cfl)
| Clval (na,(cfl1,pb),cfl2) -> Clval (na,(map_fl f cfl1,pb),map_fl f cfl2)
(* name of defined is erased (but it is pretty-printed) *)
let clb_name = function
Cltyp(na,_) -> (na,false)
| Clval (na,_,_) -> (na,true)
(***********************)
module Metaset = Int.Set
module Metamap = Int.Map
let metamap_to_list m =
Metamap.fold (fun n v l -> (n,v)::l) m []
(*************************)
(* Unification state *)
type conv_pb = Reduction.conv_pb
type evar_constraint = conv_pb * Environ.env * constr * constr
module EvMap = Evar.Map
type evar_map = {
defn_evars : evar_info EvMap.t;
undf_evars : evar_info EvMap.t;
universes : evar_universe_context;
conv_pbs : evar_constraint list;
last_mods : Evar.Set.t;
metas : clbinding Metamap.t;
effects : Declareops.side_effects;
}
(*** Lifting primitive from EvarMap. ***)
(* HH: The progress tactical now uses this function. *)
let progress_evar_map d1 d2 =
let is_new k v =
assert (v.evar_body == Evar_empty);
EvMap.mem k d2.defn_evars
in
not (d1 == d2) && EvMap.exists is_new d1.undf_evars
let add d e i = match i.evar_body with
| Evar_empty ->
{ d with undf_evars = EvMap.add e i d.undf_evars; }
| Evar_defined _ ->
{ d with defn_evars = EvMap.add e i d.defn_evars; }
let remove d e =
let undf_evars = EvMap.remove e d.undf_evars in
let defn_evars = EvMap.remove e d.defn_evars in
{ d with undf_evars; defn_evars; }
let find d e =
try EvMap.find e d.undf_evars
with Not_found -> EvMap.find e d.defn_evars
let find_undefined d e = EvMap.find e d.undf_evars
let mem d e = EvMap.mem e d.undf_evars || EvMap.mem e d.defn_evars
(* spiwack: this function loses information from the original evar_map
it might be an idea not to export it. *)
let to_list d =
(* Workaround for change in Map.fold behavior in ocaml 3.08.4 *)
let l = ref [] in
EvMap.iter (fun evk x -> l := (evk,x)::!l) d.defn_evars;
EvMap.iter (fun evk x -> l := (evk,x)::!l) d.undf_evars;
!l
let undefined_map d = d.undf_evars
(* spiwack: not clear what folding over an evar_map, for now we shall
simply fold over the inner evar_map. *)
let fold f d a =
EvMap.fold f d.defn_evars (EvMap.fold f d.undf_evars a)
let fold_undefined f d a = EvMap.fold f d.undf_evars a
let raw_map f d =
let f evk info =
let ans = f evk info in
let () = match info.evar_body, ans.evar_body with
| Evar_defined _, Evar_empty
| Evar_empty, Evar_defined _ ->
anomaly (str "Unrespectful mapping function.")
| _ -> ()
in
ans
in
let defn_evars = EvMap.smartmapi f d.defn_evars in
let undf_evars = EvMap.smartmapi f d.undf_evars in
{ d with defn_evars; undf_evars; }
let raw_map_undefined f d =
let f evk info =
let ans = f evk info in
let () = match ans.evar_body with
| Evar_defined _ ->
anomaly (str "Unrespectful mapping function.")
| _ -> ()
in
ans
in
{ d with undf_evars = EvMap.smartmapi f d.undf_evars; }
let is_evar = mem
let is_defined d e = EvMap.mem e d.defn_evars
let is_undefined d e = EvMap.mem e d.undf_evars
let existential_value d (n, args) =
let info = find d n in
match evar_body info with
| Evar_defined c ->
instantiate_evar_array info c args
| Evar_empty ->
raise NotInstantiatedEvar
let existential_opt_value d ev =
try Some (existential_value d ev)
with NotInstantiatedEvar -> None
let existential_type d (n, args) =
let info =
try find d n
with Not_found ->
anomaly (str "Evar " ++ str (string_of_existential n) ++ str " was not declared") in
instantiate_evar_array info info.evar_concl args
let add_constraints d c =
{ d with universes = add_constraints_context d.universes c }
let add_universe_constraints d c =
{ d with universes = add_universe_constraints_context d.universes c }
(*** /Lifting... ***)
(* evar_map are considered empty disregarding histories *)
let is_empty d =
EvMap.is_empty d.defn_evars &&
EvMap.is_empty d.undf_evars &&
List.is_empty d.conv_pbs &&
Metamap.is_empty d.metas
let subst_named_context_val s = map_named_val (subst_mps s)
let subst_evar_info s evi =
let subst_evb = function
| Evar_empty -> Evar_empty
| Evar_defined c -> Evar_defined (subst_mps s c)
in
{ evi with
evar_concl = subst_mps s evi.evar_concl;
evar_hyps = subst_named_context_val s evi.evar_hyps;
evar_body = subst_evb evi.evar_body }
let subst_evar_defs_light sub evd =
assert (Univ.is_initial_universes evd.universes.uctx_universes);
assert (List.is_empty evd.conv_pbs);
let map_info i = subst_evar_info sub i in
{ evd with
undf_evars = EvMap.smartmap map_info evd.undf_evars;
defn_evars = EvMap.smartmap map_info evd.defn_evars;
metas = Metamap.smartmap (map_clb (subst_mps sub)) evd.metas; }
let subst_evar_map = subst_evar_defs_light
let cmap f evd =
{ evd with
metas = Metamap.map (map_clb f) evd.metas;
defn_evars = EvMap.map (map_evar_info f) evd.defn_evars;
undf_evars = EvMap.map (map_evar_info f) evd.defn_evars
}
(* spiwack: deprecated *)
let create_evar_defs sigma = { sigma with
conv_pbs=[]; last_mods=Evar.Set.empty; metas=Metamap.empty }
(* spiwack: tentatively deprecated *)
let create_goal_evar_defs sigma = { sigma with
(* conv_pbs=[]; last_mods=Evar.Set.empty; metas=Metamap.empty } *)
metas=Metamap.empty }
let empty = {
defn_evars = EvMap.empty;
undf_evars = EvMap.empty;
universes = empty_evar_universe_context;
conv_pbs = [];
last_mods = Evar.Set.empty;
metas = Metamap.empty;
effects = Declareops.no_seff;
}
let from_env ?ctx e =
match ctx with
| None -> { empty with universes = evar_universe_context_from e }
| Some ctx -> { empty with universes = ctx }
let has_undefined evd = not (EvMap.is_empty evd.undf_evars)
let evars_reset_evd ?(with_conv_pbs=false) ?(with_univs=true) evd d =
let conv_pbs = if with_conv_pbs then evd.conv_pbs else d.conv_pbs in
let last_mods = if with_conv_pbs then evd.last_mods else d.last_mods in
let universes =
if not with_univs then evd.universes
else union_evar_universe_context evd.universes d.universes
in
{ evd with
metas = d.metas;
last_mods; conv_pbs; universes }
let merge_universe_context evd uctx' =
{ evd with universes = union_evar_universe_context evd.universes uctx' }
let set_universe_context evd uctx' =
{ evd with universes = uctx' }
let add_conv_pb pb d = {d with conv_pbs = pb::d.conv_pbs}
let evar_source evk d = (find d evk).evar_source
let define_aux def undef evk body =
let oldinfo =
try EvMap.find evk undef
with Not_found ->
if EvMap.mem evk def then
anomaly ~label:"Evd.define" (Pp.str "cannot define an evar twice")
else
anomaly ~label:"Evd.define" (Pp.str "cannot define undeclared evar")
in
let () = assert (oldinfo.evar_body == Evar_empty) in
let newinfo = { oldinfo with evar_body = Evar_defined body } in
EvMap.add evk newinfo def, EvMap.remove evk undef
(* define the existential of section path sp as the constr body *)
let define evk body evd =
let (defn_evars, undf_evars) = define_aux evd.defn_evars evd.undf_evars evk body in
let last_mods = match evd.conv_pbs with
| [] -> evd.last_mods
| _ -> Evar.Set.add evk evd.last_mods
in
{ evd with defn_evars; undf_evars; last_mods; }
let evar_declare hyps evk ty ?(src=(Loc.ghost,Evar_kinds.InternalHole))
?(filter=Filter.identity) ?candidates ?(store=Store.empty) evd =
let () = match Filter.repr filter with
| None -> ()
| Some filter ->
assert (Int.equal (List.length filter) (List.length (named_context_of_val hyps)))
in
let evar_info = {
evar_hyps = hyps;
evar_concl = ty;
evar_body = Evar_empty;
evar_filter = filter;
evar_source = src;
evar_candidates = candidates;
evar_extra = store; }
in
{ evd with undf_evars = EvMap.add evk evar_info evd.undf_evars; }
(* extracts conversion problems that satisfy predicate p *)
(* Note: conv_pbs not satisying p are stored back in reverse order *)
let extract_conv_pbs evd p =
let (pbs,pbs1) =
List.fold_left
(fun (pbs,pbs1) pb ->
if p pb then
(pb::pbs,pbs1)
else
(pbs,pb::pbs1))
([],[])
evd.conv_pbs
in
{evd with conv_pbs = pbs1; last_mods = Evar.Set.empty},
pbs
let extract_changed_conv_pbs evd p =
extract_conv_pbs evd (fun pb -> p evd.last_mods pb)
let extract_all_conv_pbs evd =
extract_conv_pbs evd (fun _ -> true)
let loc_of_conv_pb evd (pbty,env,t1,t2) =
match kind_of_term (fst (decompose_app t1)) with
| Evar (evk1,_) -> fst (evar_source evk1 evd)
| _ ->
match kind_of_term (fst (decompose_app t2)) with
| Evar (evk2,_) -> fst (evar_source evk2 evd)
| _ -> Loc.ghost
let evar_list evd c =
let rec evrec acc c =
match kind_of_term c with
| Evar (evk, _ as ev) when mem evd evk -> ev :: acc
| _ -> fold_constr evrec acc c in
evrec [] c
let collect_evars c =
let rec collrec acc c =
match kind_of_term c with
| Evar (evk,_) -> Evar.Set.add evk acc
| _ -> fold_constr collrec acc c
in
collrec Evar.Set.empty c
(**********************************************************)
(* Side effects *)
let emit_side_effects eff evd =
{ evd with effects = Declareops.union_side_effects eff evd.effects; }
let drop_side_effects evd =
{ evd with effects = Declareops.no_seff; }
let eval_side_effects evd = evd.effects
let meta_diff ext orig =
Metamap.fold (fun m v acc ->
if Metamap.mem m orig then acc
else Metamap.add m v acc)
ext Metamap.empty
(** ext is supposed to be an extension of odef:
it might have more defined evars, and more
or less undefined ones *)
let diff2 edef eundef odef oundef =
let def =
if odef == edef then EvMap.empty
else
EvMap.fold (fun e v acc ->
if EvMap.mem e odef then acc
else EvMap.add e v acc)
edef EvMap.empty
in
let undef =
if oundef == eundef then EvMap.empty
else
EvMap.fold (fun e v acc ->
if EvMap.mem e oundef then acc
else EvMap.add e v acc)
eundef EvMap.empty
in
(def, undef)
let diff ext orig =
let defn, undf = diff2 ext.defn_evars ext.undf_evars orig.defn_evars orig.undf_evars in
{ ext with
defn_evars = defn; undf_evars = undf;
universes = diff_evar_universe_context ext.universes orig.universes;
metas = meta_diff ext.metas orig.metas
}
(** Invariant: sigma' is a partial extension of sigma:
It may define variables that are undefined in sigma,
or add new defined or undefined variables. It should not
undefine a defined variable in sigma.
*)
let merge2 def undef def' undef' =
let def, undef =
EvMap.fold (fun n v (def,undef) ->
EvMap.add n v def, EvMap.remove n undef)
def' (def,undef)
in
let undef = EvMap.fold EvMap.add undef' undef in
(def, undef)
let merge_metas metas1 metas2 =
List.fold_left (fun m (n,v) -> Metamap.add n v m)
metas2 (metamap_to_list metas1)
let merge orig ext =
let defn, undf = merge2 orig.defn_evars orig.undf_evars ext.defn_evars ext.undf_evars in
let universes = union_evar_universe_context orig.universes ext.universes in
{ orig with defn_evars = defn; undf_evars = undf;
universes;
metas = merge_metas orig.metas ext.metas }
(* let merge_key = Profile.declare_profile "merge" *)
(* let merge = Profile.profile2 merge_key merge *)
(**********************************************************)
(* Sort variables *)
type rigid =
| UnivRigid
| UnivFlexible of bool (** Is substitution by an algebraic ok? *)
let univ_rigid = UnivRigid
let univ_flexible = UnivFlexible false
let univ_flexible_alg = UnivFlexible true
let evar_universe_context d = d.universes
let universe_context_set d = d.universes.uctx_local
let universe_context evd =
Univ.ContextSet.to_context evd.universes.uctx_local
let universe_subst evd =
evd.universes.uctx_univ_variables
let merge_uctx rigid uctx ctx' =
let uctx =
match rigid with
| UnivRigid -> uctx
| UnivFlexible b ->
let uvars' = Univ.LMap.subst_union uctx.uctx_univ_variables
(Univ.LMap.bind (fun _ -> None) (Univ.ContextSet.levels ctx')) in
if b then
{ uctx with uctx_univ_variables = uvars';
uctx_univ_algebraic = Univ.LSet.union uctx.uctx_univ_algebraic
(Univ.ContextSet.levels ctx') }
else { uctx with uctx_univ_variables = uvars' }
in
{ uctx with uctx_local = Univ.ContextSet.union uctx.uctx_local ctx';
uctx_universes = Univ.merge_constraints (Univ.ContextSet.constraints ctx')
uctx.uctx_universes }
let merge_context_set rigid evd ctx' =
{evd with universes = merge_uctx rigid evd.universes ctx'}
let merge_uctx_subst uctx s =
{ uctx with uctx_univ_variables = Univ.LMap.subst_union uctx.uctx_univ_variables s }
let merge_universe_subst evd subst =
{evd with universes = merge_uctx_subst evd.universes subst }
let with_context_set rigid d (a, ctx) =
(merge_context_set rigid d ctx, a)
let uctx_new_univ_variable rigid name
({ uctx_local = ctx; uctx_univ_variables = uvars; uctx_univ_algebraic = avars} as uctx) =
let u = Universes.new_univ_level (Global.current_dirpath ()) in
let ctx' = Univ.ContextSet.union ctx (Univ.ContextSet.singleton u) in
let uctx' =
match rigid with
| UnivRigid -> uctx
| UnivFlexible b ->
let uvars' = Univ.LMap.add u None uvars in
if b then {uctx with uctx_univ_variables = uvars';
uctx_univ_algebraic = Univ.LSet.add u avars}
else {uctx with uctx_univ_variables = Univ.LMap.add u None uvars} in
let names =
match name with
| Some n -> UNameMap.add n u uctx.uctx_names
| None -> uctx.uctx_names
in
{uctx' with uctx_names = names; uctx_local = ctx';
uctx_universes = Univ.add_universe u uctx.uctx_universes}, u
let new_univ_level_variable ?name rigid evd =
let uctx', u = uctx_new_univ_variable rigid name evd.universes in
({evd with universes = uctx'}, u)
let new_univ_variable ?name rigid evd =
let uctx', u = uctx_new_univ_variable rigid name evd.universes in
({evd with universes = uctx'}, Univ.Universe.make u)
let new_sort_variable ?name rigid d =
let (d', u) = new_univ_variable rigid ?name d in
(d', Type u)
let make_flexible_variable evd b u =
let {uctx_univ_variables = uvars; uctx_univ_algebraic = avars} as ctx = evd.universes in
let uvars' = Univ.LMap.add u None uvars in
let avars' =
if b then
let uu = Univ.Universe.make u in
let substu_not_alg u' v =
Option.cata (fun vu -> Univ.Universe.equal uu vu && not (Univ.LSet.mem u' avars)) false v
in
if not (Univ.LMap.exists substu_not_alg uvars)
then Univ.LSet.add u avars else avars
else avars
in
{evd with universes = {ctx with uctx_univ_variables = uvars';
uctx_univ_algebraic = avars'}}
(****************************************)
(* Operations on constants *)
(****************************************)
let fresh_sort_in_family ?(rigid=univ_flexible) env evd s =
with_context_set rigid evd (Universes.fresh_sort_in_family env s)
let fresh_constant_instance env evd c =
with_context_set univ_flexible evd (Universes.fresh_constant_instance env c)
let fresh_inductive_instance env evd i =
with_context_set univ_flexible evd (Universes.fresh_inductive_instance env i)
let fresh_constructor_instance env evd c =
with_context_set univ_flexible evd (Universes.fresh_constructor_instance env c)
let fresh_global ?(rigid=univ_flexible) ?names env evd gr =
with_context_set rigid evd (Universes.fresh_global_instance ?names env gr)
let whd_sort_variable evd t = t
let is_sort_variable evd s =
match s with
| Type u ->
(match Univ.universe_level u with
| Some l as x ->
let uctx = evd.universes in
if Univ.LSet.mem l (Univ.ContextSet.levels uctx.uctx_local) then x
else None
| None -> None)
| _ -> None
let is_flexible_level evd l =
let uctx = evd.universes in
Univ.LMap.mem l uctx.uctx_univ_variables
let is_eq_sort s1 s2 =
if Sorts.equal s1 s2 then None
else
let u1 = univ_of_sort s1
and u2 = univ_of_sort s2 in
if Univ.Universe.equal u1 u2 then None
else Some (u1, u2)
let normalize_universe evd =
let vars = ref evd.universes.uctx_univ_variables in
let normalize = Universes.normalize_universe_opt_subst vars in
normalize
let normalize_universe_instance evd l =
let vars = ref evd.universes.uctx_univ_variables in
let normalize = Univ.level_subst_of (Universes.normalize_univ_variable_opt_subst vars) in
Univ.Instance.subst_fn normalize l
let normalize_sort evars s =
match s with
| Prop _ -> s
| Type u ->
let u' = normalize_universe evars u in
if u' == u then s else Type u'
(* FIXME inefficient *)
let set_eq_sort d s1 s2 =
let s1 = normalize_sort d s1 and s2 = normalize_sort d s2 in
match is_eq_sort s1 s2 with
| None -> d
| Some (u1, u2) -> add_universe_constraints d
(Universes.Constraints.singleton (u1,Universes.UEq,u2))
let has_lub evd u1 u2 =
(* let normalize = Universes.normalize_universe_opt_subst (ref univs.uctx_univ_variables) in *)
(* (\* let dref, norm = memo_normalize_universe d in *\) *)
(* let u1 = normalize u1 and u2 = normalize u2 in *)
if Univ.Universe.equal u1 u2 then evd
else add_universe_constraints evd
(Universes.Constraints.singleton (u1,Universes.ULub,u2))
let set_eq_level d u1 u2 =
add_constraints d (Univ.enforce_eq_level u1 u2 Univ.Constraint.empty)
let set_leq_level d u1 u2 =
add_constraints d (Univ.enforce_leq_level u1 u2 Univ.Constraint.empty)
let set_eq_instances ?(flex=false) d u1 u2 =
add_universe_constraints d
(Universes.enforce_eq_instances_univs flex u1 u2 Universes.Constraints.empty)
let set_leq_sort evd s1 s2 =
let s1 = normalize_sort evd s1
and s2 = normalize_sort evd s2 in
match is_eq_sort s1 s2 with
| None -> evd
| Some (u1, u2) ->
(* if Univ.is_type0_univ u2 then *)
(* if Univ.is_small_univ u1 then evd *)
(* else raise (Univ.UniverseInconsistency (Univ.Le, u1, u2, [])) *)
(* else if Univ.is_type0m_univ u2 then *)
(* raise (Univ.UniverseInconsistency (Univ.Le, u1, u2, [])) *)
(* else *)
add_universe_constraints evd (Universes.Constraints.singleton (u1,Universes.ULe,u2))
let check_eq evd s s' =
Univ.check_eq evd.universes.uctx_universes s s'
let check_leq evd s s' =
Univ.check_leq evd.universes.uctx_universes s s'
let subst_univs_context_with_def def usubst (ctx, cst) =
(Univ.LSet.diff ctx def, Univ.subst_univs_constraints usubst cst)
let normalize_evar_universe_context_variables uctx =
let normalized_variables, undef, def, subst =
Universes.normalize_univ_variables uctx.uctx_univ_variables
in
let ctx_local = subst_univs_context_with_def def (Univ.make_subst subst) uctx.uctx_local in
let ctx_local', univs = Universes.refresh_constraints uctx.uctx_initial_universes ctx_local in
subst, { uctx with uctx_local = ctx_local';
uctx_univ_variables = normalized_variables;
uctx_universes = univs }
(* let normvarsconstrkey = Profile.declare_profile "normalize_evar_universe_context_variables";; *)
(* let normalize_evar_universe_context_variables = *)
(* Profile.profile1 normvarsconstrkey normalize_evar_universe_context_variables;; *)
let mark_undefs_as_nonalg uctx =
let vars' =
Univ.LMap.fold (fun u v acc ->
if v == None then Univ.LSet.remove u acc
else acc)
uctx.uctx_univ_variables uctx.uctx_univ_algebraic
in { uctx with uctx_univ_algebraic = vars' }
let abstract_undefined_variables evd =
{evd with universes = mark_undefs_as_nonalg evd.universes}
let refresh_undefined_univ_variables uctx =
let subst, ctx' = Universes.fresh_universe_context_set_instance uctx.uctx_local in
let alg = Univ.LSet.fold (fun u acc -> Univ.LSet.add (Univ.subst_univs_level_level subst u) acc)
uctx.uctx_univ_algebraic Univ.LSet.empty
in
let vars =
Univ.LMap.fold
(fun u v acc ->
Univ.LMap.add (Univ.subst_univs_level_level subst u)
(Option.map (Univ.subst_univs_level_universe subst) v) acc)
uctx.uctx_univ_variables Univ.LMap.empty
in
let uctx' = {uctx_names = uctx.uctx_names;
uctx_local = ctx';
uctx_univ_variables = vars; uctx_univ_algebraic = alg;
uctx_universes = Univ.initial_universes;
uctx_initial_universes = uctx.uctx_initial_universes } in
uctx', subst
let refresh_undefined_universes evd =
let uctx', subst = refresh_undefined_univ_variables evd.universes in
let evd' = cmap (subst_univs_level_constr subst) {evd with universes = uctx'} in
evd', subst
let normalize_evar_universe_context uctx =
let rec fixpoint uctx =
let ((vars',algs'), us') =
Universes.normalize_context_set uctx.uctx_local uctx.uctx_univ_variables
uctx.uctx_univ_algebraic
in
if Univ.LSet.equal (fst us') (fst uctx.uctx_local) then
uctx
else
let us', universes = Universes.refresh_constraints uctx.uctx_initial_universes us' in
let uctx' =
{ uctx_names = uctx.uctx_names;
uctx_local = us';
uctx_univ_variables = vars';
uctx_univ_algebraic = algs';
uctx_universes = universes;
uctx_initial_universes = uctx.uctx_initial_universes }
in fixpoint uctx'
in fixpoint uctx
let nf_univ_variables evd =
let subst, uctx' = normalize_evar_universe_context_variables evd.universes in
let evd' = {evd with universes = uctx'} in
evd', subst
let nf_constraints evd =
let subst, uctx' = normalize_evar_universe_context_variables evd.universes in
let uctx' = normalize_evar_universe_context uctx' in
{evd with universes = uctx'}
let nf_constraints =
if Flags.profile then
let nfconstrkey = Profile.declare_profile "nf_constraints" in
Profile.profile1 nfconstrkey nf_constraints
else nf_constraints
let universe_of_name evd s =
UNameMap.find s evd.universes.uctx_names
let add_universe_name evd s l =
let names = evd.universes.uctx_names in
let names' = UNameMap.add s l names in
{evd with universes = {evd.universes with uctx_names = names'}}
let universes evd = evd.universes.uctx_universes
(* Conversion w.r.t. an evar map and its local universes. *)
let conversion_gen env evd pb t u =
match pb with
| Reduction.CONV ->
Reduction.trans_conv_universes
full_transparent_state ~evars:(existential_opt_value evd) env
evd.universes.uctx_universes t u
| Reduction.CUMUL -> Reduction.trans_conv_leq_universes
full_transparent_state ~evars:(existential_opt_value evd) env
evd.universes.uctx_universes t u
(* let conversion_gen_key = Profile.declare_profile "conversion_gen" *)
(* let conversion_gen = Profile.profile5 conversion_gen_key conversion_gen *)
let conversion env d pb t u =
conversion_gen env d pb t u; d
let test_conversion env d pb t u =
try conversion_gen env d pb t u; true
with _ -> false
(**********************************************************)
(* Accessing metas *)
(** We use this function to overcome OCaml compiler limitations and to prevent
the use of costly in-place modifications. *)
let set_metas evd metas = {
defn_evars = evd.defn_evars;
undf_evars = evd.undf_evars;
universes = evd.universes;
conv_pbs = evd.conv_pbs;
last_mods = evd.last_mods;
metas;
effects = evd.effects; }
let meta_list evd = metamap_to_list evd.metas
let undefined_metas evd =
let filter = function
| (n,Clval(_,_,typ)) -> None
| (n,Cltyp (_,typ)) -> Some n
in
let m = List.map_filter filter (meta_list evd) in
List.sort Int.compare m
let map_metas_fvalue f evd =
let map = function
| Clval(id,(c,s),typ) -> Clval(id,(mk_freelisted (f c.rebus),s),typ)
| x -> x
in
set_metas evd (Metamap.smartmap map evd.metas)
let meta_opt_fvalue evd mv =
match Metamap.find mv evd.metas with
| Clval(_,b,_) -> Some b
| Cltyp _ -> None
let meta_defined evd mv =
match Metamap.find mv evd.metas with
| Clval _ -> true
| Cltyp _ -> false
let try_meta_fvalue evd mv =
match Metamap.find mv evd.metas with
| Clval(_,b,_) -> b
| Cltyp _ -> raise Not_found
let meta_fvalue evd mv =
try try_meta_fvalue evd mv
with Not_found -> anomaly ~label:"meta_fvalue" (Pp.str "meta has no value")
let meta_value evd mv =
(fst (try_meta_fvalue evd mv)).rebus
let meta_ftype evd mv =
match Metamap.find mv evd.metas with
| Cltyp (_,b) -> b
| Clval(_,_,b) -> b
let meta_type evd mv = (meta_ftype evd mv).rebus
let meta_declare mv v ?(name=Anonymous) evd =
let metas = Metamap.add mv (Cltyp(name,mk_freelisted v)) evd.metas in
set_metas evd metas
let meta_assign mv (v, pb) evd =
let modify _ = function
| Cltyp (na, ty) -> Clval (na, (mk_freelisted v, pb), ty)
| _ -> anomaly ~label:"meta_assign" (Pp.str "already defined")
in
let metas = Metamap.modify mv modify evd.metas in
set_metas evd metas
let meta_reassign mv (v, pb) evd =
let modify _ = function
| Clval(na, _, ty) -> Clval (na, (mk_freelisted v, pb), ty)
| _ -> anomaly ~label:"meta_reassign" (Pp.str "not yet defined")
in
let metas = Metamap.modify mv modify evd.metas in
set_metas evd metas
(* If the meta is defined then forget its name *)
let meta_name evd mv =
try fst (clb_name (Metamap.find mv evd.metas)) with Not_found -> Anonymous
let meta_with_name evd id =
let na = Name id in
let (mvl,mvnodef) =
Metamap.fold
(fun n clb (l1,l2 as l) ->
let (na',def) = clb_name clb in
if Name.equal na na' then if def then (n::l1,l2) else (n::l1,n::l2)
else l)
evd.metas ([],[]) in
match mvnodef, mvl with
| _,[] ->
errorlabstrm "Evd.meta_with_name"
(str"No such bound variable " ++ pr_id id ++ str".")
| ([n],_|_,[n]) ->
n
| _ ->
errorlabstrm "Evd.meta_with_name"
(str "Binder name \"" ++ pr_id id ++
strbrk "\" occurs more than once in clause.")
let clear_metas evd = {evd with metas = Metamap.empty}
let meta_merge evd1 evd2 =
let metas = Metamap.fold Metamap.add evd1.metas evd2.metas in
let universes = union_evar_universe_context evd2.universes evd1.universes in
{evd2 with universes; metas; }
type metabinding = metavariable * constr * instance_status
let retract_coercible_metas evd =
let mc = ref [] in
let map n v = match v with
| Clval (na, (b, (Conv, CoerceToType as s)), typ) ->
let () = mc := (n, b.rebus, s) :: !mc in
Cltyp (na, typ)
| v -> v
in
let metas = Metamap.smartmapi map evd.metas in
!mc, set_metas evd metas
let subst_defined_metas bl c =
let rec substrec c = match kind_of_term c with
| Meta i ->
let select (j,_,_) = Int.equal i j in
substrec (pi2 (List.find select bl))
| _ -> map_constr substrec c
in try Some (substrec c) with Not_found -> None
(*******************************************************************)
type open_constr = evar_map * constr
(*******************************************************************)
(* The type constructor ['a sigma] adds an evar map to an object of
type ['a] *)
type 'a sigma = {
it : 'a ;
sigma : evar_map
}
let sig_it x = x.it
let sig_sig x = x.sigma
let on_sig s f =
let sigma', v = f s.sigma in
{ s with sigma = sigma' }, v
(*******************************************************************)
(* The state monad with state an evar map. *)
module MonadR =
Monad.Make (struct
type +'a t = evar_map -> evar_map * 'a
let return a = fun s -> (s,a)
let (>>=) x f = fun s ->
let (s',a) = x s in
f a s'
end)
module Monad =
Monad.Make (struct
type +'a t = evar_map -> 'a * evar_map
let return a = fun s -> (a,s)
let (>>=) x f = fun s ->
let (a,s') = x s in
f a s'
end)
(**********************************************************)
(* Failure explanation *)
type unsolvability_explanation = SeveralInstancesFound of int
(**********************************************************)
(* Pretty-printing *)
let pr_instance_status (sc,typ) =
begin match sc with
| IsSubType -> str " [or a subtype of it]"
| IsSuperType -> str " [or a supertype of it]"
| Conv -> mt ()
end ++
begin match typ with
| CoerceToType -> str " [up to coercion]"
| TypeNotProcessed -> mt ()
| TypeProcessed -> str " [type is checked]"
end
let pr_meta_map mmap =
let pr_name = function
Name id -> str"[" ++ pr_id id ++ str"]"
| _ -> mt() in
let pr_meta_binding = function
| (mv,Cltyp (na,b)) ->
hov 0
(pr_meta mv ++ pr_name na ++ str " : " ++
print_constr b.rebus ++ fnl ())
| (mv,Clval(na,(b,s),t)) ->
hov 0
(pr_meta mv ++ pr_name na ++ str " := " ++
print_constr b.rebus ++
str " : " ++ print_constr t.rebus ++
spc () ++ pr_instance_status s ++ fnl ())
in
prlist pr_meta_binding (metamap_to_list mmap)
let pr_decl ((id,b,_),ok) =
match b with
| None -> if ok then pr_id id else (str "{" ++ pr_id id ++ str "}")
| Some c -> str (if ok then "(" else "{") ++ pr_id id ++ str ":=" ++
print_constr c ++ str (if ok then ")" else "}")
let pr_evar_source = function
| Evar_kinds.QuestionMark _ -> str "underscore"
| Evar_kinds.CasesType -> str "pattern-matching return predicate"
| Evar_kinds.BinderType (Name id) -> str "type of " ++ Nameops.pr_id id
| Evar_kinds.BinderType Anonymous -> str "type of anonymous binder"
| Evar_kinds.ImplicitArg (c,(n,ido),b) ->
let id = Option.get ido in
str "parameter " ++ pr_id id ++ spc () ++ str "of" ++
spc () ++ print_constr (printable_constr_of_global c)
| Evar_kinds.InternalHole -> str "internal placeholder"
| Evar_kinds.TomatchTypeParameter (ind,n) ->
pr_nth n ++ str " argument of type " ++ print_constr (mkInd ind)
| Evar_kinds.GoalEvar -> str "goal evar"
| Evar_kinds.ImpossibleCase -> str "type of impossible pattern-matching clause"
| Evar_kinds.MatchingVar _ -> str "matching variable"
| Evar_kinds.VarInstance id -> str "instance of " ++ pr_id id
let pr_evar_info evi =
let phyps =
try
let decls = match Filter.repr (evar_filter evi) with
| None -> List.map (fun c -> (c, true)) (evar_context evi)
| Some filter -> List.combine (evar_context evi) filter
in
prlist_with_sep spc pr_decl (List.rev decls)
with Invalid_argument _ -> str "Ill-formed filtered context" in
let pty = print_constr evi.evar_concl in
let pb =
match evi.evar_body with
| Evar_empty -> mt ()
| Evar_defined c -> spc() ++ str"=> " ++ print_constr c
in
let candidates =
match evi.evar_body, evi.evar_candidates with
| Evar_empty, Some l ->
spc () ++ str "{" ++
prlist_with_sep (fun () -> str "|") print_constr l ++ str "}"
| _ ->
mt ()
in
let src = str "(" ++ pr_evar_source (snd evi.evar_source) ++ str ")" in
hov 2
(str"[" ++ phyps ++ spc () ++ str"|- " ++ pty ++ pb ++ str"]" ++
candidates ++ spc() ++ src)
let compute_evar_dependency_graph (sigma : evar_map) =
(* Compute the map binding ev to the evars whose body depends on ev *)
let fold evk evi acc =
let fold_ev evk' acc =
let tab =
try EvMap.find evk' acc
with Not_found -> Evar.Set.empty
in
EvMap.add evk' (Evar.Set.add evk tab) acc
in
match evar_body evi with
| Evar_empty -> assert false
| Evar_defined c -> Evar.Set.fold fold_ev (collect_evars c) acc
in
EvMap.fold fold sigma.defn_evars EvMap.empty
let evar_dependency_closure n sigma =
(** Create the DAG of depth [n] representing the recursive dependencies of
undefined evars. *)
let graph = compute_evar_dependency_graph sigma in
let rec aux n curr accu =
if Int.equal n 0 then Evar.Set.union curr accu
else
let fold evk accu =
try
let deps = EvMap.find evk graph in
Evar.Set.union deps accu
with Not_found -> accu
in
(** Consider only the newly added evars *)
let ncurr = Evar.Set.fold fold curr Evar.Set.empty in
(** Merge the others *)
let accu = Evar.Set.union curr accu in
aux (n - 1) ncurr accu
in
let undef = EvMap.domain (undefined_map sigma) in
aux n undef Evar.Set.empty
let evar_dependency_closure n sigma =
let deps = evar_dependency_closure n sigma in
let map = EvMap.bind (fun ev -> find sigma ev) deps in
EvMap.bindings map
let has_no_evar sigma =
EvMap.is_empty sigma.defn_evars && EvMap.is_empty sigma.undf_evars
let pr_evar_universe_context ctx =
if is_empty_evar_universe_context ctx then mt ()
else
(str"UNIVERSES:"++brk(0,1)++ h 0 (Univ.pr_universe_context_set ctx.uctx_local) ++ fnl () ++
str"ALGEBRAIC UNIVERSES:"++brk(0,1)++h 0 (Univ.LSet.pr ctx.uctx_univ_algebraic) ++ fnl() ++
str"UNDEFINED UNIVERSES:"++brk(0,1)++
h 0 (Universes.pr_universe_opt_subst ctx.uctx_univ_variables))
let print_env_short env =
let pr_body n = function
| None -> pr_name n
| Some b -> str "(" ++ pr_name n ++ str " := " ++ print_constr b ++ str ")" in
let pr_named_decl (n, b, _) = pr_body (Name n) b in
let pr_rel_decl (n, b, _) = pr_body n b in
let nc = List.rev (named_context env) in
let rc = List.rev (rel_context env) in
str "[" ++ pr_sequence pr_named_decl nc ++ str "]" ++ spc () ++
str "[" ++ pr_sequence pr_rel_decl rc ++ str "]"
let pr_evar_constraints pbs =
let pr_evconstr (pbty, env, t1, t2) =
print_env_short env ++ spc () ++ str "|-" ++ spc () ++
print_constr t1 ++ spc () ++
str (match pbty with
| Reduction.CONV -> "=="
| Reduction.CUMUL -> "<=") ++
spc () ++ print_constr t2
in
prlist_with_sep fnl pr_evconstr pbs
let pr_evar_map_gen pr_evars sigma =
let { universes = uvs } = sigma in
let evs = if has_no_evar sigma then mt () else pr_evars sigma
and svs = pr_evar_universe_context uvs
and cstrs =
if List.is_empty sigma.conv_pbs then mt ()
else
str "CONSTRAINTS:" ++ brk (0, 1) ++
pr_evar_constraints sigma.conv_pbs ++ fnl ()
and metas =
if Metamap.is_empty sigma.metas then mt ()
else
str "METAS:" ++ brk (0, 1) ++ pr_meta_map sigma.metas
in
evs ++ svs ++ cstrs ++ metas
let pr_evar_list l =
let pr (ev, evi) =
h 0 (str (string_of_existential ev) ++
str "==" ++ pr_evar_info evi)
in
h 0 (prlist_with_sep fnl pr l)
let pr_evar_by_depth depth sigma = match depth with
| None ->
(* Print all evars *)
str"EVARS:"++brk(0,1)++pr_evar_list (to_list sigma)++fnl()
| Some n ->
(* Print all evars *)
str"UNDEFINED EVARS:"++
(if Int.equal n 0 then mt() else str" (+level "++int n++str" closure):")++
brk(0,1)++
pr_evar_list (evar_dependency_closure n sigma)++fnl()
let pr_evar_by_filter filter sigma =
let defined = Evar.Map.filter filter sigma.defn_evars in
let undefined = Evar.Map.filter filter sigma.undf_evars in
let prdef =
if Evar.Map.is_empty defined then mt ()
else str "DEFINED EVARS:" ++ brk (0, 1) ++
pr_evar_list (Evar.Map.bindings defined)
in
let prundef =
if Evar.Map.is_empty undefined then mt ()
else str "UNDEFINED EVARS:" ++ brk (0, 1) ++
pr_evar_list (Evar.Map.bindings undefined)
in
prdef ++ prundef
let pr_evar_map depth sigma =
pr_evar_map_gen (fun sigma -> pr_evar_by_depth depth sigma) sigma
let pr_evar_map_filter filter sigma =
pr_evar_map_gen (fun sigma -> pr_evar_by_filter filter sigma) sigma
let pr_metaset metas =
str "[" ++ pr_sequence pr_meta (Metaset.elements metas) ++ str "]"
|