1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Pp
open Errors
open Util
open Names
open Nameops
open Term
open Vars
open Termops
open Environ
open Globnames
open Mod_subst
(* The kinds of existential variables are now defined in [Evar_kinds] *)
(* The type of mappings for existential variables *)
module Dummy = struct end
module Store = Store.Make(Dummy)
type evar = Term.existential_key
let string_of_existential evk = "?" ^ string_of_int (Evar.repr evk)
type evar_body =
| Evar_empty
| Evar_defined of constr
type evar_info = {
evar_concl : constr;
evar_hyps : named_context_val;
evar_body : evar_body;
evar_filter : bool list;
evar_source : Evar_kinds.t Loc.located;
evar_candidates : constr list option; (* if not None, list of allowed instances *)
evar_extra : Store.t }
let make_evar hyps ccl = {
evar_concl = ccl;
evar_hyps = hyps;
evar_body = Evar_empty;
evar_filter = List.map (fun _ -> true) (named_context_of_val hyps);
evar_source = (Loc.ghost,Evar_kinds.InternalHole);
evar_candidates = None;
evar_extra = Store.empty
}
let evar_concl evi = evi.evar_concl
let evar_filter evi = evi.evar_filter
let evar_body evi = evi.evar_body
let evar_context evi = named_context_of_val evi.evar_hyps
let evar_filtered_context evi =
List.filter_with (evar_filter evi) (evar_context evi)
let evar_hyps evi = evi.evar_hyps
let evar_filtered_hyps evi =
List.fold_right push_named_context_val (evar_filtered_context evi)
empty_named_context_val
let evar_env evi = Global.env_of_context evi.evar_hyps
let evar_filtered_env evi =
List.fold_right push_named (evar_filtered_context evi)
(reset_context (Global.env()))
let eq_evar_body b1 b2 = match b1, b2 with
| Evar_empty, Evar_empty -> true
| Evar_defined t1, Evar_defined t2 -> eq_constr t1 t2
| _ -> false
let eq_evar_info ei1 ei2 =
ei1 == ei2 ||
eq_constr ei1.evar_concl ei2.evar_concl &&
eq_named_context_val (ei1.evar_hyps) (ei2.evar_hyps) &&
eq_evar_body ei1.evar_body ei2.evar_body
(** ppedrot: [eq_constr] may be a bit too permissive here *)
(* spiwack: Revised hierarchy :
- Evar.Map ( Maps of existential_keys )
- EvarInfoMap ( .t = evar_info Evar.Map.t * evar_info Evar.Map )
- EvarMap ( .t = EvarInfoMap.t * sort_constraints )
- evar_map (exported)
*)
(* This exception is raised by *.existential_value *)
exception NotInstantiatedEvar
let instance_mismatch () =
anomaly (Pp.str "Signature and its instance do not match")
(* Note: let-in contributes to the instance *)
let make_evar_instance sign args =
let rec instrec sign args = match sign, args with
| [], [] -> []
| (id,_,_) :: sign, c :: args ->
if isVarId id c then instrec sign args
else (id, c) :: instrec sign args
| [], _ | _, [] -> instance_mismatch ()
in
instrec sign args
let make_evar_instance_array sign args =
let len = Array.length args in
let rec instrec sign i = match sign with
| [] ->
if Int.equal i len then []
else instance_mismatch ()
| (id, _, _) :: sign ->
if i < len then
let c = Array.unsafe_get args i in
if isVarId id c then instrec sign (succ i)
else (id, c) :: instrec sign (succ i)
else instance_mismatch ()
in
instrec sign 0
let instantiate_evar sign c args =
let inst = make_evar_instance sign args in
match inst with
| [] -> c
| _ -> replace_vars inst c
let instantiate_evar_array sign c args =
let inst = make_evar_instance_array sign args in
match inst with
| [] -> c
| _ -> replace_vars inst c
(*******************************************************************)
(* Metamaps *)
(*******************************************************************)
(* Constraints for existential variables *)
(*******************************************************************)
type 'a freelisted = {
rebus : 'a;
freemetas : Int.Set.t }
(* Collects all metavars appearing in a constr *)
let metavars_of c =
let rec collrec acc c =
match kind_of_term c with
| Meta mv -> Int.Set.add mv acc
| _ -> fold_constr collrec acc c
in
collrec Int.Set.empty c
let mk_freelisted c =
{ rebus = c; freemetas = metavars_of c }
let map_fl f cfl = { cfl with rebus=f cfl.rebus }
(* Status of an instance found by unification wrt to the meta it solves:
- a supertype of the meta (e.g. the solution to ?X <= T is a supertype of ?X)
- a subtype of the meta (e.g. the solution to T <= ?X is a supertype of ?X)
- a term that can be eta-expanded n times while still being a solution
(e.g. the solution [P] to [?X u v = P u v] can be eta-expanded twice)
*)
type instance_constraint = IsSuperType | IsSubType | Conv
let eq_instance_constraint c1 c2 = c1 == c2
(* Status of the unification of the type of an instance against the type of
the meta it instantiates:
- CoerceToType means that the unification of types has not been done
and that a coercion can still be inserted: the meta should not be
substituted freely (this happens for instance given via the
"with" binding clause).
- TypeProcessed means that the information obtainable from the
unification of types has been extracted.
- TypeNotProcessed means that the unification of types has not been
done but it is known that no coercion may be inserted: the meta
can be substituted freely.
*)
type instance_typing_status =
CoerceToType | TypeNotProcessed | TypeProcessed
(* Status of an instance together with the status of its type unification *)
type instance_status = instance_constraint * instance_typing_status
(* Clausal environments *)
type clbinding =
| Cltyp of Name.t * constr freelisted
| Clval of Name.t * (constr freelisted * instance_status) * constr freelisted
let map_clb f = function
| Cltyp (na,cfl) -> Cltyp (na,map_fl f cfl)
| Clval (na,(cfl1,pb),cfl2) -> Clval (na,(map_fl f cfl1,pb),map_fl f cfl2)
(* name of defined is erased (but it is pretty-printed) *)
let clb_name = function
Cltyp(na,_) -> (na,false)
| Clval (na,_,_) -> (na,true)
(***********************)
module Metaset = Int.Set
module Metamap = Int.Map
let metamap_to_list m =
Metamap.fold (fun n v l -> (n,v)::l) m []
(*************************)
(* Unification state *)
type conv_pb = Reduction.conv_pb
type evar_constraint = conv_pb * Environ.env * constr * constr
module EvMap = Evar.Map
type evar_map = {
defn_evars : evar_info EvMap.t;
undf_evars : evar_info EvMap.t;
universes : Univ.UniverseLSet.t;
univ_cstrs : Univ.universes;
conv_pbs : evar_constraint list;
last_mods : Evar.Set.t;
metas : clbinding Metamap.t;
effects : Declareops.side_effects;
}
(*** Lifting primitive from EvarMap. ***)
(* HH: The progress tactical now uses this function. *)
let progress_evar_map d1 d2 =
let is_new k v =
assert (v.evar_body == Evar_empty);
EvMap.mem k d2.defn_evars
in
not (d1 == d2) && EvMap.exists is_new d1.undf_evars
let add d e i = match i.evar_body with
| Evar_empty ->
{ d with undf_evars = EvMap.add e i d.undf_evars; }
| Evar_defined _ ->
{ d with defn_evars = EvMap.add e i d.defn_evars; }
let remove d e =
let undf_evars = EvMap.remove e d.undf_evars in
let defn_evars = EvMap.remove e d.defn_evars in
{ d with undf_evars; defn_evars; }
let find d e =
try EvMap.find e d.undf_evars
with Not_found -> EvMap.find e d.defn_evars
let find_undefined d e = EvMap.find e d.undf_evars
let mem d e = EvMap.mem e d.undf_evars || EvMap.mem e d.defn_evars
(* spiwack: this function loses information from the original evar_map
it might be an idea not to export it. *)
let to_list d =
(* Workaround for change in Map.fold behavior in ocaml 3.08.4 *)
let l = ref [] in
EvMap.iter (fun evk x -> l := (evk,x)::!l) d.defn_evars;
EvMap.iter (fun evk x -> l := (evk,x)::!l) d.undf_evars;
!l
let undefined_map d = d.undf_evars
let undefined_evars d = { d with defn_evars = EvMap.empty }
(* spiwack: not clear what folding over an evar_map, for now we shall
simply fold over the inner evar_map. *)
let fold f d a =
EvMap.fold f d.defn_evars (EvMap.fold f d.undf_evars a)
let fold_undefined f d a = EvMap.fold f d.undf_evars a
let raw_map f d =
let f evk info =
let ans = f evk info in
let () = match info.evar_body, ans.evar_body with
| Evar_defined _, Evar_empty
| Evar_empty, Evar_defined _ ->
anomaly (str "Unrespectful mapping function.")
| _ -> ()
in
ans
in
let defn_evars = EvMap.mapi f d.defn_evars in
let undf_evars = EvMap.mapi f d.undf_evars in
{ d with defn_evars; undf_evars; }
let raw_map_undefined f d =
let f evk info =
let ans = f evk info in
let () = match ans.evar_body with
| Evar_defined _ ->
anomaly (str "Unrespectful mapping function.")
| _ -> ()
in
ans
in
{ d with undf_evars = EvMap.mapi f d.undf_evars; }
let is_evar = mem
let is_defined d e = EvMap.mem e d.defn_evars
let is_undefined d e = EvMap.mem e d.undf_evars
let existential_value d (n, args) =
let info = find d n in
let hyps = evar_filtered_context info in
match evar_body info with
| Evar_defined c ->
instantiate_evar_array hyps c args
| Evar_empty ->
raise NotInstantiatedEvar
let existential_opt_value d ev =
try Some (existential_value d ev)
with NotInstantiatedEvar -> None
let existential_type d (n, args) =
let info =
try find d n
with Not_found ->
anomaly (str "Evar " ++ str (string_of_existential n) ++ str " was not declared") in
let hyps = evar_filtered_context info in
instantiate_evar_array hyps info.evar_concl args
let add_constraints d cstrs =
{ d with univ_cstrs = Univ.merge_constraints cstrs d.univ_cstrs }
(*** /Lifting... ***)
(* evar_map are considered empty disregarding histories *)
let is_empty d =
EvMap.is_empty d.defn_evars &&
EvMap.is_empty d.undf_evars &&
List.is_empty d.conv_pbs &&
Metamap.is_empty d.metas
let subst_named_context_val s = map_named_val (subst_mps s)
let subst_evar_info s evi =
let subst_evb = function
| Evar_empty -> Evar_empty
| Evar_defined c -> Evar_defined (subst_mps s c)
in
{ evi with
evar_concl = subst_mps s evi.evar_concl;
evar_hyps = subst_named_context_val s evi.evar_hyps;
evar_body = subst_evb evi.evar_body }
let subst_evar_defs_light sub evd =
assert (Univ.is_initial_universes evd.univ_cstrs);
assert (match evd.conv_pbs with [] -> true | _ -> false);
let map_info i = subst_evar_info sub i in
{ evd with
undf_evars = EvMap.map map_info evd.undf_evars;
defn_evars = EvMap.map map_info evd.defn_evars;
metas = Metamap.map (map_clb (subst_mps sub)) evd.metas; }
let subst_evar_map = subst_evar_defs_light
(* spiwack: deprecated *)
let create_evar_defs sigma = { sigma with
conv_pbs=[]; last_mods=Evar.Set.empty; metas=Metamap.empty }
(* spiwack: tentatively deprecated *)
let create_goal_evar_defs sigma = { sigma with
(* conv_pbs=[]; last_mods=Evar.Set.empty; metas=Metamap.empty } *)
metas=Metamap.empty }
let empty = {
defn_evars = EvMap.empty;
undf_evars = EvMap.empty;
universes = Univ.UniverseLSet.empty;
univ_cstrs = Univ.initial_universes;
conv_pbs = [];
last_mods = Evar.Set.empty;
metas = Metamap.empty;
effects = Declareops.no_seff;
}
let has_undefined evd = not (EvMap.is_empty evd.undf_evars)
let evars_reset_evd ?(with_conv_pbs=false) evd d =
let conv_pbs = if with_conv_pbs then evd.conv_pbs else d.conv_pbs in
{ evd with
metas = d.metas;
last_mods = d.last_mods;
conv_pbs; }
let add_conv_pb pb d = {d with conv_pbs = pb::d.conv_pbs}
let evar_source evk d = (find d evk).evar_source
let define_aux def undef evk body =
let oldinfo =
try EvMap.find evk undef
with Not_found ->
if EvMap.mem evk def then
anomaly ~label:"Evd.define" (Pp.str "cannot define an evar twice")
else
anomaly ~label:"Evd.define" (Pp.str "cannot define undeclared evar")
in
let () = assert (oldinfo.evar_body == Evar_empty) in
let newinfo = { oldinfo with evar_body = Evar_defined body } in
EvMap.add evk newinfo def, EvMap.remove evk undef
(* define the existential of section path sp as the constr body *)
let define evk body evd =
let (defn_evars, undf_evars) = define_aux evd.defn_evars evd.undf_evars evk body in
let last_mods = match evd.conv_pbs with
| [] -> evd.last_mods
| _ -> Evar.Set.add evk evd.last_mods
in
{ evd with defn_evars; undf_evars; last_mods; }
let evar_declare hyps evk ty ?(src=(Loc.ghost,Evar_kinds.InternalHole)) ?filter ?candidates evd =
let filter = match filter with
| None ->
List.map (fun _ -> true) (named_context_of_val hyps)
| Some filter ->
assert (Int.equal (List.length filter) (List.length (named_context_of_val hyps)));
filter
in
let evar_info = {
evar_hyps = hyps;
evar_concl = ty;
evar_body = Evar_empty;
evar_filter = filter;
evar_source = src;
evar_candidates = candidates;
evar_extra = Store.empty; }
in
{ evd with undf_evars = EvMap.add evk evar_info evd.undf_evars; }
(* extracts conversion problems that satisfy predicate p *)
(* Note: conv_pbs not satisying p are stored back in reverse order *)
let extract_conv_pbs evd p =
let (pbs,pbs1) =
List.fold_left
(fun (pbs,pbs1) pb ->
if p pb then
(pb::pbs,pbs1)
else
(pbs,pb::pbs1))
([],[])
evd.conv_pbs
in
{evd with conv_pbs = pbs1; last_mods = Evar.Set.empty},
pbs
let extract_changed_conv_pbs evd p =
extract_conv_pbs evd (p evd.last_mods)
let extract_all_conv_pbs evd =
extract_conv_pbs evd (fun _ -> true)
let loc_of_conv_pb evd (pbty,env,t1,t2) =
match kind_of_term (fst (decompose_app t1)) with
| Evar (evk1,_) -> fst (evar_source evk1 evd)
| _ ->
match kind_of_term (fst (decompose_app t2)) with
| Evar (evk2,_) -> fst (evar_source evk2 evd)
| _ -> Loc.ghost
let evar_list evd c =
let rec evrec acc c =
match kind_of_term c with
| Evar (evk, _ as ev) when mem evd evk -> ev :: acc
| _ -> fold_constr evrec acc c in
evrec [] c
let collect_evars c =
let rec collrec acc c =
match kind_of_term c with
| Evar (evk,_) -> Evar.Set.add evk acc
| _ -> fold_constr collrec acc c
in
collrec Evar.Set.empty c
(**********************************************************)
(* Side effects *)
let emit_side_effects eff evd =
{ evd with effects = Declareops.union_side_effects eff evd.effects; }
let drop_side_effects evd =
{ evd with effects = Declareops.no_seff; }
let eval_side_effects evd = evd.effects
(**********************************************************)
(* Sort variables *)
let new_univ_variable evd =
let u = Termops.new_univ_level () in
let universes = Univ.UniverseLSet.add u evd.universes in
({ evd with universes }, Univ.Universe.make u)
let new_sort_variable d =
let (d', u) = new_univ_variable d in
(d', Type u)
let is_sort_variable evd s = match s with Type u -> true | _ -> false
let whd_sort_variable evd t = t
let univ_of_sort = function
| Type u -> u
| Prop Pos -> Univ.type0_univ
| Prop Null -> Univ.type0m_univ
let is_eq_sort s1 s2 =
if Sorts.equal s1 s2 then None
else
let u1 = univ_of_sort s1
and u2 = univ_of_sort s2 in
if Univ.Universe.equal u1 u2 then None
else Some (u1, u2)
let is_univ_var_or_set u =
Univ.is_univ_variable u || Univ.is_type0_univ u
let set_leq_sort evd s1 s2 =
match is_eq_sort s1 s2 with
| None -> evd
| Some (u1, u2) ->
match s1, s2 with
| Prop Null, Prop Pos -> evd
| Prop _, Prop _ ->
raise (Univ.UniverseInconsistency (Univ.Le, u1, u2,[]))
| Type u, Prop Pos ->
let cstr = Univ.enforce_leq u Univ.type0_univ Univ.empty_constraint in
add_constraints evd cstr
| Type _, Prop _ ->
raise (Univ.UniverseInconsistency (Univ.Le, u1, u2,[]))
| _, Type u ->
if is_univ_var_or_set u then
let cstr = Univ.enforce_leq u1 u2 Univ.empty_constraint in
add_constraints evd cstr
else raise (Univ.UniverseInconsistency (Univ.Le, u1, u2,[]))
let is_univ_level_var us u =
match Univ.universe_level u with
| Some u -> Univ.UniverseLSet.mem u us
| None -> false
let set_eq_sort ({ universes = us; univ_cstrs = sm; } as d) s1 s2 =
match is_eq_sort s1 s2 with
| None -> d
| Some (u1, u2) ->
match s1, s2 with
| Prop c, Type u when is_univ_level_var us u ->
add_constraints d (Univ.enforce_eq u1 u2 Univ.empty_constraint)
| Type u, Prop c when is_univ_level_var us u ->
add_constraints d (Univ.enforce_eq u1 u2 Univ.empty_constraint)
| Type u, Type v when (is_univ_level_var us u) || (is_univ_level_var us v) ->
add_constraints d (Univ.enforce_eq u1 u2 Univ.empty_constraint)
| Prop c, Type u when is_univ_var_or_set u &&
Univ.lax_check_eq sm u1 u2 -> d
| Type u, Prop c when is_univ_var_or_set u &&
Univ.lax_check_eq sm u1 u2 -> d
| Type u, Type v when is_univ_var_or_set u && is_univ_var_or_set v ->
add_constraints d (Univ.enforce_eq u1 u2 Univ.empty_constraint)
| _, _ -> raise (Univ.UniverseInconsistency (Univ.Eq, u1, u2, []))
(**********************************************************)
(* Accessing metas *)
let meta_list evd = metamap_to_list evd.metas
let undefined_metas evd =
let filter = function
| (n,Clval(_,_,typ)) -> None
| (n,Cltyp (_,typ)) -> Some n
in
let m = List.map_filter filter (meta_list evd) in
List.sort (-) m
let map_metas_fvalue f evd =
{ evd with metas =
Metamap.map
(function
| Clval(id,(c,s),typ) -> Clval(id,(mk_freelisted (f c.rebus),s),typ)
| x -> x) evd.metas }
let meta_opt_fvalue evd mv =
match Metamap.find mv evd.metas with
| Clval(_,b,_) -> Some b
| Cltyp _ -> None
let meta_defined evd mv =
match Metamap.find mv evd.metas with
| Clval _ -> true
| Cltyp _ -> false
let try_meta_fvalue evd mv =
match Metamap.find mv evd.metas with
| Clval(_,b,_) -> b
| Cltyp _ -> raise Not_found
let meta_fvalue evd mv =
try try_meta_fvalue evd mv
with Not_found -> anomaly ~label:"meta_fvalue" (Pp.str "meta has no value")
let meta_value evd mv =
(fst (try_meta_fvalue evd mv)).rebus
let meta_ftype evd mv =
match Metamap.find mv evd.metas with
| Cltyp (_,b) -> b
| Clval(_,_,b) -> b
let meta_type evd mv = (meta_ftype evd mv).rebus
let meta_declare mv v ?(name=Anonymous) evd =
{ evd with metas = Metamap.add mv (Cltyp(name,mk_freelisted v)) evd.metas }
let meta_assign mv (v,pb) evd =
match Metamap.find mv evd.metas with
| Cltyp(na,ty) ->
{ evd with
metas = Metamap.add mv (Clval(na,(mk_freelisted v,pb),ty)) evd.metas }
| _ -> anomaly ~label:"meta_assign" (Pp.str "already defined")
let meta_reassign mv (v,pb) evd =
match Metamap.find mv evd.metas with
| Clval(na,_,ty) ->
{ evd with
metas = Metamap.add mv (Clval(na,(mk_freelisted v,pb),ty)) evd.metas }
| _ -> anomaly ~label:"meta_reassign" (Pp.str "not yet defined")
(* If the meta is defined then forget its name *)
let meta_name evd mv =
try fst (clb_name (Metamap.find mv evd.metas)) with Not_found -> Anonymous
let meta_with_name evd id =
let na = Name id in
let (mvl,mvnodef) =
Metamap.fold
(fun n clb (l1,l2 as l) ->
let (na',def) = clb_name clb in
if Name.equal na na' then if def then (n::l1,l2) else (n::l1,n::l2)
else l)
evd.metas ([],[]) in
match mvnodef, mvl with
| _,[] ->
errorlabstrm "Evd.meta_with_name"
(str"No such bound variable " ++ pr_id id ++ str".")
| ([n],_|_,[n]) ->
n
| _ ->
errorlabstrm "Evd.meta_with_name"
(str "Binder name \"" ++ pr_id id ++
strbrk "\" occurs more than once in clause.")
let meta_merge evd1 evd2 =
{evd2 with
metas = List.fold_left (fun m (n,v) -> Metamap.add n v m)
evd2.metas (metamap_to_list evd1.metas) }
type metabinding = metavariable * constr * instance_status
let retract_coercible_metas evd =
let mc,ml =
Metamap.fold (fun n v (mc,ml) ->
match v with
| Clval (na,(b,(Conv,CoerceToType as s)),typ) ->
(n,b.rebus,s)::mc, Metamap.add n (Cltyp (na,typ)) ml
| v ->
mc, Metamap.add n v ml)
evd.metas ([],Metamap.empty) in
mc, { evd with metas = ml }
let subst_defined_metas bl c =
let rec substrec c = match kind_of_term c with
| Meta i ->
let select (j,_,_) = Int.equal i j in
substrec (pi2 (List.find select bl))
| _ -> map_constr substrec c
in try Some (substrec c) with Not_found -> None
(*******************************************************************)
type open_constr = evar_map * constr
(*******************************************************************)
(* The type constructor ['a sigma] adds an evar map to an object of
type ['a] *)
type 'a sigma = {
it : 'a ;
sigma : evar_map
}
let sig_it x = x.it
let sig_sig x = x.sigma
(**********************************************************)
(* Failure explanation *)
type unsolvability_explanation = SeveralInstancesFound of int
(**********************************************************)
(* Pretty-printing *)
let pr_instance_status (sc,typ) =
begin match sc with
| IsSubType -> str " [or a subtype of it]"
| IsSuperType -> str " [or a supertype of it]"
| Conv -> mt ()
end ++
begin match typ with
| CoerceToType -> str " [up to coercion]"
| TypeNotProcessed -> mt ()
| TypeProcessed -> str " [type is checked]"
end
let pr_meta_map mmap =
let pr_name = function
Name id -> str"[" ++ pr_id id ++ str"]"
| _ -> mt() in
let pr_meta_binding = function
| (mv,Cltyp (na,b)) ->
hov 0
(pr_meta mv ++ pr_name na ++ str " : " ++
print_constr b.rebus ++ fnl ())
| (mv,Clval(na,(b,s),t)) ->
hov 0
(pr_meta mv ++ pr_name na ++ str " := " ++
print_constr b.rebus ++
str " : " ++ print_constr t.rebus ++
spc () ++ pr_instance_status s ++ fnl ())
in
prlist pr_meta_binding (metamap_to_list mmap)
let pr_decl ((id,b,_),ok) =
match b with
| None -> if ok then pr_id id else (str "{" ++ pr_id id ++ str "}")
| Some c -> str (if ok then "(" else "{") ++ pr_id id ++ str ":=" ++
print_constr c ++ str (if ok then ")" else "}")
let pr_evar_source = function
| Evar_kinds.QuestionMark _ -> str "underscore"
| Evar_kinds.CasesType -> str "pattern-matching return predicate"
| Evar_kinds.BinderType (Name id) -> str "type of " ++ Nameops.pr_id id
| Evar_kinds.BinderType Anonymous -> str "type of anonymous binder"
| Evar_kinds.ImplicitArg (c,(n,ido),b) ->
let id = Option.get ido in
str "parameter " ++ pr_id id ++ spc () ++ str "of" ++
spc () ++ print_constr (constr_of_global c)
| Evar_kinds.InternalHole -> str "internal placeholder"
| Evar_kinds.TomatchTypeParameter (ind,n) ->
pr_nth n ++ str " argument of type " ++ print_constr (mkInd ind)
| Evar_kinds.GoalEvar -> str "goal evar"
| Evar_kinds.ImpossibleCase -> str "type of impossible pattern-matching clause"
| Evar_kinds.MatchingVar _ -> str "matching variable"
let pr_evar_info evi =
let phyps =
try
let decls = List.combine (evar_context evi) (evar_filter evi) in
prlist_with_sep spc pr_decl (List.rev decls)
with Invalid_argument _ -> str "Ill-formed filtered context" in
let pty = print_constr evi.evar_concl in
let pb =
match evi.evar_body with
| Evar_empty -> mt ()
| Evar_defined c -> spc() ++ str"=> " ++ print_constr c
in
let candidates =
match evi.evar_body, evi.evar_candidates with
| Evar_empty, Some l ->
spc () ++ str "{" ++
prlist_with_sep (fun () -> str "|") print_constr l ++ str "}"
| _ ->
mt ()
in
let src = str "(" ++ pr_evar_source (snd evi.evar_source) ++ str ")" in
hov 2
(str"[" ++ phyps ++ spc () ++ str"|- " ++ pty ++ pb ++ str"]" ++
candidates ++ spc() ++ src)
let compute_evar_dependency_graph (sigma : evar_map) =
(* Compute the map binding ev to the evars whose body depends on ev *)
let fold evk evi acc =
let fold_ev evk' acc =
let tab =
try EvMap.find evk' acc
with Not_found -> Evar.Set.empty
in
EvMap.add evk' (Evar.Set.add evk tab) acc
in
match evar_body evi with
| Evar_empty -> assert false
| Evar_defined c -> Evar.Set.fold fold_ev (collect_evars c) acc
in
EvMap.fold fold sigma.defn_evars EvMap.empty
let evar_dependency_closure n sigma =
(** Create the DAG of depth [n] representing the recursive dependencies of
undefined evars. *)
let graph = compute_evar_dependency_graph sigma in
let rec aux n curr accu =
if Int.equal n 0 then Evar.Set.union curr accu
else
let fold evk accu =
try
let deps = EvMap.find evk graph in
Evar.Set.union deps accu
with Not_found -> accu
in
(** Consider only the newly added evars *)
let ncurr = Evar.Set.fold fold curr Evar.Set.empty in
(** Merge the others *)
let accu = Evar.Set.union curr accu in
aux (n - 1) ncurr accu
in
let undef = EvMap.domain (undefined_map sigma) in
aux n undef Evar.Set.empty
let evar_dependency_closure n sigma =
let deps = evar_dependency_closure n sigma in
let map = EvMap.bind (fun ev -> find sigma ev) deps in
EvMap.bindings map
let has_no_evar sigma =
EvMap.is_empty sigma.defn_evars && EvMap.is_empty sigma.undf_evars
let print_env_short env =
let pr_body n = function
| None -> pr_name n
| Some b -> str "(" ++ pr_name n ++ str " := " ++ print_constr b ++ str ")" in
let pr_named_decl (n, b, _) = pr_body (Name n) b in
let pr_rel_decl (n, b, _) = pr_body n b in
let nc = List.rev (named_context env) in
let rc = List.rev (rel_context env) in
str "[" ++ pr_sequence pr_named_decl nc ++ str "]" ++ spc () ++
str "[" ++ pr_sequence pr_rel_decl rc ++ str "]"
let pr_evar_constraints pbs =
let pr_evconstr (pbty, env, t1, t2) =
print_env_short env ++ spc () ++ str "|-" ++ spc () ++
print_constr t1 ++ spc () ++
str (match pbty with
| Reduction.CONV -> "=="
| Reduction.CUMUL -> "<=") ++
spc () ++ print_constr t2
in
prlist_with_sep fnl pr_evconstr pbs
let pr_evar_map_gen pr_evars sigma =
let { universes = uvs; univ_cstrs = univs; } = sigma in
let evs = if has_no_evar sigma then mt () else pr_evars sigma
and svs =
if Univ.UniverseLSet.is_empty uvs then mt ()
else str "UNIVERSE VARIABLES:" ++ brk (0, 1) ++
h 0 (prlist_with_sep fnl Univ.pr_uni_level
(Univ.UniverseLSet.elements uvs)) ++ fnl ()
and cs =
if Univ.is_initial_universes univs then mt ()
else str "UNIVERSES:" ++ brk (0, 1) ++
h 0 (Univ.pr_universes univs) ++ fnl ()
and cstrs =
if List.is_empty sigma.conv_pbs then mt ()
else
str "CONSTRAINTS:" ++ brk (0, 1) ++
pr_evar_constraints sigma.conv_pbs ++ fnl ()
and metas =
if Metamap.is_empty sigma.metas then mt ()
else
str "METAS:" ++ brk (0, 1) ++ pr_meta_map sigma.metas
in
evs ++ svs ++ cs ++ cstrs ++ metas
let pr_evar_list l =
let pr (ev, evi) =
h 0 (str (string_of_existential ev) ++
str "==" ++ pr_evar_info evi)
in
h 0 (prlist_with_sep fnl pr l)
let pr_evar_by_depth depth sigma = match depth with
| None ->
(* Print all evars *)
str"EVARS:"++brk(0,1)++pr_evar_list (to_list sigma)++fnl()
| Some n ->
(* Print all evars *)
str"UNDEFINED EVARS:"++
(if Int.equal n 0 then mt() else str" (+level "++int n++str" closure):")++
brk(0,1)++
pr_evar_list (evar_dependency_closure n sigma)++fnl()
let pr_evar_by_filter filter sigma =
let defined = Evar.Map.filter filter sigma.defn_evars in
let undefined = Evar.Map.filter filter sigma.undf_evars in
let prdef =
if Evar.Map.is_empty defined then mt ()
else str "DEFINED EVARS:" ++ brk (0, 1) ++
pr_evar_list (Evar.Map.bindings defined)
in
let prundef =
if Evar.Map.is_empty undefined then mt ()
else str "UNDEFINED EVARS:" ++ brk (0, 1) ++
pr_evar_list (Evar.Map.bindings undefined)
in
prdef ++ prundef
let pr_evar_map depth sigma =
pr_evar_map_gen (fun sigma -> pr_evar_by_depth depth sigma) sigma
let pr_evar_map_filter filter sigma =
pr_evar_map_gen (fun sigma -> pr_evar_by_filter filter sigma) sigma
let pr_metaset metas =
str "[" ++ pr_sequence pr_meta (Metaset.elements metas) ++ str "]"
|