1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id$ *)
open Util
open Pp
open Names
open Nameops
open Univ
open Term
open Termops
open Sign
open Environ
open Evd
open Reductionops
open Pretype_errors
let rec filter_unique = function
| [] -> []
| x::l ->
if List.mem x l then filter_unique (List.filter (fun y -> x<>y) l)
else x::filter_unique l
(*
let distinct_id_list =
let rec drec fresh = function
[] -> List.rev fresh
| id::rest ->
let id' = next_ident_away_from id fresh in drec (id'::fresh) rest
in drec []
*)
(*
let filter_sign p sign x =
sign_it
(fun id ty (v,ids,sgn) ->
let (disc,v') = p v (id,ty) in
if disc then (v', id::ids, sgn) else (v', ids, add_sign (id,ty) sgn))
sign
(x,[],nil_sign)
*)
(* Expanding existential variables (pretyping.ml) *)
(* 1- whd_ise fails if an existential is undefined *)
exception Uninstantiated_evar of existential_key
let rec whd_ise sigma c =
match kind_of_term c with
| Evar (ev,args) when Evd.in_dom sigma ev ->
if Evd.is_defined sigma ev then
whd_ise sigma (existential_value sigma (ev,args))
else raise (Uninstantiated_evar ev)
| _ -> c
(* Expand evars, possibly in the head of an application *)
let whd_castappevar_stack sigma c =
let rec whrec (c, l as s) =
match kind_of_term c with
| Evar (ev,args) when Evd.in_dom sigma ev & Evd.is_defined sigma ev ->
whrec (existential_value sigma (ev,args), l)
| Cast (c,_) -> whrec (c, l)
| App (f,args) -> whrec (f, Array.fold_right (fun a l -> a::l) args l)
| _ -> s
in
whrec (c, [])
let whd_castappevar sigma c = applist (whd_castappevar_stack sigma c)
let nf_evar = Pretype_errors.nf_evar
let j_nf_evar = Pretype_errors.j_nf_evar
let jl_nf_evar = Pretype_errors.jl_nf_evar
let jv_nf_evar = Pretype_errors.jv_nf_evar
let tj_nf_evar = Pretype_errors.tj_nf_evar
let nf_evar_info evc info =
{ evar_concl = Reductionops.nf_evar evc info.evar_concl;
evar_hyps = List.map
(fun (id,body,typ) ->
(id,
option_app (Reductionops.nf_evar evc) body,
Reductionops.nf_evar evc typ)) info.evar_hyps;
evar_body = info.evar_body}
(**********************)
(* Creating new metas *)
(**********************)
(* Generator of metavariables *)
let new_meta =
let meta_ctr = ref 0 in
fun () -> incr meta_ctr; !meta_ctr
let mk_new_meta () = mkMeta(new_meta())
let collect_evars emap c =
let rec collrec acc c =
match kind_of_term c with
| Evar (k,_) ->
if Evd.in_dom emap k & not (Evd.is_defined emap k) then k::acc
else (* No recursion on the evar instantiation *) acc
| _ ->
fold_constr collrec acc c in
list_uniquize (collrec [] c)
let push_dependent_evars sigma emap =
Evd.fold (fun ev {evar_concl = ccl} (sigma',emap') ->
List.fold_left
(fun (sigma',emap') ev ->
(Evd.add sigma' ev (Evd.map emap' ev),Evd.rmv emap' ev))
(sigma',emap') (collect_evars emap' ccl))
emap (sigma,emap)
(* replaces a mapping of existentials into a mapping of metas.
Problem if an evar appears in the type of another one (pops anomaly) *)
let evars_to_metas sigma (emap, c) =
let sigma',emap' = push_dependent_evars sigma emap in
let change_exist evar =
let ty = nf_betaiota (nf_evar emap (existential_type emap evar)) in
let n = new_meta() in
mkCast (mkMeta n, ty) in
let rec replace c =
match kind_of_term c with
Evar (k,_ as ev) when Evd.in_dom emap' k -> change_exist ev
| _ -> map_constr replace c in
(sigma', replace c)
(*************************************)
(* Metas *)
let meta_value evd mv =
let rec valrec mv =
try
let b = meta_fvalue evd mv in
instance
(List.map (fun mv' -> (mv',valrec mv')) (Metaset.elements b.freemetas))
b.rebus
with Anomaly _ | Not_found ->
mkMeta mv
in
valrec mv
let meta_instance env b =
let c_sigma =
List.map
(fun mv -> (mv,meta_value env mv)) (Metaset.elements b.freemetas)
in
instance c_sigma b.rebus
let nf_meta env c = meta_instance env (mk_freelisted c)
(**********************)
(* Creating new evars *)
(**********************)
(* Generator of existential names *)
let new_untyped_evar =
let evar_ctr = ref 0 in
fun () -> incr evar_ctr; existential_of_int !evar_ctr
(*------------------------------------*
* functional operations on evar sets *
*------------------------------------*)
(* All ids of sign must be distincts! *)
let new_evar_instance sign evd typ ?(src=(dummy_loc,InternalHole)) instance =
assert (List.length instance = named_context_length sign);
if not (list_distinct (ids_of_named_context sign)) then
error "new_evar_instance: two vars have the same name";
let newev = new_untyped_evar() in
(evar_declare sign newev typ ~src:src evd,
mkEvar (newev,Array.of_list instance))
let make_evar_instance_with_rel env =
let n = rel_context_length (rel_context env) in
let vars =
fold_named_context
(fun env (id,b,_) l -> (* if b=None then *) mkVar id :: l (*else l*))
env ~init:[] in
snd (fold_rel_context
(fun env (_,b,_) (i,l) ->
(i-1, (*if b=None then *) mkRel i :: l (*else l*)))
env ~init:(n,vars))
let make_subst env args =
snd (fold_named_context
(fun env (id,b,c) (args,l as g) ->
match b, args with
| (* None *) _ , a::rest -> (rest, (id,a)::l)
(* | Some _, _ -> g*)
| _ -> anomaly "Instance does not match its signature")
env ~init:(List.rev args,[]))
(* [new_isevar] declares a new existential in an env env with type typ *)
(* Converting the env into the sign of the evar to define *)
let push_rel_context_to_named_context env =
let sign0 = named_context env in
let (subst,_,sign) =
Sign.fold_rel_context
(fun (na,c,t) (subst,avoid,sign) ->
let na = if na = Anonymous then Name(id_of_string"_") else na in
let id = next_name_away na avoid in
((mkVar id)::subst,
id::avoid,
add_named_decl (id,option_app (substl subst) c,
type_app (substl subst) t)
sign))
(rel_context env) ~init:([],ids_of_named_context sign0,sign0)
in (subst, sign)
let new_evar evd env ?(src=(dummy_loc,InternalHole)) typ =
let subst,sign = push_rel_context_to_named_context env in
let typ' = substl subst typ in
let instance = make_evar_instance_with_rel env in
new_evar_instance sign evd typ' ~src:src instance
(* The same using side-effect *)
let e_new_evar evd env ?(src=(dummy_loc,InternalHole)) ty =
let (evd',ev) = new_evar !evd env ~src:src ty in
evd := evd';
ev
(* declare a new evar (tactic style) *)
let w_Declare env sp ty evd =
let sigma = evars_of evd in
if Evd.in_dom sigma sp then
error "w_Declare: cannot redeclare evar";
let _ = Typing.type_of env sigma ty in (* Checks there is no meta *)
Evd.evar_declare (named_context env) sp ty evd
(* Redefines an evar with a smaller context (i.e. it may depend on less
* variables) such that c becomes closed.
* Example: in [x:?1; y:(list ?2)] <?3>x=y /\ x=(nil bool)
* ?3 <-- ?1 no pb: env of ?3 is larger than ?1's
* ?1 <-- (list ?2) pb: ?2 may depend on x, but not ?1.
* What we do is that ?2 is defined by a new evar ?4 whose context will be
* a prefix of ?2's env, included in ?1's env. *)
let do_restrict_hyps evd ev args =
let args = Array.to_list args in
let evi = Evd.map (evars_of !evd) ev in
let env = evar_env evi in
let hyps = evi.evar_hyps in
let (sign,ncargs) = list_filter2 (fun _ a -> closed0 a) (hyps,args) in
let (evd',nc) =
new_evar_instance sign !evd evi.evar_concl
~src:(evar_source ev !evd) ncargs in
evd := Evd.evar_define ev nc evd';
nc
(*------------------------------------*
* operations on the evar constraints *
*------------------------------------*)
let need_restriction isevars args = not (array_for_all closed0 args)
(* The list of non-instantiated existential declarations *)
let non_instantiated sigma =
let listev = to_list sigma in
List.fold_left
(fun l (ev,evd) ->
if evd.evar_body = Evar_empty then
((ev,nf_evar_info sigma evd)::l) else l)
[] listev
(* We try to instanciate the evar assuming the body won't depend
* on arguments that are not Rels or Vars, or appearing several times.
*)
(* Note: error_not_clean should not be an error: it simply means that the
* conversion test that lead to the faulty call to [real_clean] should return
* false. The problem is that we won't get the right error message.
*)
let real_clean env isevars ev args rhs =
let evd = ref isevars in
let subst = List.map (fun (x,y) -> (y,mkVar x)) (filter_unique args) in
let rec subs k t =
match kind_of_term t with
| Rel i ->
if i<=k then t
else (try List.assoc (mkRel (i-k)) subst with Not_found -> t)
| Evar (ev,args) ->
let args' = Array.map (subs k) args in
if need_restriction !evd args' then
if Evd.is_defined_evar !evd (ev,args) then
subs k (existential_value (evars_of !evd) (ev,args'))
else do_restrict_hyps evd ev args'
else
mkEvar (ev,args')
| Var _ -> (try List.assoc t subst with Not_found -> t)
| _ -> map_constr_with_binders succ subs k t
in
let body = subs 0 rhs in
if not (closed0 body)
then error_not_clean env (evars_of !evd) ev body (evar_source ev !evd);
(!evd,body)
(* [evar_define] solves the problem lhs = rhs when lhs is an uninstantiated
* evar, i.e. tries to find the body ?sp for lhs=mkEvar (sp,args)
* ?sp [ sp.hyps \ args ] unifies to rhs
* ?sp must be a closed term, not referring to itself.
* Not so trivial because some terms of args may be terms that are not
* variables. In this case, the non-var-or-Rels arguments are replaced
* by <implicit>. [clean_rhs] will ignore this part of the subtitution.
* This leads to incompleteness (we don't deal with pbs that require
* inference of dependent types), but it seems sensible.
*
* If after cleaning, some free vars still occur, the function [restrict_hyps]
* tries to narrow the env of the evars that depend on Rels.
*
* If after that free Rels still occur it means that the instantiation
* cannot be done, as in [x:?1; y:nat; z:(le y y)] x=z
* ?1 would be instantiated by (le y y) but y is not in the scope of ?1
*)
let evar_define env (ev,argsv) rhs isevars =
if occur_evar ev rhs
then error_occur_check env (evars_of isevars) ev rhs;
let args = Array.to_list argsv in
let evi = Evd.map (evars_of isevars) ev in
(* the bindings to invert *)
let worklist = make_subst (evar_env evi) args in
let (isevars',body) = real_clean env isevars ev worklist rhs in
if occur_meta body then error "Meta cannot occur in evar body"
else
let isevars'' = Evd.evar_define ev body isevars' in
isevars'',[ev]
(* [w_Define evd sp c] (tactic style)
*
* Defines evar [sp] with term [c] in evar context [evd].
* [c] is typed in the context of [sp] and evar context [evd] with
* [sp] removed to avoid circular definitions.
* No unification is performed in order to assert that [c] has the
* correct type.
*)
let w_Define sp c evd =
let sigma = evars_of evd in
if not (Evd.in_dom sigma sp) then
error "w_Define: cannot define undeclared evar";
if Evd.is_defined sigma sp then
error "w_Define: cannot define evar twice";
let spdecl = Evd.map sigma sp in
let env = evar_env spdecl in
let _ =
(* Do not consider the metamap because evars may not depend on metas *)
try Typing.check env (Evd.rmv sigma sp) c spdecl.evar_concl
with
Not_found -> error "Instantiation contains unlegal variables"
| (Type_errors.TypeError (e, Type_errors.UnboundVar v))->
errorlabstrm "w_Define"
(str "Cannot use variable " ++ pr_id v ++ str " to define " ++
str (string_of_existential sp)) in
let spdecl' = { spdecl with evar_body = Evar_defined c } in
evars_reset_evd (Evd.add sigma sp spdecl') evd
(*-------------------*)
(* Auxiliary functions for the conversion algorithms modulo evars
*)
let has_undefined_evars isevars t =
try let _ = local_strong (whd_ise (evars_of isevars)) t in false
with Uninstantiated_evar _ -> true
let head_is_evar isevars =
let rec hrec k = match kind_of_term k with
| Evar n -> not (Evd.is_defined_evar isevars n)
| App (f,_) -> hrec f
| Cast (c,_) -> hrec c
| _ -> false
in
hrec
let rec is_eliminator c = match kind_of_term c with
| App _ -> true
| Case _ -> true
| Cast (c,_) -> is_eliminator c
| _ -> false
let head_is_embedded_evar isevars c =
(head_is_evar isevars c) & (is_eliminator c)
let head_evar =
let rec hrec c = match kind_of_term c with
| Evar (ev,_) -> ev
| Case (_,_,c,_) -> hrec c
| App (c,_) -> hrec c
| Cast (c,_) -> hrec c
| _ -> failwith "headconstant"
in
hrec
(* This code (i.e. solve_pb, etc.) takes a unification
* problem, and tries to solve it. If it solves it, then it removes
* all the conversion problems, and re-runs conversion on each one, in
* the hopes that the new solution will aid in solving them.
*
* The kinds of problems it knows how to solve are those in which
* the usable arguments of an existential var are all themselves
* universal variables.
* The solution to this problem is to do renaming for the Var's,
* to make them match up with the Var's which are found in the
* hyps of the existential, to do a "pop" for each Rel which is
* not an argument of the existential, and a subst1 for each which
* is, again, with the corresponding variable. This is done by
* evar_define
*
* Thus, we take the arguments of the existential which we are about
* to assign, and zip them with the identifiers in the hypotheses.
* Then, we process all the Var's in the arguments, and sort the
* Rel's into ascending order. Then, we just march up, doing
* subst1's and pop's.
*
* NOTE: We can do this more efficiently for the relative arguments,
* by building a long substituend by hand, but this is a pain in the
* ass.
*)
let status_changed lev (pbty,t1,t2) =
try
List.mem (head_evar t1) lev or List.mem (head_evar t2) lev
with Failure _ ->
try List.mem (head_evar t2) lev with Failure _ -> false
(* Solve pbs (?i x1..xn) = (?i y1..yn) which arises often in fixpoint
* definitions. We try to unify the xi with the yi pairwise. The pairs
* that don't unify are discarded (i.e. ?i is redefined so that it does not
* depend on these args). *)
let solve_refl conv_algo env isevars ev argsv1 argsv2 =
if argsv1 = argsv2 then (isevars,[]) else
let evd = Evd.map (evars_of isevars) ev in
let hyps = evd.evar_hyps in
let (isevars',_,rsign) =
array_fold_left2
(fun (isevars,sgn,rsgn) a1 a2 ->
let (isevars',b) = conv_algo env isevars Reduction.CONV a1 a2 in
if b then
(isevars',List.tl sgn, add_named_decl (List.hd sgn) rsgn)
else
(isevars,List.tl sgn, rsgn))
(isevars,hyps,[]) argsv1 argsv2
in
let nsign = List.rev rsign in
let (evd',newev) =
new_evar isevars (reset_with_named_context nsign env)
~src:(evar_source ev isevars) evd.evar_concl in
let evd'' = Evd.evar_define ev newev evd' in
evd'', [ev]
(* Tries to solve problem t1 = t2.
* Precondition: t1 is an uninstanciated evar
* Returns an optional list of evars that were instantiated, or None
* if the problem couldn't be solved. *)
(* Rq: uncomplete algorithm if pbty = CONV_X_LEQ ! *)
let solve_simple_eqn conv_algo env isevars (pbty,(n1,args1 as ev1),t2) =
let t2 = nf_evar (evars_of isevars) t2 in
let (isevars,lsp) = match kind_of_term t2 with
| Evar (n2,args2 as ev2) ->
if n1 = n2 then
solve_refl conv_algo env isevars n1 args1 args2
else
if Array.length args1 < Array.length args2 then
evar_define env ev2 (mkEvar ev1) isevars
else
evar_define env ev1 t2 isevars
| _ ->
evar_define env ev1 t2 isevars in
let (isevars,pbs) = get_conv_pbs isevars (status_changed lsp) in
List.fold_left
(fun (isevars,b as p) (pbty,t1,t2) ->
if b then conv_algo env isevars pbty t1 t2 else p) (isevars,true)
pbs
(* Operations on value/type constraints *)
type type_constraint = constr option
type val_constraint = constr option
(* Old comment...
* Basically, we have the following kind of constraints (in increasing
* strength order):
* (false,(None,None)) -> no constraint at all
* (true,(None,None)) -> we must build a judgement which _TYPE is a kind
* (_,(None,Some ty)) -> we must build a judgement which _TYPE is ty
* (_,(Some v,_)) -> we must build a judgement which _VAL is v
* Maybe a concrete datatype would be easier to understand.
* We differentiate (true,(None,None)) from (_,(None,Some Type))
* because otherwise Case(s) would be misled, as in
* (n:nat) Case n of bool [_]nat end would infer the predicate Type instead
* of Set.
*)
(* The empty type constraint *)
let empty_tycon = None
(* Builds a type constraint *)
let mk_tycon ty = Some ty
(* Constrains the value of a type *)
let empty_valcon = None
(* Builds a value constraint *)
let mk_valcon c = Some c
(* Refining an evar to a product or a sort *)
(* Declaring any type to be in the sort Type shouldn't be harmful since
cumulativity now includes Prop and Set in Type...
It is, but that's not too bad *)
let define_evar_as_arrow evd (ev,args) =
let evi = Evd.map (evars_of evd) ev in
let evenv = evar_env evi in
let (evd1,dom) = new_evar evd evenv (new_Type()) in
let nvar =
next_ident_away (id_of_string "x") (ids_of_named_context evi.evar_hyps) in
let newenv = push_named (nvar, None, dom) evenv in
let (evd2,rng) =
new_evar evd1 newenv ~src:(evar_source ev evd1) (new_Type()) in
let prod = mkProd (Name nvar, dom, subst_var nvar rng) in
let evd3 = Evd.evar_define ev prod evd2 in
let evdom = fst (destEvar dom), args in
let evrng =
fst (destEvar rng), array_cons (mkRel 1) (Array.map (lift 1) args) in
let prod' = mkProd (Name nvar, mkEvar evdom, mkEvar evrng) in
(evd3,prod')
let define_evar_as_sort isevars (ev,args) =
let s = new_Type () in
Evd.evar_define ev s isevars, destSort s
(* We don't try to guess in which sort the type should be defined, since
any type has type Type. May cause some trouble, but not so far... *)
let judge_of_new_Type () = Typeops.judge_of_type (new_univ ())
(* Propagation of constraints through application and abstraction:
Given a type constraint on a functional term, returns the type
constraint on its domain and codomain. If the input constraint is
an evar instantiate it with the product of 2 new evars. *)
let split_tycon loc env isevars = function
| None -> isevars,(Anonymous,None,None)
| Some c ->
let sigma = evars_of isevars in
let t = whd_betadeltaiota env sigma c in
match kind_of_term t with
| Prod (na,dom,rng) -> isevars, (na, Some dom, Some rng)
| Evar ev when not (Evd.is_defined_evar isevars ev) ->
let (isevars',prod) = define_evar_as_arrow isevars ev in
let (_,dom,rng) = destProd prod in
isevars',(Anonymous, Some dom, Some rng)
| _ -> error_not_product_loc loc env sigma c
let valcon_of_tycon x = x
let lift_tycon = option_app (lift 1)
|