1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Errors
open Util
open Pp
open Names
open Term
open Vars
open Context
open Termops
open Namegen
open Pre_env
open Environ
open Evd
open Reductionops
open Pretype_errors
(** Combinators *)
let evd_comb0 f evdref =
let (evd',x) = f !evdref in
evdref := evd';
x
let evd_comb1 f evdref x =
let (evd',y) = f !evdref x in
evdref := evd';
y
let evd_comb2 f evdref x y =
let (evd',z) = f !evdref x y in
evdref := evd';
z
let e_new_global evdref x =
evd_comb1 (Evd.fresh_global (Global.env())) evdref x
let new_global evd x =
Evd.fresh_global (Global.env()) evd x
(****************************************************)
(* Expanding/testing/exposing existential variables *)
(****************************************************)
(* flush_and_check_evars fails if an existential is undefined *)
exception Uninstantiated_evar of existential_key
let rec flush_and_check_evars sigma c =
match kind_of_term c with
| Evar (evk,_ as ev) ->
(match existential_opt_value sigma ev with
| None -> raise (Uninstantiated_evar evk)
| Some c -> flush_and_check_evars sigma c)
| _ -> map_constr (flush_and_check_evars sigma) c
(* let nf_evar_key = Profile.declare_profile "nf_evar" *)
(* let nf_evar = Profile.profile2 nf_evar_key Reductionops.nf_evar *)
let nf_evar = Reductionops.nf_evar
let j_nf_evar sigma j =
{ uj_val = nf_evar sigma j.uj_val;
uj_type = nf_evar sigma j.uj_type }
let j_nf_betaiotaevar sigma j =
{ uj_val = nf_evar sigma j.uj_val;
uj_type = Reductionops.nf_betaiota sigma j.uj_type }
let jl_nf_evar sigma jl = List.map (j_nf_evar sigma) jl
let jv_nf_betaiotaevar sigma jl =
Array.map (j_nf_betaiotaevar sigma) jl
let jv_nf_evar sigma = Array.map (j_nf_evar sigma)
let tj_nf_evar sigma {utj_val=v;utj_type=t} =
{utj_val=nf_evar sigma v;utj_type=t}
let env_nf_evar sigma env =
process_rel_context
(fun d e -> push_rel (map_rel_declaration (nf_evar sigma) d) e) env
let env_nf_betaiotaevar sigma env =
process_rel_context
(fun d e ->
push_rel (map_rel_declaration (Reductionops.nf_betaiota sigma) d) e) env
let nf_evars_universes evm =
Universes.nf_evars_and_universes_opt_subst (Reductionops.safe_evar_value evm)
(Evd.universe_subst evm)
let nf_evars_and_universes evm =
let evm = Evd.nf_constraints evm in
evm, nf_evars_universes evm
let e_nf_evars_and_universes evdref =
evdref := Evd.nf_constraints !evdref;
nf_evars_universes !evdref, Evd.universe_subst !evdref
let nf_evar_map_universes evm =
let evm = Evd.nf_constraints evm in
let subst = Evd.universe_subst evm in
if Univ.LMap.is_empty subst then evm, nf_evar evm
else
let f = nf_evars_universes evm in
Evd.raw_map (fun _ -> map_evar_info f) evm, f
let nf_named_context_evar sigma ctx =
Context.map_named_context (nf_evar sigma) ctx
let nf_rel_context_evar sigma ctx =
Context.map_rel_context (nf_evar sigma) ctx
let nf_env_evar sigma env =
let nc' = nf_named_context_evar sigma (Environ.named_context env) in
let rel' = nf_rel_context_evar sigma (Environ.rel_context env) in
push_rel_context rel' (reset_with_named_context (val_of_named_context nc') env)
let nf_evar_info evc info = map_evar_info (nf_evar evc) info
let nf_evar_map evm =
Evd.raw_map (fun _ evi -> nf_evar_info evm evi) evm
let nf_evar_map_undefined evm =
Evd.raw_map_undefined (fun _ evi -> nf_evar_info evm evi) evm
(*-------------------*)
(* Auxiliary functions for the conversion algorithms modulo evars
*)
(* A probably faster though more approximative variant of
[has_undefined (nf_evar c)]: instances are not substituted and
maybe an evar occurs in an instance and it would disappear by
instantiation *)
let has_undefined_evars evd t =
let rec has_ev t =
match kind_of_term t with
| Evar (ev,args) ->
(match evar_body (Evd.find evd ev) with
| Evar_defined c ->
has_ev c; Array.iter has_ev args
| Evar_empty ->
raise NotInstantiatedEvar)
| _ -> iter_constr has_ev t in
try let _ = has_ev t in false
with (Not_found | NotInstantiatedEvar) -> true
let is_ground_term evd t =
not (has_undefined_evars evd t)
let is_ground_env evd env =
let is_ground_decl = function
(_,Some b,_) -> is_ground_term evd b
| _ -> true in
List.for_all is_ground_decl (rel_context env) &&
List.for_all is_ground_decl (named_context env)
(* Memoization is safe since evar_map and environ are applicative
structures *)
let memo f =
let m = ref None in
fun x y -> match !m with
| Some (x', y', r) when x == x' && y == y' -> r
| _ -> let r = f x y in m := Some (x, y, r); r
let is_ground_env = memo is_ground_env
(* Return the head evar if any *)
exception NoHeadEvar
let head_evar =
let rec hrec c = match kind_of_term c with
| Evar (evk,_) -> evk
| Case (_,_,c,_) -> hrec c
| App (c,_) -> hrec c
| Cast (c,_,_) -> hrec c
| _ -> raise NoHeadEvar
in
hrec
(* Expand head evar if any (currently consider only applications but I
guess it should consider Case too) *)
let whd_head_evar_stack sigma c =
let rec whrec (c, l as s) =
match kind_of_term c with
| Evar (evk,args as ev) ->
let v =
try Some (existential_value sigma ev)
with NotInstantiatedEvar | Not_found -> None in
begin match v with
| None -> s
| Some c -> whrec (c, l)
end
| Cast (c,_,_) -> whrec (c, l)
| App (f,args) -> whrec (f, args :: l)
| _ -> s
in
whrec (c, [])
let whd_head_evar sigma c =
let (f, args) = whd_head_evar_stack sigma c in
(** optim: don't reallocate if empty/singleton *)
match args with
| [] -> f
| [arg] -> mkApp (f, arg)
| _ -> mkApp (f, Array.concat args)
(**********************)
(* Creating new metas *)
(**********************)
let meta_counter_summary_name = "meta counter"
(* Generator of metavariables *)
let new_meta =
let meta_ctr = Summary.ref 0 ~name:meta_counter_summary_name in
fun () -> incr meta_ctr; !meta_ctr
let mk_new_meta () = mkMeta(new_meta())
(* The list of non-instantiated existential declarations (order is important) *)
let non_instantiated sigma =
let listev = Evd.undefined_map sigma in
Evar.Map.smartmap (fun evi -> nf_evar_info sigma evi) listev
(************************)
(* Manipulating filters *)
(************************)
let make_pure_subst evi args =
snd (List.fold_right
(fun (id,b,c) (args,l) ->
match args with
| a::rest -> (rest, (id,a)::l)
| _ -> anomaly (Pp.str "Instance does not match its signature"))
(evar_filtered_context evi) (Array.rev_to_list args,[]))
(**********************)
(* Creating new evars *)
(**********************)
let evar_counter_summary_name = "evar counter"
(* Generator of existential names *)
let new_untyped_evar =
let evar_ctr = Summary.ref 0 ~name:evar_counter_summary_name in
fun () -> incr evar_ctr; Evar.unsafe_of_int !evar_ctr
(*------------------------------------*
* functional operations on evar sets *
*------------------------------------*)
(* [push_rel_context_to_named_context] builds the defining context and the
* initial instance of an evar. If the evar is to be used in context
*
* Gamma = a1 ... an xp ... x1
* \- named part -/ \- de Bruijn part -/
*
* then the x1...xp are turned into variables so that the evar is declared in
* context
*
* a1 ... an xp ... x1
* \----------- named part ------------/
*
* but used applied to the initial instance "a1 ... an Rel(p) ... Rel(1)"
* so that ev[a1:=a1 ... an:=an xp:=Rel(p) ... x1:=Rel(1)] is correctly typed
* in context Gamma.
*
* Remark 1: The instance is reverted in practice (i.e. Rel(1) comes first)
* Remark 2: If some of the ai or xj are definitions, we keep them in the
* instance. This is necessary so that no unfolding of local definitions
* happens when inferring implicit arguments (consider e.g. the problem
* "x:nat; x':=x; f:forall y, y=y -> Prop |- f _ (refl_equal x')" which
* produces the equation "?y[x,x']=?y[x,x']" =? "x'=x'": we want
* the hole to be instantiated by x', not by x (which would have been
* the case in [invert_definition] if x' had disappeared from the instance).
* Note that at any time, if, in some context env, the instance of
* declaration x:A is t and the instance of definition x':=phi(x) is u, then
* we have the property that u and phi(t) are convertible in env.
*)
let subst2 subst vsubst c =
substl subst (replace_vars vsubst c)
let push_rel_context_to_named_context env typ =
(* compute the instances relative to the named context and rel_context *)
let ids = List.map pi1 (named_context env) in
let inst_vars = List.map mkVar ids in
let inst_rels = List.rev (rel_list 0 (nb_rel env)) in
let replace_var_named_declaration id0 id (id',b,t) =
let id' = if Id.equal id0 id' then id else id' in
let vsubst = [id0 , mkVar id] in
let b = match b with
| None -> None
| Some c -> Some (replace_vars vsubst c)
in
id', b, replace_vars vsubst t
in
let replace_var_named_context id0 id env =
let nc = Environ.named_context env in
let nc' = List.map (replace_var_named_declaration id0 id) nc in
Environ.reset_with_named_context (val_of_named_context nc') env
in
let extract_if_neq id = function
| Anonymous -> None
| Name id' when id_ord id id' = 0 -> None
| Name id' -> Some id'
in
(* move the rel context to a named context and extend the named instance *)
(* with vars of the rel context *)
(* We do keep the instances corresponding to local definition (see above) *)
let (subst, vsubst, _, env) =
Context.fold_rel_context
(fun (na,c,t) (subst, vsubst, avoid, env) ->
let id =
(* ppedrot: we want to infer nicer names for the refine tactic, but
keeping at the same time backward compatibility in other code
using this function. For now, we only attempt to preserve the
old behaviour of Program, but ultimately, one should do something
about this whole name generation problem. *)
if Flags.is_program_mode () then next_name_away na avoid
else next_ident_away (id_of_name_using_hdchar env t na) avoid
in
match extract_if_neq id na with
| Some id0 when not (is_section_variable id0) ->
(* spiwack: if [id<>id0], rather than introducing a new
binding named [id], we will keep [id0] (the name given
by the user) and rename [id0] into [id] in the named
context. Unless [id] is a section variable. *)
let subst = List.map (replace_vars [id0,mkVar id]) subst in
let vsubst = (id0,mkVar id)::vsubst in
let d = (id0, Option.map (subst2 subst vsubst) c, subst2 subst vsubst t) in
let env = replace_var_named_context id0 id env in
(mkVar id0 :: subst, vsubst, id::avoid, push_named d env)
| _ ->
(* spiwack: if [id0] is a section variable renaming it is
incorrect. We revert to a less robust behaviour where
the new binder has name [id]. Which amounts to the same
behaviour than when [id=id0]. *)
let d = (id,Option.map (subst2 subst vsubst) c,subst2 subst vsubst t) in
(mkVar id :: subst, vsubst, id::avoid, push_named d env)
)
(rel_context env) ~init:([], [], ids, env) in
(named_context_val env, subst2 subst vsubst typ, inst_rels@inst_vars, subst, vsubst)
(*------------------------------------*
* Entry points to define new evars *
*------------------------------------*)
let default_source = (Loc.ghost,Evar_kinds.InternalHole)
let restrict_evar evd evk filter candidates =
let evk' = new_untyped_evar () in
let evd = Evd.restrict evk evk' filter ?candidates evd in
Evd.declare_future_goal evk' evd, evk'
let new_pure_evar_full evd evi =
let evk = new_untyped_evar () in
let evd = Evd.add evd evk evi in
let evd = Evd.declare_future_goal evk evd in
(evd, evk)
let new_pure_evar sign evd ?(src=default_source) ?filter ?candidates ?store ?naming ?(principal=false) typ =
let default_naming = Misctypes.IntroAnonymous in
let naming = Option.default default_naming naming in
let newevk = new_untyped_evar() in
let evd = evar_declare sign newevk typ ~src ?filter ?candidates ?store ~naming evd in
let evd =
if principal then Evd.declare_principal_goal newevk evd
else Evd.declare_future_goal newevk evd
in
(evd,newevk)
let new_evar_instance sign evd typ ?src ?filter ?candidates ?store ?naming ?principal instance =
assert (not !Flags.debug ||
List.distinct (ids_of_named_context (named_context_of_val sign)));
let evd,newevk = new_pure_evar sign evd ?src ?filter ?candidates ?store ?naming ?principal typ in
(evd,mkEvar (newevk,Array.of_list instance))
(* [new_evar] declares a new existential in an env env with type typ *)
(* Converting the env into the sign of the evar to define *)
let new_evar env evd ?src ?filter ?candidates ?store ?naming ?principal typ =
let sign,typ',instance,subst,vsubst = push_rel_context_to_named_context env typ in
let candidates = Option.map (List.map (subst2 subst vsubst)) candidates in
let instance =
match filter with
| None -> instance
| Some filter -> Filter.filter_list filter instance in
new_evar_instance sign evd typ' ?src ?filter ?candidates ?store ?naming ?principal instance
let new_type_evar env evd ?src ?filter ?naming ?principal rigid =
let evd', s = new_sort_variable rigid evd in
let evd', e = new_evar env evd' ?src ?filter ?naming ?principal (mkSort s) in
evd', (e, s)
let e_new_type_evar env evdref ?src ?filter ?naming ?principal rigid =
let evd', c = new_type_evar env !evdref ?src ?filter ?naming ?principal rigid in
evdref := evd';
c
let new_Type ?(rigid=Evd.univ_flexible) env evd =
let evd', s = new_sort_variable rigid evd in
evd', mkSort s
let e_new_Type ?(rigid=Evd.univ_flexible) env evdref =
let evd', s = new_sort_variable rigid !evdref in
evdref := evd'; mkSort s
(* The same using side-effect *)
let e_new_evar env evdref ?(src=default_source) ?filter ?candidates ?store ?naming ?principal ty =
let (evd',ev) = new_evar env !evdref ~src:src ?filter ?candidates ?store ?naming ?principal ty in
evdref := evd';
ev
(* This assumes an evar with identity instance and generalizes it over only
the De Bruijn part of the context *)
let generalize_evar_over_rels sigma (ev,args) =
let evi = Evd.find sigma ev in
let sign = named_context_of_val evi.evar_hyps in
List.fold_left2
(fun (c,inst as x) a d ->
if isRel a then (mkNamedProd_or_LetIn d c,a::inst) else x)
(evi.evar_concl,[]) (Array.to_list args) sign
(************************************)
(* Removing a dependency in an evar *)
(************************************)
type clear_dependency_error =
| OccurHypInSimpleClause of Id.t option
| EvarTypingBreak of existential
exception ClearDependencyError of Id.t * clear_dependency_error
let cleared = Store.field ()
exception Depends of Id.t
let rec check_and_clear_in_constr env evdref err ids c =
(* returns a new constr where all the evars have been 'cleaned'
(ie the hypotheses ids have been removed from the contexts of
evars) *)
let check id' =
if Id.Set.mem id' ids then
raise (ClearDependencyError (id',err))
in
match kind_of_term c with
| Var id' ->
check id'; c
| ( Const _ | Ind _ | Construct _ ) ->
let vars = Environ.vars_of_global env c in
Id.Set.iter check vars; c
| Evar (evk,l as ev) ->
if Evd.is_defined !evdref evk then
(* If evk is already defined we replace it by its definition *)
let nc = whd_evar !evdref c in
(check_and_clear_in_constr env evdref err ids nc)
else
(* We check for dependencies to elements of ids in the
evar_info corresponding to e and in the instance of
arguments. Concurrently, we build a new evar
corresponding to e where hypotheses of ids have been
removed *)
let evi = Evd.find_undefined !evdref evk in
let ctxt = Evd.evar_filtered_context evi in
let (rids,filter) =
List.fold_right2
(fun (rid, ob,c as h) a (ri,filter) ->
try
(* Check if some id to clear occurs in the instance
a of rid in ev and remember the dependency *)
let check id = if Id.Set.mem id ids then raise (Depends id) in
let () = Id.Set.iter check (collect_vars a) in
(* Check if some rid to clear in the context of ev
has dependencies in another hyp of the context of ev
and transitively remember the dependency *)
let check id _ =
if occur_var_in_decl (Global.env ()) id h
then raise (Depends id)
in
let () = Id.Map.iter check ri in
(* No dependency at all, we can keep this ev's context hyp *)
(ri, true::filter)
with Depends id -> (Id.Map.add rid id ri, false::filter))
ctxt (Array.to_list l) (Id.Map.empty,[]) in
(* Check if some rid to clear in the context of ev has dependencies
in the type of ev and adjust the source of the dependency *)
let _nconcl =
try
let nids = Id.Map.domain rids in
check_and_clear_in_constr env evdref (EvarTypingBreak ev) nids (evar_concl evi)
with ClearDependencyError (rid,err) ->
raise (ClearDependencyError (Id.Map.find rid rids,err)) in
if Id.Map.is_empty rids then c
else
let origfilter = Evd.evar_filter evi in
let filter = Evd.Filter.apply_subfilter origfilter filter in
let evd,_ = restrict_evar !evdref evk filter None in
evdref := evd;
(* spiwack: hacking session to mark the old [evk] as having been "cleared" *)
let evi = Evd.find !evdref evk in
let extra = evi.evar_extra in
let extra' = Store.set extra cleared true in
let evi' = { evi with evar_extra = extra' } in
evdref := Evd.add !evdref evk evi' ;
(* spiwack: /hacking session *)
whd_evar !evdref c
| _ -> map_constr (check_and_clear_in_constr env evdref err ids) c
let clear_hyps_in_evi_main env evdref hyps terms ids =
(* clear_hyps_in_evi erases hypotheses ids in hyps, checking if some
hypothesis does not depend on a element of ids, and erases ids in
the contexts of the evars occurring in evi *)
let terms =
List.map (check_and_clear_in_constr env evdref (OccurHypInSimpleClause None) ids) terms in
let nhyps =
let check_context ((id,ob,c) as decl) =
let err = OccurHypInSimpleClause (Some id) in
let ob' = Option.smartmap (fun c -> check_and_clear_in_constr env evdref err ids c) ob in
let c' = check_and_clear_in_constr env evdref err ids c in
if ob == ob' && c == c' then decl else (id, ob', c')
in
let check_value vk = match force_lazy_val vk with
| None -> vk
| Some (_, d) ->
if (Id.Set.for_all (fun e -> not (Id.Set.mem e d)) ids) then
(* v does depend on any of ids, it's ok *)
vk
else
(* v depends on one of the cleared hyps:
we forget the computed value *)
dummy_lazy_val ()
in
remove_hyps ids check_context check_value hyps
in
(nhyps,terms)
let clear_hyps_in_evi env evdref hyps concl ids =
match clear_hyps_in_evi_main env evdref hyps [concl] ids with
| (nhyps,[nconcl]) -> (nhyps,nconcl)
| _ -> assert false
let clear_hyps2_in_evi env evdref hyps t concl ids =
match clear_hyps_in_evi_main env evdref hyps [t;concl] ids with
| (nhyps,[t;nconcl]) -> (nhyps,t,nconcl)
| _ -> assert false
(* spiwack: a few functions to gather evars on which goals depend. *)
let queue_set q is_dependent set =
Evar.Set.iter (fun a -> Queue.push (is_dependent,a) q) set
let queue_term q is_dependent c =
queue_set q is_dependent (evars_of_term c)
let process_dependent_evar q acc evm is_dependent e =
let evi = Evd.find evm e in
(* Queues evars appearing in the types of the goal (conclusion, then
hypotheses), they are all dependent. *)
queue_term q true evi.evar_concl;
List.iter begin fun (_,b,t) ->
queue_term q true t;
match b with
| None -> ()
| Some b -> queue_term q true b
end (Environ.named_context_of_val evi.evar_hyps);
match evi.evar_body with
| Evar_empty ->
if is_dependent then Evar.Map.add e None acc else acc
| Evar_defined b ->
let subevars = evars_of_term b in
(* evars appearing in the definition of an evar [e] are marked
as dependent when [e] is dependent itself: if [e] is a
non-dependent goal, then, unless they are reach from another
path, these evars are just other non-dependent goals. *)
queue_set q is_dependent subevars;
if is_dependent then Evar.Map.add e (Some subevars) acc else acc
let gather_dependent_evars q evm =
let acc = ref Evar.Map.empty in
while not (Queue.is_empty q) do
let (is_dependent,e) = Queue.pop q in
(* checks if [e] has already been added to [!acc] *)
begin if not (Evar.Map.mem e !acc) then
acc := process_dependent_evar q !acc evm is_dependent e
end
done;
!acc
let gather_dependent_evars evm l =
let q = Queue.create () in
List.iter (fun a -> Queue.add (false,a) q) l;
gather_dependent_evars q evm
(* /spiwack *)
(** The following functions return the set of undefined evars
contained in the object, the defined evars being traversed.
This is roughly a combination of the previous functions and
[nf_evar]. *)
let undefined_evars_of_term evd t =
let rec evrec acc c =
match kind_of_term c with
| Evar (n, l) ->
let acc = Array.fold_left evrec acc l in
(try match (Evd.find evd n).evar_body with
| Evar_empty -> Evar.Set.add n acc
| Evar_defined c -> evrec acc c
with Not_found -> anomaly ~label:"undefined_evars_of_term" (Pp.str "evar not found"))
| _ -> fold_constr evrec acc c
in
evrec Evar.Set.empty t
let undefined_evars_of_named_context evd nc =
List.fold_right (fun (_, b, t) s ->
Option.fold_left (fun s t ->
Evar.Set.union s (undefined_evars_of_term evd t))
(Evar.Set.union s (undefined_evars_of_term evd t)) b)
nc Evar.Set.empty
let undefined_evars_of_evar_info evd evi =
Evar.Set.union (undefined_evars_of_term evd evi.evar_concl)
(Evar.Set.union
(match evi.evar_body with
| Evar_empty -> Evar.Set.empty
| Evar_defined b -> undefined_evars_of_term evd b)
(undefined_evars_of_named_context evd
(named_context_of_val evi.evar_hyps)))
(* [check_evars] fails if some unresolved evar remains *)
let check_evars env initial_sigma sigma c =
let rec proc_rec c =
match kind_of_term c with
| Evar (evk,_ as ev) ->
(match existential_opt_value sigma ev with
| Some c -> proc_rec c
| None ->
if not (Evd.mem initial_sigma evk) then
let (loc,k) = evar_source evk sigma in
match k with
| Evar_kinds.ImplicitArg (gr, (i, id), false) -> ()
| _ -> error_unsolvable_implicit loc env sigma evk None)
| _ -> iter_constr proc_rec c
in proc_rec c
(* spiwack: this is a more complete version of
{!Termops.occur_evar}. The latter does not look recursively into an
[evar_map]. If unification only need to check superficially, tactics
do not have this luxury, and need the more complete version. *)
let occur_evar_upto sigma n c =
let rec occur_rec c = match kind_of_term c with
| Evar (sp,_) when Evar.equal sp n -> raise Occur
| Evar e -> Option.iter occur_rec (existential_opt_value sigma e)
| _ -> iter_constr occur_rec c
in
try occur_rec c; false with Occur -> true
(****************************************)
(* Operations on value/type constraints *)
(****************************************)
type type_constraint = types option
type val_constraint = constr option
(* Old comment...
* Basically, we have the following kind of constraints (in increasing
* strength order):
* (false,(None,None)) -> no constraint at all
* (true,(None,None)) -> we must build a judgement which _TYPE is a kind
* (_,(None,Some ty)) -> we must build a judgement which _TYPE is ty
* (_,(Some v,_)) -> we must build a judgement which _VAL is v
* Maybe a concrete datatype would be easier to understand.
* We differentiate (true,(None,None)) from (_,(None,Some Type))
* because otherwise Case(s) would be misled, as in
* (n:nat) Case n of bool [_]nat end would infer the predicate Type instead
* of Set.
*)
(* The empty type constraint *)
let empty_tycon = None
(* Builds a type constraint *)
let mk_tycon ty = Some ty
(* Constrains the value of a type *)
let empty_valcon = None
(* Builds a value constraint *)
let mk_valcon c = Some c
let idx = Namegen.default_dependent_ident
(* Refining an evar to a product *)
let define_pure_evar_as_product evd evk =
let evi = Evd.find_undefined evd evk in
let evenv = evar_env evi in
let id = next_ident_away idx (ids_of_named_context (evar_context evi)) in
let concl = whd_betadeltaiota evenv evd evi.evar_concl in
let s = destSort concl in
let evd1,(dom,u1) =
new_type_evar evenv evd univ_flexible_alg ~filter:(evar_filter evi) in
let evd2,rng =
let newenv = push_named (id, None, dom) evenv in
let src = evar_source evk evd1 in
let filter = Filter.extend 1 (evar_filter evi) in
if is_prop_sort s then
(* Impredicative product, conclusion must fall in [Prop]. *)
new_evar newenv evd1 concl ~src ~filter
else
let status = univ_flexible_alg in
let evd3, (rng, srng) =
new_type_evar newenv evd1 status ~src ~filter in
let prods = Univ.sup (univ_of_sort u1) (univ_of_sort srng) in
let evd3 = Evd.set_leq_sort evenv evd3 (Type prods) s in
evd3, rng
in
let prod = mkProd (Name id, dom, subst_var id rng) in
let evd3 = Evd.define evk prod evd2 in
evd3,prod
(* Refine an applied evar to a product and returns its instantiation *)
let define_evar_as_product evd (evk,args) =
let evd,prod = define_pure_evar_as_product evd evk in
(* Quick way to compute the instantiation of evk with args *)
let na,dom,rng = destProd prod in
let evdom = mkEvar (fst (destEvar dom), args) in
let evrngargs = Array.cons (mkRel 1) (Array.map (lift 1) args) in
let evrng = mkEvar (fst (destEvar rng), evrngargs) in
evd,mkProd (na, evdom, evrng)
(* Refine an evar with an abstraction
I.e., solve x1..xq |- ?e:T(x1..xq) with e:=λy:A.?e'[x1..xq,y] where:
- either T(x1..xq) = πy:A(x1..xq).B(x1..xq,y)
or T(x1..xq) = ?d[x1..xq] and we define ?d := πy:?A.?B
with x1..xq |- ?A:Type and x1..xq,y |- ?B:Type
- x1..xq,y:A |- ?e':B
*)
let define_pure_evar_as_lambda env evd evk =
let evi = Evd.find_undefined evd evk in
let evenv = evar_env evi in
let typ = whd_betadeltaiota evenv evd (evar_concl evi) in
let evd1,(na,dom,rng) = match kind_of_term typ with
| Prod (na,dom,rng) -> (evd,(na,dom,rng))
| Evar ev' -> let evd,typ = define_evar_as_product evd ev' in evd,destProd typ
| _ -> error_not_product_loc Loc.ghost env evd typ in
let avoid = ids_of_named_context (evar_context evi) in
let id =
next_name_away_with_default_using_types "x" na avoid (whd_evar evd dom) in
let newenv = push_named (id, None, dom) evenv in
let filter = Filter.extend 1 (evar_filter evi) in
let src = evar_source evk evd1 in
let evd2,body = new_evar newenv evd1 ~src (subst1 (mkVar id) rng) ~filter in
let lam = mkLambda (Name id, dom, subst_var id body) in
Evd.define evk lam evd2, lam
let define_evar_as_lambda env evd (evk,args) =
let evd,lam = define_pure_evar_as_lambda env evd evk in
(* Quick way to compute the instantiation of evk with args *)
let na,dom,body = destLambda lam in
let evbodyargs = Array.cons (mkRel 1) (Array.map (lift 1) args) in
let evbody = mkEvar (fst (destEvar body), evbodyargs) in
evd,mkLambda (na, dom, evbody)
let rec evar_absorb_arguments env evd (evk,args as ev) = function
| [] -> evd,ev
| a::l ->
(* TODO: optimize and avoid introducing intermediate evars *)
let evd,lam = define_pure_evar_as_lambda env evd evk in
let _,_,body = destLambda lam in
let evk = fst (destEvar body) in
evar_absorb_arguments env evd (evk, Array.cons a args) l
(* Refining an evar to a sort *)
let define_evar_as_sort env evd (ev,args) =
let evd, u = new_univ_variable univ_rigid evd in
let evi = Evd.find_undefined evd ev in
let s = Type u in
let concl = whd_betadeltaiota (evar_env evi) evd evi.evar_concl in
let sort = destSort concl in
let evd' = Evd.define ev (mkSort s) evd in
Evd.set_leq_sort env evd' (Type (Univ.super u)) sort, s
(* We don't try to guess in which sort the type should be defined, since
any type has type Type. May cause some trouble, but not so far... *)
let judge_of_new_Type evd =
let evd', s = new_univ_variable univ_rigid evd in
evd', { uj_val = mkSort (Type s); uj_type = mkSort (Type (Univ.super s)) }
(* Propagation of constraints through application and abstraction:
Given a type constraint on a functional term, returns the type
constraint on its domain and codomain. If the input constraint is
an evar instantiate it with the product of 2 new evars. *)
let split_tycon loc env evd tycon =
let rec real_split evd c =
let t = whd_betadeltaiota env evd c in
match kind_of_term t with
| Prod (na,dom,rng) -> evd, (na, dom, rng)
| Evar ev (* ev is undefined because of whd_betadeltaiota *) ->
let (evd',prod) = define_evar_as_product evd ev in
let (_,dom,rng) = destProd prod in
evd',(Anonymous, dom, rng)
| App (c,args) when isEvar c ->
let (evd',lam) = define_evar_as_lambda env evd (destEvar c) in
real_split evd' (mkApp (lam,args))
| _ -> error_not_product_loc loc env evd c
in
match tycon with
| None -> evd,(Anonymous,None,None)
| Some c ->
let evd', (n, dom, rng) = real_split evd c in
evd', (n, mk_tycon dom, mk_tycon rng)
let valcon_of_tycon x = x
let lift_tycon n = Option.map (lift n)
let pr_tycon env = function
None -> str "None"
| Some t -> Termops.print_constr_env env t
let subterm_source evk (loc,k) =
let evk = match k with
| Evar_kinds.SubEvar (evk) -> evk
| _ -> evk in
(loc,Evar_kinds.SubEvar evk)
(** Term exploration up to instantiation. *)
let kind_of_term_upto sigma t =
Constr.kind (Reductionops.whd_evar sigma t)
(** [eq_constr_univs_test sigma1 sigma2 t u] tests equality of [t] and
[u] up to existential variable instantiation and equalisable
universes. The term [t] is interpreted in [sigma1] while [u] is
interpreted in [sigma2]. The universe constraints in [sigma2] are
assumed to be an extention of those in [sigma1]. *)
let eq_constr_univs_test sigma1 sigma2 t u =
(* spiwack: mild code duplication with {!Evd.eq_constr_univs}. *)
let open Evd in
let b, c =
Universes.eq_constr_univs_infer_with
(fun t -> kind_of_term_upto sigma1 t)
(fun u -> kind_of_term_upto sigma2 u)
(universes sigma2) t u
in
if b then
try let _ = add_universe_constraints sigma2 c in true
with Univ.UniverseInconsistency _ | UniversesDiffer -> false
else false
|